NMR-Spektroskopische Untersuchung von Isocumarin- und Isocarbostyril-Derivaten

HELMUT DUDDECK und MANFRED KAISER

Ruhr-Universität Bochum, Abteilung für Chemie, Postfach 10 21 48, D-4630 Bochum 1, F.R.G.

(Received 8 January 1985)

Abstract—The syntheses and the ¹H, ¹³C and ¹⁵N NMR spectra of 47 isocumarin and isocarbostyril derivatives are reported and discussed. The data include T_1 relaxation times and the geometries of some complexes with Yb(dpm)₃.

1. EINLEITUNG

Isocumarin und Isocarbostyril sind molekulare Grundgerüste, die in der Natur in einer Vielzahl von Verbindungen gefunden werden oder Zwischenstufen bei der Synthese von Naturstoffen sind [1]. Obwohl die NMR-Spektroskopie heute zu den wichtigsten Hilfsmitteln in der organischen Chemie zählt, gibt es bisher nur recht wenige Arbeiten, die ¹H- oder ¹³C-NMR-Daten von Verbindungen dieser Substanzklasse angeben [2-12]. Die ¹H-NMR-Spektren sind zudem bei niedriger Feldstärke (60-100 MHz) aufgenommen, bei denen viele Signalaufspaltungen höherer Ordnung und die chemischen Verschiebungen demzufolge nicht sehr präzise sind. In einigen Fällen stellten sich Signalzuordnungen im Laufe unserer Untersuchungen auch als fehlerhaft heraus. Wir möchten daher als Grundlage für weitere Untersuchungen in dieser Verbindungsklasse die NMR-Daten einer Reihe von Isocumarinen und Isocarbostvrilen sowie ihrer 3und/oder 4-substituierten Derivaten vorstellen. Nach Abschluß unserer Arbeit erschien kürzlich eine Publikation [13], die ebenfalls ¹³C-NMR-Spektren von 3- und/oder 4-substituierten Isocumarinen und Isocarbostvrilen behandelt. Die dortigen Ergebnisse stimmen mit den unsrigen gut überein.

2. ERGEBNISSE UND DISKUSSION

Die ¹H-, ¹³C- und ¹⁵N-chemischen Verschiebungen sowie die ¹H-¹H- und die direkten ¹³C-¹H-Kopplungskonstanten (¹ J_{CH}) der hier diskutierten Verbindungen sind in den Tabellen 1-5 zusammengestellt.

Die ¹H-NMR-Spektren wurden alle bei 250 MHz aufgenommen, da erst bei dieser Feldstärke die Signale der aromatischen Wasserstoffatome einzeln aufgelöst sind. Hierbei erscheinen die Signale von H-5 und H-8 als Dubletts und die von H-6 und H-7 als Tripletts, wobei in den meisten Fällen H-8 aufgrund des periständigen X am stärksten entschirmt ist. Die eindeutige Zuordnung der anderen Peaks gelang leicht durch selektive ¹H-Entkopplung. Darüberhinaus wurden bei 80 MHz aufgenommene ¹H-NMR-Spektren einer repräsentativen Reihe von

Die Verbindungen rechnerisch simuliert. Signalzuordnung bei den ¹³C-NMR-Spektren basiert hauptsächlich auf selektiven ¹Hebenfalls Entkopplungen sowie auf der Größe von ¹³C-¹H-Kopplungskonstanten, die aus den entsprechenden gekoppelten Spektren entnommen wurden (siehe unten). Dies gilt auch für die quartären Kohlenstoffatome, deren Signale an ihrer Multiplizität, d.h. der Zahl der Fernkopplungen, erkannt werden können.

¹H-NMR-Spektren

Ersetzt man den Carbonylsauerstoff durch Schwefel $(1 \rightarrow 4, 2 \rightarrow 5 \text{ und } 3 \rightarrow 6)$, so wird dadurch H-8 am stärksten betroffen, indem sein Signal um 0.4-0.6 ppm zu tiefem Feld verschoben wird. Es ist anzunehmen, daß dies zum großen Teil auf den geänderten Anisotropieeffekt der C=X-Bindung zurückzuführen ist [14]. Einen ähnlichen paramagnetischen Effekt, wenn auch abgeschwächt, findet man auch bei H-3 und H-4, während H-5, H-6 und H-7 in ihrer chemischen Verschiebung kaum beeinflußt werden. Wird dagegen der Sauerstoff in der 2-Position durch Schwefel ersetzt $(1 \rightarrow 2 \text{ und } 4 \rightarrow 5)$, sind deutliche Änderungen der Abschirmung nur für H-3 (diamagnetisch) und H-4 (paramagnetisch) zu beobachten; letztere fällt mit 0.63 bzw. 0.70 besonders groß aus. Bei einem entsprechenden Vergleich der Isocumarine mit den Isocarbostyrilen $(1 \rightarrow 3 \text{ und } 4 \rightarrow 6)$ dagegen findet man nur wenig signifikante Signalverschiebungen. Es fällt auf, daß die vicinale Kopplung zwischen H-3 und H-4 sehr empfindlich auf die Natur von Y reagiert. Bei 1 (Y = O) ist sie 5.7, bei 2 (Y = S) 9.8 und bei 3 $(Y = NCH_3)$ 7.3 Hz. Eine Änderung von X dagegen hat nur wenig Effekt.

In den substituierten Derivaten treten die größten Signalverschiebungen immer an den Wasserstoffatomen auf, die dem Substituenten benachbart sind (H-4 in 7–14, 18–27 und 40–42 sowie H-3 in 15, 28–37 und 39). Die ungefähre Position der Signale läßt sich recht gut durch die Inkrementenregel von MATTER *et al.* [15] berechnen. Von den übrigen Protonen ist nur H-5 in Fällen betroffen (Entschirmung), wenn sich in 4-Position ein stark anisotroper Substituent (z.B. 15; $R^4 = COOC_2 H_5$) befindet.

