PARTIAL BENZOYLATION OF 2,1':4,6-DI-O-ISOPROPYLIDENE-SUCROSE

DAVID M. CLODE, WILLIAM A. LAURIE, DAVID MCHALE, AND JOHN B. SHERIDAN Cadbury Schweppes Plc, The Lord Zuckerman Research Centre, The University, Whiteknights, P.O. Box 234, Reading RG6 2LA (Great Britain)

(Received September 19th, 1984; accepted for publication, December 10th, 1984)

ABSTRACT

Partial benzoylation of 2,1':4,6-di-O-isopropylidenesucrose (1) with 1.1 mol. equiv. of benzoyl chloride in pyridine gave the 6'-benzoate 2 (13%), 3'-benzoate 3 (7%), and 3',6'-dibenzoate 4 (10%); 51% of 1 was recovered. With 1.4 mol. equiv., the percentages were 1, 20; 2, 20; 3, 12; and 4, 19. The 3',4',6'-tribenzoate 5 (3%), 3,3',6'-tribenzoate 6 (4%), and tetrabenzoate 7 (4%) were also formed. With 2.1 mol. equiv., 50% of 4 was obtained; with 3.1 mol. equiv., the percentages were 4, 24; 5, 19; 6, 15; and 7, 15. Removal of the acetal groups from 4 and monobenzoylation gave 6,3',6'-tri-O-benzoylsucrose. Removal of the acetal groups from 5, 6, and 7 gave 3',4',6'-tri-O-benzoylsucrose, 3,3',6'-tri-O-benzoylsucrose, and 3,3',4',6'tetra-O-benzoylsucrose, respectively.

INTRODUCTION

As part of a programme concerned with the synthesis of selectively benzoylated sucrose derivatives, we have studied the partial benzoylation of 2,1':4,6-di-Oisopropylidenesucrose¹⁻³ (1). In particular, we were interested in achieving substitution at position 3' (fructose ring). After the three primary positions, positions 2 (glucopyranosyl ring) and 3' (fructofuranosyl ring) are the most reactive⁴. In agreement with these results, Hough and co-workers⁵ have shown that the selective tosylation of sucrose gave the 2,6,1',6'-tetratosylate as the major tetrasubstituted derivative. Also, selective tosylation of 3,6'-di-O-acetyl-2,1':4,6-di-O-isopropylidenesucrose gave the 3'-tosylate as the major product². We now describe the benzoylation of 1 using 1–3 mol. equiv. of benzoyl chloride.

DISCUSSION

Treatment of $1 \text{ at } 0^\circ$ with 1.1 mol. equiv. of benzoyl chloride in pyridine gave a mixture of products which was partitioned between dichloromethane and water; 51% of 1 was recovered from the aqueous phase. T.l.c. of the dichloromethane extract revealed four major components, the slowest migrator corresponding to 1.

A REAL PROPERTY OF A DAMAGE AND	and and an	and the second se										
Compound ^a	Chemico	al shifts (ô) (first-ord	er coupling	s, Hz, in parent	reses)						
	<i>I-H</i>	Н-3	Н-3'	H-4'	H-2-6	НО	Aryl	OAc				CMe ₂
 • • • • • • • • • • • • • • • • • • •	(J1,2)	$(1_{3,4})$	(,*'.{r)	(J <i>4</i> , <i>S</i> , <i>J</i>	0- c-u' 1-u			с.3	C-4'	C-6'	C-3'	
1,	6.26d		ť	4.58t	3.45-4.40m	5.20d, 5.41s						1.44, 1.51
2^d	(3.3) 6.18d		(1.1)	(1.7)	3.25-4.80m	(8.8) 2.16s	7.25-8.15m					1.21, 1.51
	(3.2)											1.50, 1.50
3: 3:	6.20d		5.15d	4.90t	3.50-4.20m	2.45-3.50	7.25-8.15m					1.36, 1.43
	(3.1)		(7.5)	(7.5)		(broad 3H)						1.50, 1.50
40	6.15d		5.05d	4.58t	3.45-4 60m	2.47d	7 25-8.15m					1.40, 1.43
	(3.3)		(6.2)	(6.2)		(1.5)						1 53, 1.53
Х ^с	6.13d		5.53d	5.82dd	3.45-4.75m	2.38s	7 15-8.30m					1.38, 1 41
	(2.4)		(4.6)	(2.4)								1.48, 1 52
6d	6.25d	5.70t	4.93d		3.50-4.75m		7.25-8.35m					1 21, 1.31
	(3.5)	(0.0)	(6.4)									1.45, 1.45
		(0.0)										
J b	6.23d	5.40t	5.57d	5.83dd	3.65-4.80m		7.25-8.25m					1 21, 1.28
	(3.6)	(9.2)	(4.9)	(3.3)								1.40, 1 45
		(9.2)										