	7	8	9	10	11	12	13	14	15
x	0	0	0	0	0	0	0	0	0
Y	0	0	0	0	Ο	0	0	0	0
R ³	CH ₃	C₄Hö		C ₆ H ₅	COOCH ₃	OCH ₃	Cl	Br	н
R⁴	Н	Ĥ	Н	H	Н	Н	Н	Н	COOC₂H₅

	16	17	18	19	20	21	22	23	24
x	0	0	0	0	0	0	0	0	0
Y	0	0	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃
R ³	CH ₃	COOC ₂ H ₅	CH ₃	C₄Hs	C ₆ H ₅	CN	$N(CH_2)_5$	SC ₂ H,	SOC ₂ H,
R4	COCH3	COOC ₂ H ₅	Н	H	H	Н	Н	Ĥ	н

	25	26	27	28	29	30	31	32
x	0	0	0	0	0	0	0	0
Y	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃
R 3	SO ₂ C ₂ H ₅	Cl	Br	н	н	н	н	н
R⁴	H	Н	Н	CH ₃	CH ₂ OCOCH ₃	COCH ₃	COOCH ₃	CN

	33	34	35	36	37
x	0	0	0	0	0
Y	NCH ₃	NCH ₃	NCH ₃	NCH ₃	NCH ₃
R ³	н	н	Н	н	้ ห
R⁴	NHCOCH ₃	NO_2	Cl	Br	I

	38	39	40	41	42
x	0	0	s	s	S
Y	NCH ₃	S	0	S	NCH ₃
R ³	Cl	Н	C ₆ H ₅	C ₆ H ₅	CH,
R⁴	Cl	COOCH3	Ĥ	ĥ	н

	44	45	46
<u>х</u>	0	0	S
Y	0	NCH ₃	NCH

Tabelle 1. ¹H chemische Verschiebungen der Isocumarine und Isocarbostyrile 1-46, in CDCl₃

	H-3	H-4	H-5	H-6	H-7	H-8	NCH ₃	Andere
1	7 28	6.52	7 4 3	7 72	7 51	8.27		
2	7.10	7.15	7.56	7.71	7.56	8.28	_	
3	7.04	6.47	7.49	7.60	7.48	8.39	3.58	
4	7.53	6.72	7.40	7.71	7.49	8.68		
5	7.15	7.42	7.55	7.72	7.57	8.85		
6	7.42	6.85	7.54	7.64	7.54	9.00	4.05	
7	_	6.26	7.33	7.66	7.44	8.23	—	2.27 (CH ₃)
8		6.27	7.36	7.68	7.46	8.23		2.50 (2H), 1.75–0.80 (7H) $(n-C_4H_9)$
9†	_	6.25	*	7.73	7.54	8.05	—	4.30 (CH ₂); 7.90 (1H), 7.55–7.33 (3H) (C ₆ H ₄)
10		6.92	-*	7.69	7.46	8.27		7.85 (2H), 7.47–7.40 (3H) (C_6H_5)
11		7.52	7.63	7.82	7.70	8.36		$3.97 (CH_3)$
12		5.56	7.29	7.58	7.31	8.12		3.88 (CH ₃)
13		6.53	7.38	7.73	7.51	8.24	—	
14	_	6.70	7.37	7.73	7.52	8.22	_	
15	8.20	_	8.65	7.82	7.58	8.32	_	$4.39 (CH_2); 1.41 (CH_3)$
16	_	_	7.33	1.13	7.52	8.27		$2.60 (COCH_3); 2.53 (CH_3)$
17		<u> </u>	1.51	7.80	7.71	8.30	2 50	4.52/4.44 (CH ₂); $1.44/1.42$ (CH ₃)
18		0.34	7.30	7.30	7.39	0.33	2.50	2.57 (CH_3) 2.62 (211) 1.63 (211) 1.45(211) 0.08 (211)(n C H)
19		0.33	7.40	7.57	7.30	847	3.30	7.50-7.37 (C.H.)
20		7 16	7.40	7.39	7.45	8 44	3.77	1.50 1.57 (C6115)
21		6.04	7.00	7.55	7 32	8 33	3.61	3 28-3 05 (2NCH ₂) 2 72-2 47 (2H) 1 93-1 58 (3CH ₂)
22		6.52	7.40	7.60	7.41	8 35	3 75	2.96 (CH ₂): 1.39 (CH ₂)
23		717	7.63	7 71	7 57	8 42	3 57	3.13/2.82 (CH ₂): 1.32 (CH ₂)
25		7.58	7.69	7.74	7.67	8.44	3.93	$3.35 (CH_{2}): 1.38 (CH_{2})$
26		6.63	7.39	7.60	7.44	8.35	3.73	
27		6.79	7.34	7.57	7.43	8.32	3.78	
28	6.83	_	7.54	7.64	7.46	8.45	3.53	2.22 (CH ₃)
29	7.24	—	7.68	7.71	7.53	8.47	3.60	5.20 (CH ₂); 2.08 (CH ₃)
30	7.92	_	8.87	7.68	7.49	8.36	3.64	2.52 (CH ₃)
31	8.07	—	8.74	7.68	7.48	8.38	3.62	3.87 (CH ₃)
32	7.73	_	7.82	7.82	7.62	8.44	3.68	
33	7.41		7.51	7.66	7.50	8.44	3.58	$2.27 (CH_3)$
34	8.65	—	8.67	7.83	7.61	8.44	3.73	
35	7.24		7.85	7.76	7.56	8.45	3.75	
36	7.36		1.19	7.74	7.54	8.43	3.00	
37	1.53		7.00	7.70	7.53	8.39	3.02	
20 5	8 42	—	9.57	7.01	7.34	8 20	5.80	
398	0.42	6 00	0.J2 *	7.60	··/1	8.50	_	7.80 (1H) 7.70–7.55 (4H) (C, H,)
4U 41	_	7 12		7.72	*	8.78		7.93 (1H), 7.70–7.55 (4H) ($C_{\rm s}$ H _s)
42	_	6.33	7.38	7.39	7.56	8.35	3.58	2.37 (CH ₃)
43	6.74		7.62	7.67	7.54	8.53	3.52	$4.07 (CH_2)$
44			8.12	7.63	7.57	8.40		8.06 (H-11); 7.38 (H-12); 7.49 (H-13); 7.36 (H-14)
45			8.25	7.74	7.57	8.54	3.81	8.25 (H-11); 7.30 (H-12); 7.53 (H-13); 7.40 (H-14)
46		—	8.29	7.75	7.59	9.25	4.48	8.34 (H-11); 7.43 (H-12); 7.60‡ (H-13); 7.62‡ (H-14)

*Wegen Überlappung mit den Phenylsignalen nicht genau bestimmbar.

†In Dimethylsulfoxid- d_6 .

‡Können paarweise vertauscht sein.

§Gemessen als freie Säure in Dimethylsulfoxid- d_6 .

¹³C-NMR-Spektren

Vergleicht man die ¹³C chemischen Verschiebungen der Isocumarine und Isocarbostyrile (X = O) mit denen der entsprechenden 1-Thio-derivate (X = S), erhält man Sauerstoff-Schwefel-Austauschverschiebungen, die sich bei der Signalzuordnung in Cumarinen [16] und anderen Lactonen [17] als nützlich erwiesen haben.

Wie in Abb. 1 dargestellt, sind diese Werte sehr stark von der Natur von Y abhängig, was sich besonders durch unterschiedliche Polarisierungen der C^3 - C^4 -Bindungen im Heteroring bemerkbar macht. Ein Phenylsubstituent an C-3 von 1 bzw. 4 (10 bzw. 40) beeinflußt die in Abb. 1a angegebenen Werte nur unwesentlich, sodaß vermutet werden darf, daß ebenso wie bei den Cumarinen [16] die Sauerstoff-Schwefel-Austauschverschiebungen bei substituierten Isocumarinen und Isocarbostyrilen unbekannter Struktur erfolgreich eingesetzt werden können. Dies gilt allerdings nicht mehr für die 3,4-benzoannellierten Derivate 45 und 46, wenn man sie mit 3 und 6 vergleicht.

Die Effekte von Substituenten an C-3 und C-4 lassen sich mit entsprechenden Werten bei Naphthalinen [18], Isochinolinen [19] oder