¹H-N M R DATA FOR COMPOUNDS 1-7, 11-15, AND 26

TABLE I

114	6.13d (3.6)	5.22t	5.17d	5.44dd	3.25-4.70m	7.20–8.15m	2.05s	2.05s		2.25s	1.26, 1.40
	(212)	(9.8)		(2)							CT.1 (CT.1
124	6.12d	5.14t	5.33d	5.44dd	3.25-4.55m	7.25-8.30m	1.98s	2.04s	2.09s		1.26, 1.40
	(3.9)	(0.0)	(2.8)	(5.1)							1.45, 1.46
		(0.0)									
134	6.14d	5.13t	5.35d	5.58dd	3.40-4.75m	7.15-8.25m	1.99s	2.06s			1.25, 1.30
	(3.5)	(0.0)	(5.1)	(3.7)							1.40, 1.45
		(0.0)									
14d	6.17d	5.15t	5.55d	5.79dd	3.35-4.90m	7.20-8.30m	2.00s				1.30, 1.30
	(3.5)	(0.6)	(2.0)	(4.0)							1.40, 1.45
		(0.6)									
154	6.19d	5.38t	5.36d	5.60dd	3.30-4.80m	7.20-8.35m		2.08s			1.18, 1.27
	(3.6)	(6.3)	(4.6)	(3.6)							1.40, 1.43
		(6.3)									
26 bf	6.09d	5.221	5.16d	5.31dd	3.45-4.45m		2.04s	2.06s	2.09s	2.24s	1.26, 1.40
	(3.6)	(9.6)	(6.3)	(4.3)							1.45, 1.46
		(9.6)									

"In CDCl3. bAt 270 MHz. cAt 300 MHz. dAt 90 MHz. At 250 MHz. For comparison.

Column chromatography of the mixture gave the 3',6'-dibenzoate 4 (10%), the 3'-benzoate 3 (7%), and the 6'-benzoate 2 (13%). The structures of 2-4 were established by ¹H- and ¹³C-n.m.r. and mass spectroscopy. Thus, the ¹H-n.m.r. spectrum of 4 (Table I) showed signals at δ 6.15 (d, H-1) and 5.05 (d, H-3'). Since the latter signal appeared to lower field than those of the other ring protons, the benzoate groups were attached to C-3' and C-6'. That the two benzoate groups were on the same moiety of the sucrose molecule was confirmed by the mass spectrum of the di-acetate 13 of 4 (Table II). C.i.-m.s. of 13 gave a molecular weight of 714, and e.i.-m.s. gave fragment ions at m/z 699 (M - Me)⁺, 397 (ketofuranosyl cation), and 245 (hexopyranosyl cation). The ¹H-n.m.r. spectrum of 13 (Table I) showed, in addition to a signal at δ 5.35 (d, H-3'), signals at 5.13 (t, H-3) and 5.58 (dd, H-4') in the δ 5.0-6.0 region.

9	R	=	$R^2 =$	$R^4 = Ac, R^1 = R^3 = R^5 = Bz$
21	R	=	$R^1 =$	$R^2 = Ac, R^3 = R^4 = R^5 = Bz$
23	R	==	$R^1 =$	$R^4 = Ac, R^2 = R^3 = R^5 = Bz$
25	R	=	$R^1 =$	$Ac, R^2 = R^3 = R^4 = R^5 = Bz$
27	R	=	$R^1 =$	$R^2 = R^3 = R^4 = R^5 = Ac$

The ¹H-n.m.r. spectrum (Table I) of the monobenzoate **3** contained a signal at δ 5.15 (d, H-3'), at lower field than those of the other ring protons except for that of H-1, indicating that the benzoate group was at position 3'. In comparison, the monobenzoate **2** showed no signals in this region, apart from that at δ 6.18 (d, H-1), and was therefore the 6'-benzoate. The ¹³C-n.m.r. spectra of **2** and **3** (Table III) also supported the assigned structures. Substitution at O-6' in **2** resulted in a

	5	
μ	ų	
-		
ρ	q	
<	C	
٢.		

8
AND
1-15,
s 7, 1
OUND
COMP
FOR
DATA
TRAL
SPEC
MASS

m/z of princi	pal fragments	(% of pase bea	uk)				Assignment	
7	11	12	13	14	15	26ª		
823 (1.1)	637 (0.9)	637 (1.5)	732 ^b 699 (3.2)	761 (1.1) 459 /0 \$)	761 (0.3)	575 (1.4)	M + NH [‡] [M – Me] ⁺	$\Gamma \mathbf{R} = \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{B}\mathbf{z}$
(1.1) 664	335 (1.0)	335 (1.6)	397 (0.5)		397 (1.0)	273 (1.8)	RO R ^O OR	$\begin{cases} R = R^{2} = B_{2}, R^{1} = Ac \\ R = B_{2}, R^{1} = R^{2} = Ac \\ R^{2} = B_{2}, R^{2} = R^{2} = Ac \\ R^{2} = B_{2}, R = R^{1} = Ac \\ R = R^{1} = R^{2} = Ac \end{cases}$
307 (14.6)	245 (10.1)	245 (1.8)	245 (9.0)	245 (8.0)	307 (7.1)	245 (8.8)		$\int_{c} \mathbf{R} = \mathbf{B}\mathbf{z}$ $\int_{c} \mathbf{R} = \mathbf{A}\mathbf{c}$
214 (26.8)			214 (1.7)	214 (26.3)	214 (1.2)		H ₂ C CH ₂	
	152 (46.9)	152 (5.8)	152 (28.9)		152 (26.8)	152 (30.8)	H ₂ C Oth 2	
110 (1.9)	110(0.6)	110 (3.5)	110 (26.7)	110 (2.9)	110 (17.0)	110 (30.3)	H ₂ C-CH ₂	
105 (100)	105 (68.5)	105 (100)	105 (71.0)	105 (100)	105 (100)		PhCo+	
	43 (100)	43 (79.8)	43 (100)	43 (11.8)	43 (17.0)	43 (100)	Meco+	
"For compa	rison. ^b Chemi	ical-ionisation	mass spectron	aetry.				