1 [622 [447 [071] [256 [328] [276 [228] [378] - 3 [620 [1327 [1267 [1276 [1276 [1276 [1276 [1311] - 4 2004 [1727 [1267 [1326 [1327 [1306 [1311] - 5 2113 [1297 [1267 [1327 [1320] [1311] - 5 2113 [1297 [1207 [1320] [1320 [1311] - 5 2113 [1203 [1327 [1320 [1327 [1320] [1370] -	1 16.2 14.7 1071 12.6 13.4 12.8 12.6 13.6 13.7 13.7 13		C-I	C-3	C-4	C-5	C-6	C-7	C-8	6-0	C-10	NCH ₃	Andere
2 1663 1251 121 126 128 1276 128 1276 128 1317 5 3 2004 1327 1287 1287 1286 1327 1306 1311 5 5 2113 1297 1255 1399 1347 1307 1320 1370 1333 1320 1317 5 6 1839 1337 1121 266 1327 1309 1370 1333 667 7 162.3 1534 1033 1275 1293 1377 - 1343 1333 667 9 1617 1568 1333 1326 1327 1329 1333 1334 1334 1334 1334 1334 1334 1334 1334 1334 1334 1334 1334 1347 1334 1344 1334 1344 1327 1344 1327 1344 1327 1344 1324 1344 1334 <th>2 1863 1522 1218 1317 1286 1371 238 1256 128 1371 56 5 2113 1327 1226 1226 1226 1231 1331 56 5 2113 1337 1231 1337 1231 1337 1331 1337 1331 1331 1331 1331 66 7 1623 1337 1321 1326 1331 1332 1333 467 7 1623 1335 1039 1377 1331 1337 1331 1301 1331 1331 1301 1331 1301 1331 1301 1331 1301 1331 1301</th> <th>-</th> <th>162.2</th> <th>144.7</th> <th>107.1</th> <th>125.6</th> <th>134.8</th> <th>128.5</th> <th>129.3</th> <th>121.6</th> <th>136.4</th> <th></th> <th></th>	2 1863 1522 1218 1317 1286 1371 238 1256 128 1371 56 5 2113 1327 1226 1226 1226 1231 1331 56 5 2113 1337 1231 1337 1231 1337 1331 1337 1331 1331 1331 1331 66 7 1623 1337 1321 1326 1331 1332 1333 467 7 1623 1335 1039 1377 1331 1337 1331 1301 1331 1331 1301 1331 1301 1331 1301 1331 1301 1331 1301	-	162.2	144.7	107.1	125.6	134.8	128.5	129.3	121.6	136.4		
3 162.6 132.4 105.9 132.0 132.0 137.1 36.9 5 200.4 147.4 105.9 132.0 132.0 137.0 - 5 113.1 125.7 132.6 132.0 132.0 137.0 - 6 183.9 133.7 112.1 126.7 132.2 139.9 137.0 - 7 162.8 154.5 103.1 137.7 - 196.0(H) - 9 16.1.7 156.8 103.1 127.5 129.5 139.9 137.7 - 196.0(H) 9 16.1.7 156.8 103.1 127.5 129.5 120.9 137.7 - 196.0(H) 136.6(H) 136.6(H) 9 16.1.7 156.8 103.1 127.5 129.6 137.7 136.6(H) 136.6(H) <th>3 162.6 132.4 105.9 132.0 126.7 127.6 126.1 137.1 3.69 5 183.9 133.7 112.1 136.7 132.7 139.9 133.7 132.0 139.7 135.7 132.7 139.9 46.7 7 162.8 133.7 112.1 136.7 132.7 139.9 137.7 - 96.04.4 7 162.3 133.7 127.5 129.3 139.7 132.7 139.9 137.7 - 96.04.4 8 16.17 138.8 133.7 132.7 139.9 137.7 - 139.6 133.7 130.7 131.6 130.7 131.6 131.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 130.7 130.7 130.7 130.7 130.7 130.7 <th1< th=""><th>4</th><th>186.3</th><th>125.2</th><th>121.8</th><th>130.1</th><th>133.7</th><th>128.8</th><th>125.6</th><th>128.8</th><th>137.8</th><th>ļ</th><th></th></th1<></th>	3 162.6 132.4 105.9 132.0 126.7 127.6 126.1 137.1 3.69 5 183.9 133.7 112.1 136.7 132.7 139.9 133.7 132.0 139.7 135.7 132.7 139.9 46.7 7 162.8 133.7 112.1 136.7 132.7 139.9 137.7 - 96.04.4 7 162.3 133.7 127.5 129.3 139.7 132.7 139.9 137.7 - 96.04.4 8 16.17 138.8 133.7 132.7 139.9 137.7 - 139.6 133.7 130.7 131.6 130.7 131.6 131.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 133.2 130.7 137.7 - 130.7 130.7 130.7 130.7 130.7 130.7 <th1< th=""><th>4</th><th>186.3</th><th>125.2</th><th>121.8</th><th>130.1</th><th>133.7</th><th>128.8</th><th>125.6</th><th>128.8</th><th>137.8</th><th>ļ</th><th></th></th1<>	4	186.3	125.2	121.8	130.1	133.7	128.8	125.6	128.8	137.8	ļ	
4 2004 4/74 1098 1351 1296 1321 1311 - 5 2113 1297 1255 1329 1322 1319 1339 467 7 1628 1545 1035 1347 1222 1319 1371 - 196 (CH ₃) 9 161.7 1568 1033 1256 1352 1293 1371 - 196 (CH ₃) 9 161.7 1568 1033 1256 1352 1293 109 1371 - 136, CCh 1321, 1316, 130 9 161.7 1568 1033 1256 1352 1293 1371 - 1371 - 1371 - 1372 136, CCH 1321, 1316, 130 11 160.6 143.2 112.3 1276 1352 1284 1301 1227 1349 - 1367 1316, 120, 1326, 131, 1316, 130 160.7 113.4 100.8 1256 1352 1290 1373 <t< th=""><th>4 2004 1474 1098 1351 1226 1327 1319 - 6 1833 1327 1121 1557 1326 1322 1319 - 7 1623 1347 1223 1329 1371 - 332 302 1134 1307 1317 - 332 300 211 313 - 313 - 313 661 367 1307 121 9 1617 1568 1333 1275 1293 1199 1377 - 332 003 1307 136 671 1307 127 9 1617 1568 1333 1275 1289 1227 1349 1347 1227 1349 156 671 1396 1611 1367 671 1307 127 641 567 1314 1532 1307 127 1397 1307 127 1316 1317 1316 1307 127<!