C-N M R C		5nir 15 (ļ	.p.m.) i	-OR COM		2-7 ANI) II-13				
Atom	2	3	4	5	6	7	11	12	13	14	15
C-2'	103.7	103.8	104.7	105.1	105.1	105.3	104.8	105.1	105.2	105.3	105.3
C-1	91.2	91.2	91.2	91.6	91.4	92.0	91.7	91.8	91.8	91.9	91.9
C-5′	79.8	84.6	81.7	80.4	82.9	80.6	79.9	80.3	80.3	80.5	80.3
C-3'	79.5	81.1	81.5	78.0	82.0	78.0	77.3 ^b	77.6 ^b	77.9	77.9	78.0
C-4′	78.3	73.7	77.0	78.5	77.3	78.6	77.7 ⁶	77.8 ^b	77.9	78.6	78.0
C-4 ^c	73.9	72.9	74.0	73.8	72.2	72.1	719	71 9	71.9	71.9	72 1
C-2 ^c	73.4	72.2	73.0	72.7	71.6	71.6	71.6	71.5	71.5	71.5	71.6
C-3	69.7	70.4	70 5	70.2	71.4	71.6	70.8	70.9	70.9	70.9	71.6
C-5	63.9	64.1	63.9	63.9	64.4	64.4	64.5	64.4	64.4	64.4	64.4
C-1′	66.6	66.7	66.1	66.5	66.1	66.3	66.1	66.1	66.1	66.3	66.2
C-6'	65.9	62.0	65.9	64.9	65.6	65.2	65.6	64.8	65.2	65.3	65.2
C-6	62.3	61.5	62.2	62.0	62.2	62.1	62.2	62.1	62.1	62.1	62.1
Acetal	102.2	102.1	101.8	101.7	101.6	101.6	101.5	101.5	101.5	101.5	101.5
carbons	100.1	100.0	99.8	99.6	99.7	99.5	99.7	99.5	99.5	99.5	99.5
Acetal	29.1	29.1	29.2	29.1	29.0	28.9	29.1	29.0	29.0	29.0	29.0
methyl	25.3	25.5	25.5	25.6	25.3	25.5	25.5	25.5	25.5	25.5	25.4
carbons	24.2	24.2	24.2	24.1	23.9	23.9	23.9	23.9	23.9	23.9	23.9
	19.2	19.2	19.2	19.2	19.0	19.1	19.1	19.1	19.1	19.1	19.1

TABLE III

¹³C-N M R CHEMICAL SHIFTS (p.p.m.) FOR COMPOUNDS^a 2–7 AND 11–15

^aIn CDCl₃. ^{b,c}Assignments may be reversed.

significant shift (4.6 p.p.m.) to low field⁶ of the signal for C-4' compared with the corresponding signal in 3. Comparison of the mass spectra of the tri-acetate derivatives (11 and 12, respectively) of 2 and 3 showed fragment ions at m/z 335 (ketofuranosyl cation) and 245 (hexopyranosyl cation), confirming that the fructo-furanosyl ring was benzoylated. The ¹H-n.m.r. spectra of 11 and 12 (Table I) were also consistent with the assigned structures. Thus, the H-3' doublet of 12 is shifted (0.16 p.p.m.) to low-field by the 3'-benzoate group compared with that of 11 and also compared with that of the diacetal tetra-acetate 26 (Table I). The presence of a benzoate group at position 6' (11) or 3' (12) causes a downfield shift (0.13 p.p.m.) in the signal for H-4'.

With 1.4 mol. equiv. of benzoyl chloride, less 1 (20%) remained, but more 2 (20%), 3 (12%), and 4 (20%) were obtained as well as the tribenzoates 5 and 6 and the tetrabenzoate 7. With 2 mol. equiv. of benzoyl chloride, 1 gave 50% of 4 as well as 5–7; only traces of the monobenzoates were isolated. With 3 mol. equiv. of benzoyl chloride, 1 gave 4–7 in approximately equal amounts (combined yield, 73%). The R_F values (t.l.c.) of 4–7 were 0.22, 0.32, 0.78, and 0.90, respectively; the marked difference in R_F of the tribenzoates 5 and 6 is noteworthy.