--</th--><th>3</th><th>162.6</th><th>132.4</th><th>105.9</th><th>125.9</th><th>132.0</th><th>126.7</th><th>127.6</th><th>126.1</th><th>137.1</th><th>36.9</th><th></th></th></t<>	4 2004 1474 1098 1351 1226 1327 1319 - 6 1833 1327 1121 1557 1326 1322 1319 - 7 1623 1347 1223 1329 1371 - 332 302 1134 1307 1317 - 332 300 211 313 - 313 - 313 661 367 1307 121 9 1617 1568 1333 1275 1293 1199 1377 - 332 003 1307 136 671 1307 127 9 1617 1568 1333 1275 1289 1227 1349 1347 1227 1349 156 671 1396 1611 1367 671 1307 127 641 567 1314 1532 1307 127 1397 1307 127 1316 1317 1316 1307 127 </th <th>3</th> <th>162.6</th> <th>132.4</th> <th>105.9</th> <th>125.9</th> <th>132.0</th> <th>126.7</th> <th>127.6</th> <th>126.1</th> <th>137.1</th> <th>36.9</th> <th></th>	3	162.6	132.4	105.9	125.9	132.0	126.7	127.6	126.1	137.1	36.9	
5 211.3 1297 1255 1299 1341 1307 1380 1337 - - 946(T ₄) 7 1628 133.7 112.1 1267 132.2 131.9 133.9 467 9 161.7 156.8 103.1 127.5 129.3 119.1 137.7 - 19.6 (CH ₃) 9 161.7 156.8 103.3 125.6 134.7 127.5 129.3 119.1 137.7 - 19.6 (CH ₃) 9 161.7 156.8 103.3 125.6 134.7 127.5 129.3 137.7 - 19.6 (CH ₃) 16 166.2 153.2 128.6 133.2 128.6 137.7 - 19.7 (CH ₃) 136.6 (CH ₃) 16 166.0 143.2 112.3 123.7 137.7 136.1 - 196.1 (CH ₃) 16 160.7 158.6 153.1 122.7 137.7 136.1 - 160.7 (CH ₃) 136.16H ₃	5 2113 1327 1325 1239 1341 1307 1255 1239 1341 1320 1330 467 7 1628 1545 1035 1347 1225 1284 1322 1319 1371 - 196 (CH ₃) 9 161.7 1568 1033 1255 1322 1286 1347 1275 1293 1371 - 196 (CH ₃) 9 161.7 1568 1033 1256 1347 1275 1293 1371 - 1342 1307, 127 9 161.7 1568 1341 1275 1286 1301 1277 1349 1371 - 1342 1307, 127 1606 1432 112.3 1276 1352 1301 1227 1349 1307, 127 1607 1314 1093 1234 1234 1234 1234 1237 1347 1352 1307, 1316 1607 1314 1033	4	200.4	147.4	109.8	126.1	135.1	129.6	132.7	130.6	131.1	l	
6 [839 [1317] [1267] [1322 [139] [137] [196 (CH ₃) 7 1628 1545 103.5 1249 1347 127.5 129.9 1377 - 196 (CH ₃) 9 161.7 156.8 103.3 125.6 135.2 128.5 109.1 137.7 - 31.7 - 39.6 (CH ₃) 9 161.7 156.8 103.3 125.6 135.2 128.0 137.7 - 31.7 - 39.6 (CH ₃) 10 162.3 153.5 101.8 125.6 135.2 128.0 137.7 - 31.7 - 31.8 (CH ₃) 130.6 11 16006 143.2 17.7 134.9 120.7 131.4 123.96 137.1 131.8 157.6 133.8 124.1 132.7 134.9 134.7 123.7 134.9 124.1 138.6 134.1 138.6 131.1 134.9 134.6 134.1 138.6 134.1	6 1839 1337 1121 1267 1322 128 1322 1399 1376 196 (CH ₃) 7 1628 1545 1035 1249 1347 1275 1293 1199 1377 196 (CH ₃) 1307, 127 9 1617 1568 1033 1256 1347 1275 1293 1191 1377 196 (CH ₃) 1307, 127 9 1617 1568 1033 1256 1347 1275 1293 1377 196 (CH ₁) 1307, 127 18 1606 1432 1256 1352 1280 1303 1372	ŝ	211.3	129.7	125.5	129.9	134.1	130.7	128.0	132.0	137.0	ļ	
7 162.8 154.5 103.5 124.9 134.7 127.5 129.3 119.9 137.7 19.6 (CH ₃) 8 162.3 158.3 102.9 125.0 134.7 127.5 129.5 120.1 137.7 19.6 (CH ₃) 9. 161.7 156.8 103.3 125.6 133.2 128.0 134.7 127.5 129.5 120.1 137.1 19.6 (CH ₃) 136.6 (2C), 132.1, 131.6, 130. 10 162.3 153.5 10.8 130.1 127.5 128.6 139.1 137.1 16.6 (2C), 132.1, 131.6, 130. 11 160.6 143.2 112.3 127.6 135.2 130.1 122.7 134.9 128.1 130.1 122.7 134.9 128.1 131.6 129.7 150.6 128.1 131.6 131.7 141.3 128.1 131.6 131.7 150.7 152.9 128.1 131.6 131.7 131.6 171.3 128.1 160.7	7 1628 1545 1035 1249 1347 1275 1293 1199 1377 - 196 (CH ₃) 9 1623 1583 1023 1256 1347 1275 1293 1377 - 196 (CH ₃) 138 (CH ₃) 9 1617 1568 1033 1256 1352 1280 1286 1191 1377 - 134 (COL) 156 (CH ₃) 138 (CH ₃) 16 1533 1331 1280 1281 1281 1282 1391 1371 - 1319 (CH ₁) 138 (CH ₃) 16 16.23 1333 1001 1332 1301 1327 1349 - 1607 (CO) 529 (CH ₃) 1333 1232 1349 - 1607 (CO) 529 (CH ₃) 1333 1334 1333 1335 1356 1333 1335 1357 - 1607 (CO) 529 (CH ₃) 1333 (CH ₃) 1334 1333 1334 1333 1333 1601 1333	Ŷ	183.9	133.7	112.1	126.7	132.2	128.4	132.2	131.9	133.9	46.7	