The ¹H-n.m.r. spectrum of the tribenzoate **5** showed signals at δ 5.53 (H-3') and 5.82 (H-4'), in good agreement with the values obtained for the tetrabenzoate **7**. The H-3' doublets for **5** and **7** were shifted to lower field compared with the corresponding signals in the 3',6'-dibenzoate **4** and the 3'-benzoate **3**, presumably due to the 4'-benzoate group. There were no other signals in the region δ 5.0–6.0

Compound"	Chemic	al shifts (d)) (first-ord	er couplin	gs, Hz, m	parennes	3)					
	H-I (11,2)	$H-2$ $(J_{2,3})$	H-3 (J _{3,4})	H-4 (J _{4,5})	H-3' (J _{3'.4'})	H-4' (J _{4',5'})	H-2-6 H-1', H-4'-6' OH	но	Aryl	OAc		
16 ^{bc}	5.43d		3.66t		5.66d	5.53t	3.35-5.00m		7.40-8.20m			
18 de	(5.53d (3.8)		3.66t		(0.0) 5.53d (6.0)	(8.U) 4.55t (6.0)	3.40-4.70m		7.55-8.20m			
20 ^{bf}	5.50d		(0.7)		6.00 6.00	(0.2) 6.04t	3.35-5.10m		7.15-8.20m			
22	5.49d		5.40t (9.9)		5.53d	(4.0)	3.45-5.00m	3.20 s (5 H)	7.25-8.30m			
24%	5.50d		5.11t		5.83d	5.92t	3.55-4.90m	2.00-3.55 (heread 4 H)	7.20-8.35m			
17¢	5.69d	4.93dd	5.39dd	5.02dd	5.75d	5.65dd	4.00-4.70m	(11 t np010)	7.40-8.15m	1.94	1.97	2.00
	(3.6) 7 2.1	(10.4)	(9.2) 2.23	(10.4)	(6.4)	(9.9)				2.08	2.08	2.12
<u>م</u> ا	5.74d (3.6)	4.91dd (10.4)	5.41dd (9.2)	5.16dd (10.1)	5.71d (5.8)	5.64dd (5.9)	4.10-4.70m		7.35-8.15m	1.91 2.08	1.96 2.13	1.97
21°	5.73d	4.95dd	5.41dd	5.03dd	5.93d	5.89t	4.05-4.80m		7.30-8.15m	1.95	1.97	2.01
716	(3.5) 5 74d	(10.4) 5 114d	(9.2) 5 6844	(10.4) 5 214d	(6.2) 5 774	(6.2) 5 60dd	4 05 4 75m			2.09 1.95	2.12	
3	(3.6)	(10.4)	(6.7)	(10.1)	(6.4)	(9.9)	mc/.++		11107-0-00-1	2.09	2.13	40.7
25¢	5.78d	5.13dd	5.70dd	5.23dd	5.96d	5.93t	4.10-4.85m		7.35-8.20m	1.85	1.91	2.11
37k	(3.6) 5 60d	(10.4) A 0744	(9.6) 5 A5A3	(10.2) 5 004d	(6.3) 5 A5A	(6.3) 5 2644	4 DE 4 46			2.13	30 0	¢
4	(3.6)	(10.4)	(9.2)	(9.6)	(5.6)	(1.)	11104-4-00-4			2.10 2.10	2.10	2.12
	,			х. г						2.12	2.18	

¹H-N M R DATA FOR COMPOUNDS 16-25 AND 27

TABLE IV

Ŧ
4
N)
2
-
N
5
2
ີ
H
~
5
10
õ
Ī
\supset
0
<u>a</u>
Σ
0
\circ
Ч
0
щ
_≺
~
7
2
Ē
し
ц
S
Ś
ŝ
⊴
- 5

MASS-SPECTR	AL DATA FOR C	OMPOUNDS 17,	19, 21, 23, 25,	AND 27			
m/z of princi	pal fragments (% of base peak,				Assignment	
17	19	21	23	25	27"		
820 ^b		882 ^b				+ NH + M	
455 (15.6)	455 (8.3)	517 (20.8)	455 (5 7)	517 (6.3)			$\begin{cases} R = Bz \\ R = Ac \end{cases}$
	393 (15.0)					Ro CR	
331 (29.3)		331 (34.6)	393 (6.9)	393 (14.7)	331 (23.8)	Action of the second se	$\begin{cases} R = Bz, R^{1} = Ac \\ R = Ac, R^{1} = Bz \end{cases}$
273 (14.9)	273 (9.7)	273 (23.4)	273 (8.3)	273 (11.2)			LR=R'=Ac
271 (2.2)		271 (9.4)	271 (0.9)	271 (1.4)	271 (1.2)	Aco OBZ	
	231 (15.9)					Bro OAc	
						¥°°	

and hence 5 was assigned the 3',4',6'-tribenzoate structure. This was confirmed by the mass spectrum of the mono-acetate (14) of 5 which gave fragment ions at m/z459 (ketofuranosyl cation) and 245 (hexopyranosyl cation), indicating that the fructofuranosyl ring carried the three benzoate groups. The ¹H-n.m.r. spectrum of 14 was similar to that of 5 except that a signal at δ 5.15 (H-3) was now observed.

The ¹H-n.m.r. spectrum of the tribenzoate **6** indicated that it was substituted at positions 3, 3', and 6'. This assignment was supported by the mass spectrum of the mono-acetate (**15**) of **6**, which gave fragment ions at m/z 397 (ketofuranosyl cation) and 307 (hexopyranosyl cation) that confirmed the presence of a benzoate group on the glucopyranosyl moiety. A comparison of the ¹H-n.m.r. spectra of **15**, the 3',6'-dibenzoate diacetate **13**, and the 3',4',6'-tribenzoate monoacetate **14** showed that the signal for H-3 (δ 5.38) in **15** was at lower field than the corresponding signal for **13** or **14** (δ 5.13 and 5.15, respectively), indicating the presence of a 3-benzoate group in **15**. The signal for H-4' (δ 5.60) was at higher field than the corresponding signal for **14** (δ 5.79) and similar to the signal for H-4' in **13** (δ 5.58), indicating that C-4' was unsubstituted in the parent compound.