7 1628 1345 1035 1249 1347 1275 1293 1199 1371 - 196 (CH) 8 162.3 158.3 1029 1255 1347 1275 1295 1203 1377 - 196 (CH) 138.6 (2C), 132.1, 131.6, 130. 9 161.7 156.8 103.3 1255 1347 1275 1295 1291 1371 - 136 (CH) 138.6 (2C), 132.1, 131.6, 130. 16 166.2 153.2 1350 129.6 129.6 129.7 1349 - 136.7 (CO), 136.6 (2C), 132.1, 131.6, 130. 16 160.2 139.2 127.6 135.2 130.8 130.1 122.7 (2C) 136.0 (2C), 132.1, 131.6, 130. 16 160.2 139.7 120.8 130.1 122.7 (12) 139.6 (2C), 132.4, 123.4, 124.6, 130. 16 160.7 135.4 135.1 124.7 (12) 129.8 (17) 136.7 (CO), 52.9 (CH_3) 133.1 (CH_3) 160.7 135.2 138.6 (12) 135.1 (139.2 (130.4), 133	7 1628 1545 1035 1249 1347 1275 1293 1199 1377 - 196 (CH ₃) 9 161.7 156.8 1033 125.6 135.7 1295 1201 137.1 - 194 (CH ₃) 103.7 121.6 130.7 127 161.7 156.8 103.3 125.6 135.2 128.0 137.7 - 134.2 00.0 119.6 137.1 - 134.2 00.7 134.6 157.1 131.6 137.1 - 134.2 135.7 134.9 137.1 - 134.2 135.7 134.9 137.1 - 134.2 135.6 135.7 134.9 137.7 - 134.9 135.1 132.7 134.9 135.1 132.7 135.1 135.1 135.7 134.9 135.7 134.9 135.7 134.9 137.7 - 160.7 152.9 154.9 135.7 134.9 135.7 134.1 135.7 134.1 135.7 <th></th>												
8 162.3 158.3 1029 125.0 134.7 127.5 129.5 120.3 137.7 - 33.2 29.0 22.1 (3CH ₃) 138.6 (2C), 136.6 (2C), 136.7 (2C), 136.7 (2C), 136.7 (2C), 136.7 (2C), 136.7	8 162.3 158.3 102.9 125.0 134.7 127.5 129.5 120.1 137.1 133.2 29.0 22.1 (31.1, 13.6, 130.7, 127, 13.6, 130.7, 127, 13.6, 130.7, 127, 13.6, 130.7, 127, 13.6, 130.7, 127, 13.6, 130.7, 127, 13.6, 130.7, 127, 13.6, 130.2 10 162.3 153.5 10.8 133.1 125.6 135.2 128.6 139.1 127.7 134.9 128.1 129.6 130.1 127.7 134.9 128.1 123.7 134.9 128.1 122.7 134.9 160.7 100.55.9 (CH), 136.6 CH, 136.8 (2CH), 136.1 130.7, 127 11 160.6 143.2 112.3 123.7 134.9 128.1 123.7 134.9 123.7 134.9 123.7 134.9 123.7 134.9 137.2 134.9 137.2 134.9 137.2 134.9 137.2 134.9 137.2 134.9 137.7 134.9 134.7 134.7 134.7 134.7 134.7 134.7 134.7 134.7 134.7 134.7	2	162.8	154.5	103.5	124.9	134.7	127.5	129.3	119.9	137.6	l	19.6 (CH ₃)
9* 161.7 156.8 103.3 125.6 135.2 128.0 128.6 119.1 137.1 - 168.2 (CO) 136.6 (2C) 133.6 (13.1) 1 160.6 133.5 101.8 126.0 134.9 128.1 129.6 120.5 137.5 - 131.9 (CO), 136.6 (2C), 136.6 (2C), 136.6 (2C), 126.1 131.9 (14.1) 1 160.6 133.2 123.7 139.8 137.7 136.1 - 660.7 (36.6 (2C), 126.6 (2C), 128.8 (2CH), 128.6	9* 1617 1568 103.3 125.6 135.2 128.0 128.6 1137.1 - 168.2 (CO), 136.6 (2C), 132.1, 131.6, 130.7, 123.1 11 160.05 143.2 112.3 123.6 134.9 128.1 129.6 134.9 128.1 129.6 134.9 124.1 139.6 147.1 129.9 (4CH), 35.8 (CH), 129.9 (CH), 129.9 (CH), 123.8 (2CH), 123.8 (2CH), 123.8 (2CH), 123.2 (2CH), 123.2 (2CH), 123.2 (2CH), 123.2 (2CH), 123.2 (2CH), 123.8 (2CH), 123.8 (2CH), 123.8 (2CH), 123.8 (2CH), 123.8 (2CH), 123.1 (2CH), 123.1 (2CH), 123.1 (2CH), 123.1 (2CH), 123.1 (2CH), 123.1 (2CH), 143.1 (2CH), 143.1 <t< th=""><th>90</th><td>162.3</td><td>158.3</td><td>102.9</td><td>125.0</td><td>134.7</td><td>127.5</td><td>129.5</td><td>120.3</td><td>137.7</td><td>ļ</td><td>33.2, 29.0, 22.1 (3CH₂), 13.8 (CH₃)</td></t<>	90	162.3	158.3	102.9	125.0	134.7	127.5	129.5	120.3	137.7	ļ	33.2, 29.0, 22.1 (3CH ₂), 13.8 (CH ₃)
10 162.3 153.5 101.8 126.0 134.9 129.6 120.5 137.5 - (4CH), 36.8 (CH_1) 11 160.6 143.2 112.3 177.6 135.2 130.8 130.1 122.7 134.9 - 160.7 (CO), 52.9 (CH_1) 12 160.2 159.7 78.8 125.4 135.1 124.7 129.8 177.7 136.1 - 160.7 (CO), 52.9 (CH_1) 13 160.9 142.8 104.7 125.2 135.5 128.6 130.0 119.3 137.2 - 160.7 (CO), 52.9 (CH_1) 16 160.7 152.5 135.6 130.1 119.9 137.2 - 160.7 (CO), 52.9 (CH_1) 16 160.7 152.5 135.6 130.1 119.9 137.2 - 160.7 (CO), 52.9 (CH_1) 16 161.3 152.6 133.1 130.2 129.9 129.9 124.9 124.3 124.3 124.3 124.3 124.3 124.3 124.3 124.3	10 1623 1535 1018 1260 1349 1281 1296 1205 1375 - 1319 (CH1, 1299 (CH1, 1206 1352 1308 1301 1227 1349 - 1319 (CH1, 1299 (CH1, 1299 (CH1, 1206	•6	161.7	156.8	103.3	125.6	135.2	128.0	128.6	119.1	137.1	ļ	168.2 (CO), 136.6 (2C), 132.1, 131.6, 130.7, 127.3