Removal of the acetal groups from 4 with aqueous trifluoroacetic acid⁷ gave the crystalline dibenzoate 16. The ¹H-n.m.r. spectrum (Table IV) of 16 showed the expected low-field signal (d) for H-3' at δ 5.66. There were no other signals in this region, apart from that at δ 5.43 (d, H-1), and therefore the only secondary hydroxyl group substituted was at position 3'. Under the reaction conditions employed, benzoate migration was unlikely and so the product was the 3',6'-dibenzoate 16. The mass spectrum (Table V) of the hexa-acetate (17) of 16 contained fragment ions at m/z 455 and 273 (ketofuranosyl cations) and 331 and 271 (hexopyranosyl cations), confirming that the fructofuranosyl moiety was di-O-benzoylated. Comparison of the ¹H-n.m.r. spectra of 17 and sucrose octa-acetate^{8.9} (27) showed that the signals for H-3' and H-4' in 17 had been shifted to lower field, the latter due to the deshielding effect of the 3'- and 6'-benzoate groups.

The 3',6'-dibenzoate **16** could be conveniently prepared (22% from **1**) by treating the products of a dimolar benzoylation of **1** with aqueous trifluoroacetic acid (see Experimental).

Monobenzoylation of 16 gave a mixture which t.l.c. showed to contain two major components, namely, 16 and 18, which were subsequently isolated in yields of 43 and 19%, respectively. The ¹H-n.m.r. spectrum (Table IV) of 18 was very similar to that of 16, with a low-field signal at δ 5.53 (d, H-3'). The mass spectrum of the penta-acetate (19) of 18 contained fragment ions at m/z 455 and 273 (ketofuranosyl cations) and 393 and 231 (hexopyranosyl cations), indicating that the glucopyranosyl moiety carried a benzoate group. Thus, assuming that there was no $6' \rightarrow 1'$ benzoate migration, then 18 is 6,3',6'-tri-O-benzoylsucrose.

Removal of the acetal groups from 5–7, in the normal manner, gave the 3',4',6'-tribenzoate 20, the 3,3',6'-tribenzoate 22, and the 3,3',4',6'-tetrabenzoate 24, respectively. The ¹H- and ¹³C-n.m.r. spectra (Tables IV and VI) of 20, 22, and 24, and their acetylated derivatives 21, 23, and 25, respectively, were in agreement

	EMICAL SHIFTS	(p.p.m.)) FOR CO	MPOUND	S" 10-23						
Atom	16 ^b	18°	20	22 ^b	24	17	19	21	23	25	_
C-2'	105.2	104.7	105.7	105.3	105.7	103.9	104.3	104.0	103.9	104.0	
C-1	93.3	92.2	92.6	93.6	92.7	90.0	90.3	90.2	90.3	90.4	
C-5'	81.4	80.9	79.7	81.3	80.0	78.9	79.1	79.3	78.4	79.3	
C-3′	80.3	80.2	78.2	80.4	78.5	76.6	77.0	76.7	77.0	76.7	
C-4′	75.6	74.9	77.6	75.7	77.7	75.5	75.7	76.3	75.6	76.3	
C-3	75.1	74.1	74.2	77.7	77.4	70.0	70.0	70.0	70.2	70.2	
C-5	74.6	72.1	73.1	74.8	73.5	68.8	68.7	68.9	69.0	69.1	
C-2	73.2	71.4	71.9	71.5	70.7	70.2	70.2	70.0	70.4	70.5	
C-4	71.5	70.5	69.9	69.6	69.5	68.5	68.7	68.6	68.3	68.4	
C-6'	67.5	65.7	64.8	67.6	64.8	64.5	64.2	64.7	64.5	64.7	
C-1'	65.1	64.9	64.5	64.8	64.7	64.0	64.0	64.1	63.9	64.0	
C-6	62.7	64.6	61.7	62.3	62.2	62.0	62.2	62.1	62.0	62.1	

TABLE VI

¹³C-N.M.R. CHEMICAL SHIFTS (p.p.m.) FOR COMPOUNDS^a 16-25

"In CDCl₃ unless otherwise stated. ^bIn CD₃OD, ^cIn CD₃OD/CDCl₃.

with the assigned structures. Thus, the ¹H-n.m.r. spectrum (CD₃OD) of **20** showed low-field signals at δ 6.00 (d, H-3') and 6.04 (t, H-4'), and that (CDCl₃) of **22** signals at δ 5.53 (d, H-3') and 5.40 (t, H-3). The ¹H-n.m.r. spectra of the penta-acetate **21** and the tetra-acetate **25** were very similar, with the signals for H-3' and H-4' appearing at lower field than those for the other ring protons. The signals at δ 5.70 (dd) and 5.68 (dd) in the ¹H-n.m.r. spectra of the tetrabenzoate **25** and the 3,3',6'tribenzoate **23** were assigned to H-3, and appeared downfield by 0.29 and 0.27 p.p.m., respectively, compared with the corresponding signal in **21**, indicating that position 3 was benzoylated. The mass spectra of **21** and **25** contained a fragment ion at m/z 517 (tri-O-benzoylated ketofuranosyl cation), and **23** and **25** gave a fragment ion at m/z 393 (mono-O-benzoylated hexopyranosyl cation).

The foregoing results indicate that the order of reactivity of the hydroxyl groups in 1, towards esterification, is HO-6' > HO-3' \ge HO-4' \simeq HO-3. The greater reactivity of HO-3' compared with those of HO-3 and HO-4' accords with results⁴ on the partial benzoylation of sucrose, whereby substitution of HO-2 and HO-3' is greatly preferred to the other secondary hydroxyl groups.

EXPERIMENTAL

General methods. — In addition to the data given in the preceding paper⁴, i.r. spectra were recorded with a Perkin–Elmer Model 157G spectrometer. Column and flash chromatography¹⁰ were performed on silica gel 9385 (Merck, 0.040–0.063 mm). T.l.c. was performed with dichloromethane–ethyl acetate–ethanol (6:3:1) unless otherwise stated. ¹H-N.m.r. spectra (internal Me₄Si) were recorded with Jeol FX90Q, Jeol FX270Q, Bruker WM-250, and Bruker WH-300 spectrometers (see Tables I and IV); ¹³C-n.m.r. spectra (22.50 MHz) were recorded with a Jeol FX90Q spectrometer (see Tables III and VI). Mass spectra are recorded in Tables II and V.

2,1':4,6-Di-O-isopropylidenesucrose (1). - A solution of 2,1':4,6-di-O-iso-

propylidenesucrose tetra-acetate¹⁻³ (26, 1 g) in methanol (25 mL) was treated with sodium (catalytic quantity). After 2 h, t.l.c. revealed two components with mobilities lower than that of 26. After a further 20 h, only the component of lowest mobility remained, and the solution was neutralised with solid carbon dioxide and concentrated to dryness. A solution of the residue in dichloromethane was filtered and concentrated to give 1 (80%). Recrystallisation from ethyl acetate–light petroleum gave 1, m.p. 161–163°, $[\alpha]_D^{25} + 25^\circ$ (c 2, methanol); lit.³ $[\alpha]_D + 25.5^\circ$ (methanol).

Benzoylation of 2,1':4,6-di-O-isopropylidenesucrose (1). — (a) Benzoyl chloride (0.3 mL, 1.1 mol. equiv.) was added to a solution of 1 (1 g) in anhydrous pyridine (5 mL) at 0°. The mixture was stored at room temperature for 18 h, then treated with water (a few drops), poured into ice-water, and extracted with dichloromethane, and the extract was washed with water. T.l.c. of the extract revealed four major components, the slowest corresponding to 1. The aqueous phase contained 1 and concentration to dryness gave 1 (0.51 g). The dichloromethane extract was dried (MgSO₄) and concentrated to dryness. Column chromatography of the resulting syrup (0.64 g) with ethyl acetate-light petroleum (4:1) gave, first, the 3',6'-dibenzoate 4 (178 mg, 12%), then the 3'-benzoate 3 (83 mg, 7%), and finally the 6'-benzoate 2 (160 mg, 13%); 1 was not eluted from the column.

Compound 2 was an amorphous solid, $[\alpha]_D^{2.5} + 41^\circ$ (c 3.5, chloroform); $\nu_{\text{max}}^{\text{Nupol}}$ 3420 (OH), 1720 cm⁻¹ (C=O).

Anal. Calc. for C₂₅H₃₄O₁₂: C, 57.03; H, 6.46. Found: C, 57.08; H, 6.75.

The triacetate (11) of 2 was a glass, $[\alpha]_D^{25} + 15^\circ$ (c 2.9, chloroform); ν_{\max}^{KBr} 1753, 1728 cm⁻¹ (C=O).

Compound 3 was an amorphous solid, $[\alpha]_D^{25} - 29^\circ$ (c 2.8, chloroform); $\nu_{\text{max}}^{\text{Nujol}}$ 3440 (OH), 1720 cm⁻¹ (C=O).

Anal. Calc. for C₂₅H₃₄O₁₂: C, 57.03; H, 6.46. Found: C, 56.98; H, 6.42.

The triacetate (12) of 3 was a glass, $[\alpha]_D^{25} + 18^\circ$ (c 2.2, chloroform); $\nu_{\text{max}}^{\text{KBr}}$ 1755 cm⁻¹ (C=O).

Recrystallisation of **4** from ethyl acetate–light petroleum gave material having m.p. 121–122°, $[\alpha]_D^{20} - 13^\circ$ (c 1, chloroform); $\nu_{\text{max}}^{\text{liq} \text{ film}} 3470$ (OH), 1725 cm⁻¹ (C=O).

Anal. Calc. for C₃₂H₃₈O₁₃: C, 60.95; H, 6.03. Found: C, 60.92; H, 6.04.

The diacetate (13) of 4 was a glass, $[\alpha]_D^{25} + 16^\circ$ (c 4.8, chloroform); $\nu_{\max}^{\text{Nujol}}$ 1755 (shoulder), 1724 cm⁻¹ (C=O).