10 162.3 153.5 101.8 126.0 134.9 128.1 129.6 120.5 137.5 131.9 (CH), 129.9 (CH), 128.8 (2CH), 12 12 160.6 143.2 112.3 127.6 135.2 130.8 130.1 122.7 134.9 - 560 (CH ₃) 529 (CH ₃ , 128.8 (2CH), 12 13 160.7 131.4 109.3 125.5 135.8 128.6 1300 119.3 137.2 - 560 (CH ₃) 143.3 (CH ₃) 14 160.7 131.4 109.3 125.4 135.3 129.0 129.9 120.5 133.6 143.3 143.3 143.3 143.3 143.3 143.3 143.3 143.3 143.4 - 201.3 160.7 152.5 133.6 131.1 130.2 121.9 132.9 129.3 160.4 164.3 164.3 164.3 164.3 164.3 163.3 164.3 163.3 160.7 153.6 123.4 164.3 164.3 164.3 </th <th>10 162.3 153.5 101 162.3 153.5 101 125.6 137.5 147.1 147.2 147.1<</th> <th></th> <th>(4CH), 36.8 (CH₂)</th>	10 162.3 153.5 101 162.3 153.5 101 125.6 137.5 147.1 147.2 147.1<												(4CH), 36.8 (CH ₂)
II 160.6 143.2 112.3 127.6 135.2 130.8 130.1 122.7 134.9 - 160.7 CO, 52.9 (CH ₃) 13 160.9 142.8 104.7 125.2 135.8 124.7 129.8 117.7 136.1 - 560 (CH ₃) 14.3 (CH ₃) 14 160.7 152.5 135.4 128.6 139.0 119.3 137.2 - 560 (CH ₃) 18.3 (CH ₃) 15 160.7 152.5 135.4 128.6 139.0 119.3 137.2 - 560 (CH ₃) 18.3 (CH ₃) 16 160.7 152.5 135.4 129.0 199.9 134.4 - 201.3 (CO), 52.9 (CH ₃) 17 164.5 141.2 118.8 125.4 139.2 130.2 129.9 139.4 - 201.3 (CO), 52.9 (CH ₃) 164.1 164.5 141.2 118.8 125.5 135.0 129.9 134.4 - 201.3 (CH ₃) CO, 52.8 (CH ₃) CO, 52.8 (CH ₃)	II 160.6 143.2 112.3 127.6 135.2 130.8 130.1 122.7 134.9 160.7 (CO), 52.9 (CH ₃) 13 160.9 142.8 104.7 125.2 135.3 124.7 129.8 117.7 136.1	91	162.3	153.5	101.8	126.0	134.9	128.1	129.6	120.5	137.5	ļ	131.9 (CH), 129.9 (CH), 128.8 (2CH), 125.2 (2C)
12 161.2 159.7 78.8 125.4 135.1 124.7 129.8 117.7 136.1 - 56.0 (CH ₃) 13 160.9 142.8 104.7 125.2 135.5 128.6 130.0 119.3 137.2 - 56.0 (CH ₃) 14.3 (CH ₃) 14 160.7 131.4 109.3 125.5 135.5 128.6 129.9 193.3 137.2 - 56.0 (CH ₃), 14.3 (CH ₃) 15 160.7 152.5 110.1 125.4 135.3 129.0 129.9 137.2 - 164.0 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 16 161.3 152.6 133.1 130.2 121.9 134.4 - 201.3 (CO), 52.8 (CH ₃), 13.3 (CH ₃) 17 1664.5 141.2 118.8 125.5 133.2 123.0 132.9 132.9 201.3 (CH ₃), 13.3 (CH ₃) 1661.4 1663.4 136.8 105.5 132.0 132.9 132.1 134.7 136.4 (CH ₂), 14.3 (CH ₃) 1664.1 1	12 161.2 159.7 78.8 125.4 135.1 124.7 129.8 117.7 136.1 - 56.0 (CH ₃) 13 160.9 142.8 104.7 125.2 135.5 128.6 130.0 119.3 137.2 - 56.0 (CH ₃) 14.3 (CH ₃) 16 16.07 152.5 110.1 125.4 135.3 129.9 119.3 137.2 - 164.0 (CO) 61.2 (CH ₃), 14.3 (CH ₃) 16 16.1.3 152.5 110.1 125.4 135.3 129.9 119.9 133.6 - 164.0 (CO) 61.2 (CH ₃), 14.3 (CH ₃) 16 161.3 152.5 135.6 131.1 130.2 121.9 132.9 - 164.0 (CO) 61.2 (CH ₃), 14.3 (CH ₃) 17 166.1.3 152.6 123.1 135.2 131.1 130.2 121.9 132.9 - 201.3 (CO), 52.8 (25.6 (2CH ₃), 14.1/1/4 166.1.5 141.2 118.8 125.5 133.6 132.9 - 201.3 (CO), 52.8 (20, 52.6 (2CH ₃), 13.1/1/4 166.1.5 144.1 136.8 125.5 132.1 132.9 30.4 </th <th>11</th> <th>160.6</th> <th>143.2</th> <th>112.3</th> <th>127.6</th> <th>135.2</th> <th>130.8</th> <th>130.1</th> <th>122.7</th> <th>134.9</th> <th>l</th> <th>160.7 (CO), 52.9 (CH₃)</th>	11	160.6	143.2	112.3	127.6	135.2	130.8	130.1	122.7	134.9	l	160.7 (CO), 52.9 (CH ₃)
13 1609 142.8 104.7 125.2 135.5 128.6 1300 119.3 137.2 - 14 160.7 131.4 109.3 124.9 135.4 128.6 130.0 119.3 137.2 - 15 160.7 131.4 109.3 124.9 135.4 128.6 129.9 119.3 137.2 - 164.0 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 16 161.3 152.5 135.3 129.0 129.9 134.4 - 201.3 (CO), 32.4 (CO, 41.3) (CH ₃) 17 166.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 201.3 (CO), 32.4 (CO, 41.2 (CH ₃)	13 1609 142.8 104.7 125.2 135.5 128.6 1300 119.3 137.2 - 14 160.7 131.4 109.3 125.2 135.5 128.6 139.0 119.3 137.2 - 15 160.7 131.4 109.3 125.4 128.6 129.9 139.3 137.2 - 164.0 (CH ₃), 14.3 (CH ₃) 16 161.3 152.5 110.1 125.4 128.6 129.9 134.4 - 201.3 (CO), 52.8/62.6 (2CH ₂), 14.3 (CH ₃) 17 166.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 507/159.3 (2CO), 62.8/62.6 (2CH ₂), 14.1/14 16 165.4 136.8 125.5 133.1 130.2 121.9 132.9 - 507/159.3 (2CO), 62.8/62.6 (2CH ₂), 14.1/14 16.35 143.4 105.6 125.0 132.1 136.5 30.4 22.4 30.7H ₃ 14.1/14 163.5 143.4 108.	12	161.2	159.7	78.8	125.4	135.1	124.7	129.8	117.7	136.1	ļ	56.0 (CH ₃)