(b) A solution of 1 (1 g) in anhydrous pyridine (5 mL) was treated with benzoyl chloride (0.38 mL, 1.4 mol. equiv.) at 0°. The mixture was kept at room temperature for 18 h, treated with water (a few drops), and concentrated to dryness. Column chromatography of the syrupy product with ethyl acetate-light petroleum (4:1) gave, first, a mixture (497 mg) containing di-, tri-, and tetra-benzoates, and then **3** (150 mg, 12%), **2** (244 mg, 20%), and **1** (198 mg, 20%). Column chromatography of the initial mixture with light petroleum-ethyl acetate (3:1) gave, first, the tetrabenzoate **7** (86 mg, 4%), and then the 3,3',6'-tribenzoate **6** (66 mg, 4%), the 3',4',6'-tribenzoate **5** (54 mg, 3%), and **4** (280 mg, 19%).

Recrystallisation of 7 from ethyl acetate-light petroleum gave a product iden-

tical with the tetrabenzoate prepared by the treatment of **1** with excess of benzoyl chloride and which had m.p. 93–95°, $[\alpha]_D^{25} + 4^\circ$ (c 2, chloroform); ν_{max}^{Nujol} 1725 cm⁻¹ (C=O).

Anal. Calc. for C₄₆H₄₆O₁₅: C, 65.87; H, 5.49. Found: C, 65.42; H, 5.84.

After recrystallisation from ethyl acetate–light petroleum, **5** had m.p. 151–152°, $[\alpha]_D^{20} - 54^\circ$ (*c* 1, chloroform); $\nu_{\text{max}}^{\text{Nujol}}$ 3450 (OH), 1725 cm⁻¹ (C=O).

Anal. Calc. for C₃₉H₄₂O₁₄: C, 63.80; H, 5.70. Found: C, 63.51; H, 6.05.

The acetate (14) of 5 was a glass, $[\alpha]_D^{25} - 9^\circ (c4.4, \text{chloroform}); \nu_{\text{max}}^{\text{Nujol}}$ 1725 cm⁻¹ (C=O).

After recrystallisation from ethyl acetate–light petroleum, **6** had m.p. 198–201°, $[\alpha]_D^{20}$ +62° (*c* 1, chloroform); ν_{max}^{Nujol} 3545 (OH), 1715 cm⁻¹ (C=O).

Anal. Calc. for C₃₉H₄₂O₁₄: C, 63.80; H, 5.70. Found: C, 64.16; H, 5.90.

The acetate (15) of 6 was a glass, $[\alpha]_D^{25} + 38^\circ(c3, \text{chloroform}); \nu_{\text{max}}^{\text{Nujol}}$ 1725 cm⁻¹ (C=O).

(c) Benzoyl chloride (0.57 mL, 2.1 mol. equiv.) was added to a solution of 1 (1 g) in anhydrous pyridine (5 mL) at 0°. The mixture was stored at room temperature for 18 h, treated with a few drops of water, and concentrated to dryness. T.l.c. of the product showed that 1 was absent and that 4 was the major product. There were also several faster-moving components and traces of the 3'- and 6'-benzoates. Column chromatography of the mixture with light petroleum-ethyl acetate (3:1) gave, first, 7 (179 mg, 9%), and then 6 (157 mg, 9%), 5 (142 mg, 8%), and 4 (746 mg, 50%). Only traces of the monobenzoates were recovered.

(d) Benzoyl chloride (0.87 mL, 3.1 mol. equiv.) was added to a solution of 1 (1 g) in anhydrous pyridine (5 mL) at 0°. The mixture was stored at room temperature for 18 h, treated with a few drops of water, and poured into ice-water. T.l.c. of the resulting solid with light petroleum-ethyl acetate (3:2) revealed four major components, $R_F 0.22$ (4), 0.32 (5), 0.78 (6), and 0.90 (7). Column chromatography of the solid product gave 7 (292 mg, 15%), 6 (262 mg, 15%), 5 (336 mg, 19%), and 4 (361 mg, 24%).

3',6'-Di-O-benzoylsucrose (16). — Compound 4 (0.3 g) was treated⁷ with 9:1 trifluoroacetic acid-water (3 mL). Addition of ethyl acetate gave a product (0.21 g, 81%) which was recrystallised from ethyl acetate to give 16, m.p. 169–171°, $[\alpha]_D^{20}$ +6° (c 2, methanol); $\nu_{max}^{lig. slim}$ 3350 (OH), 1735, 1695 cm⁻¹ (C=O).

Anal. Calc. for C₂₆H₃₀O₁₃: C, 56.73; H, 5.45. Found: C, 57.01; H, 5.57.

The hexa-acetate (17) of 16 was a glass, $[\alpha]_D^{25} + 37^\circ$ (c 2.6, chloroform); $\nu_{\max}^{\text{Nujol}}$ 1753, 1730 cm⁻¹ (C=O).

6,3',6'-Tri-O-benzoylsucrose (18). — A solution of 16 (0.4 g) in anhydrous pyridine (3 mL) was treated with benzoyl chloride (0.10 mL, 1.2 mol. equiv.) at 0°. The mixture was stored at room temperature for 18 h, treated with a few drops of water, poured into ice-water, and extracted with dichloromethane. The aqueous phase was then extracted with ethyl acetate, and the extract was dried (MgSO₄) and concentrated to dryness to give 16 (172 mg, 43%). T.l.c. of the dichloromethane extract revealed one major and several minor components. Column chromatography of the mixture with dichloromethane-ethyl acetate-ethanol (6:3.5:0.5) gave **18** (90 mg, 19%), m.p. 158–162°, $[\alpha]_D^{20}$ +18° (*c* 1, chloroform); ν_{\max}^{Nujol} 3465, 3350 (OH), 1725, 1710, 1693 cm⁻¹ (C=O).

Anal. Calc. for C₃₃H₃₄O₁₄: C, 60.55; H, 5.20. Found: C, 60.45; H, 5.03.

The penta-acetate (19) of 18 was a glass, $[\alpha]_D^{25}$ +46° (c 5.5, chloroform); $\nu_{\text{max}}^{\text{KBr}}$ 1755, 1725, 1690 cm⁻¹ (C=O).

3',4',6'-Tri-O-benzoylsucrose (20). — The diacetal 5 (0.28 g) was treated⁷ with 9:1 trifluoroacetic acid-water (3 mL) to give 20 (288 mg, 85%) as a foam, $[\alpha]_D^{25} - 52^\circ$ (c 1, methanol); $\nu_{max}^{KBr} 3410$ (OH), 1725 cm⁻¹ (C=O).

Anal. Calc. for C₃₃H₃₄O₁₄: C, 60.55; H, 5.20. Found: C, 60.47; H, 5.17.

The penta-acetate (21) of 20 was a glass, $[\alpha]_D^{125} + 5^\circ$ (c 4, chloroform); $\nu_{\text{max}}^{\text{KBr}}$ 1755, 1735 cm⁻¹ (C=O).

3,3',6'-Tri-O-benzoylsucrose (22). — The diacetal 6 (0.15 g) was treated⁷ with 9:1 trifluoroacetic acid-water (2 mL). Recrystallisation of the product from dichloromethane gave 22 (80 mg, 60%), m.p. 128–130°, $[\alpha]_{D}^{25}$ +35° (c 2, methanol); ν_{max}^{KBr} 3520, 3260 (OH), 1715 cm⁻¹ (C=O).

Anal. Calc. for C₃₃H₃₄O₁₄: C, 60.55; H, 5.20. Found: C, 60.56; H, 4.92.

The penta-acetate (23) of 22 was a glass, $[\alpha]_{D}^{25} + 27^{\circ}$ (c 3.6, chloroform); ν_{max}^{KBr} 1753, 1730 cm⁻¹ (C=O).

3,3',4',6'-*Tetra*-O-*benzoylsucrose* (24). — The diacetal 7 (0.53 g) was treated⁷ with 9:1 trifluoroacetic acid-water (5 mL). Recrystallisation of the product (455 mg, 95%) from ether-light petroleum gave 24, m.p. 129–132°, $[\alpha]_D^{25}$ +9° (c 2, chloroform); $\nu_{\text{max}}^{\text{KBr}}$ 3450 (OH), 1725 cm⁻¹ (C=O).

Anal. Calc. for C₄₀H₃₈O₁₅: C, 63.32; H, 5.01. Found: C, 63.17; H, 5.03.

The tetra-acetate (25) of 24 was a glass, $[\alpha]_D^{25} = -0.7^\circ$ (c 4.5, chloroform); $\nu_{\max}^{\text{Nujol}}$ 1753, 1730 cm⁻¹ (C=O).

ACKNOWLEDGMENTS

The authors thank Mr. M. A. Woof for recording the mass spectra, Mr. G. M. Leach for recording the ¹H- and ¹³C-n.m.r. spectra, and the Directors of Cadbury Schweppes Plc for permission to publish this work.

REFERENCES

- 1 R. KHAN AND K S. MUFTI, Carbohydr. Res., 43 (1975) 247-253.
- 2 R. KHAN, M. R. JENNER, AND H. LINDSETH, Carbohydr. Res., 65 (1978) 99-108
- 3 E FANTON, J. GELAS, D. HORTON, H. KARL, R. KHAN, C.-K. LEE, AND G. PATEL, J. Org. Chem., 46 (1981) 4057-4060.
- 4 D. M. CLODE, D. MCHALE, J. B. SHERIDAN, G G. BIRCH, AND E. B. RATHBONE, Carbohydr Res, 139 (1985) 141–146.
- 5 J. M. BALLARD, L. HOUGH, S. P. PHADNIS, AND A. C. RICHARDSON, Carbohydr Res., 83 (1980) 138-141.
- 6 D. M. CLODE, W. A. LAURIE, D. MCHALE, AND J. B. SHERIDAN, Carbohydr. Res., 139 (1985) 161-183.
- 7 J E. CHRISTENSEN AND L. GOODMAN, Carbohydr. Res., 7 (1968) 510-512.
- 8 A. DE BRUYN, M. ANTEUNIS, AND G VERHEGGE, Carbohydr. Res., 42 (1975) 157-161.
- 9 W. W. BINKLEY, D. HORTON, AND N. S. BHACCA, Carbohydr. Res., 10 (1969) 245-258.
- 10 W. C. STILL, M. KHAN, AND A. MITRA, J. Org. Chem , 43 (1978) 2923-2925.
- 11 M. R JENNER, Dev Food Carbohydr., 2 (1980) 91-143.