14 1607 131.4 109.3 124.9 135.4 128.6 129.9 119.3 137.2 - 164.0 (CO), 61.2 (CH_3), 14.3 (CH_3) 13.3 (CH_3) 12.3 (CH_3) 13.3 (CH_3) 14.3 (CH_3) 13.3 (CH_3) 13.3 (CH_3) 13.4	14 160.7 131.4 109.3 124.9 135.4 128.6 129.9 119.3 137.2 - 164.0 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 16 161.3 152.5 1101 125.4 135.3 129.0 129.9 134.4 - 201.3 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 17 164.5 141.2 118.6 123.5 135.6 131.1 130.2 121.9 132.9 - 159.7/159.3 2CO), 62.8/62.6 (2CH ₂), 14.1/1 17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 159.7/159.3 2CO), 62.8/62.6 (2CH ₂), 14.1/1 16 165.4 136.8 105.6 125.0 132.1 130.2 132.9 2CO), 62.8/62.6 (2CH ₂), 14.1/1 16 165.4 136.8 105.6 132.0 132.9 132.9 2CO), 62.8/62.6 (2CH ₂), 14.1/1 16 165.4 143.9 107.7 125.8 127.7 124.1 136.6 30.4 22.4 (3CH ₂), 13.1/1 20 163.4 143.9 107.7 125.8 127.7	EI	160.9	142.8	104.7	125.2	135.5	128.6	130.0	119.3	137.2	Į	
15 160.7 152.5 110.1 125.4 135.3 129.0 129.5 133.6 - 164.0 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 17 166.1.3 152.6 118.6 123.1 135.2 128.3 130.1 119.9 134.4 - 201.3 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 17 166.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 201.3 (CO), 62.8/62.6 (CH ₃), 14.3 (CH ₃) 18 166.1 141.2 118.8 125.5 135.0 125.8 127.19 132.9 200 52.8/62.6 (CH ₃), 14.3<(CH ₃) 16 165.4 136.8 105.6 125.0 132.0 125.8 127.7 124.1 136.5 30.4 20.6 (CH ₃), 13.9 (CH ₃) 13.9 13.9 13.0 13.9 13.9 13.9 13.9 13.9 13.9 15.6 14.1 13.9 13.9 <td< th=""><th>15 160.7 152.5 110.1 125.4 135.3 129.0 129.5 133.6 - 164.0 (CO), 61.2 (CH₃), 14.3 (CH₃) 17 164.5 141.2 118.6 123.1 135.2 138.1 130.1 119.9 134.4 - 201.3 (CO), 61.2 (CH₃), 14.3 (CH₃) 17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 201.3 (CO), 61.2 (CH₃), 14.3 (CH₃) 164.15 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 201.3 (CO), 62.8/62.6 (CH₃), 14.1/1/4 164.15 136.4 136.2 127.8 124.0 139'5 30.9 209 (CH₃) 20CH₃ 13.1/1/4 165.15 143.9 107.7 125.8 127.7 124.1 136.6 30.4 224.3CH₃ 13.1/1/4 161.1 134.1 134.2 136.4 132.3 126.3 126.3 30.6 33.3 <td< th=""><th>14</th><th>160.7</th><th>131.4</th><th>109.3</th><th>124.9</th><th>135.4</th><th>128.6</th><th>129.9</th><th>119.3</th><th>137.2</th><th>ļ</th><th></th></td<></th></td<>	15 160.7 152.5 110.1 125.4 135.3 129.0 129.5 133.6 - 164.0 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 17 164.5 141.2 118.6 123.1 135.2 138.1 130.1 119.9 134.4 - 201.3 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 201.3 (CO), 61.2 (CH ₃), 14.3 (CH ₃) 164.15 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 201.3 (CO), 62.8/62.6 (CH ₃), 14.1/1/4 164.15 136.4 136.2 127.8 124.0 139'5 30.9 209 (CH ₃) 20CH ₃ 13.1/1/4 165.15 143.9 107.7 125.8 127.7 124.1 136.6 30.4 224.3CH ₃ 13.1/1/4 161.1 134.1 134.2 136.4 132.3 126.3 126.3 30.6 33.3 <td< th=""><th>14</th><th>160.7</th><th>131.4</th><th>109.3</th><th>124.9</th><th>135.4</th><th>128.6</th><th>129.9</th><th>119.3</th><th>137.2</th><th>ļ</th><th></th></td<>	14	160.7	131.4	109.3	124.9	135.4	128.6	129.9	119.3	137.2	ļ	
16 161.3 152.6 118.6 123.1 135.2 128.3 130.1 119.9 134.4 201.3 (COCH ₃), 18.3 (CH ₃), 13.9 (CH ₃), 13.4 (CH ₃), 13.4 (CH ₂), 24.1 (CH ₂), 13.4 (CH ₂), 25.9 (CH ₂), 25.9 (CH ₂), 25.9 (CH ₂), 24.1 (CH ₂), 25.9 (CH ₂), 24.1 (CH ₂), 25.9 (CH ₂), 24.1 </th <th>16 161.3 152.6 118.6 123.1 135.2 128.3 130.1 119.9 134.4 201.3 (COCH₃), 18.3 (CH₃) 17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 159.7/159.3 (COCH₃), 18.3<(CH₃) 14.1/14 18 165.4 136.6 135.0 132.0 125.8 121.9 132.9 159.7/159.3 (CO), 52.8/62.6 (2CH₃), 14.1/14 19 163.5 136.6 132.0 125.8 127.7 124.0 139'5 30.9 209 (CH₃) 14.1/14 20 163.5 143.9 100.77 125.8 127.7 124.1 136.6 30.4 224.(3CH₃), 13.9(CH₃) 21 161.2 134.1 136.6 127.7 124.8 136.6 30.4 259.(5CH) 54.1 57.1 14.1/16 21 161.1 151.6 94.1 127.7 124.8 136.6 30.4 224.3CH₃), 24.1 14.1/16 13.7 124.8 127.7 123</th> <th>15</th> <th>160.7</th> <th>152.5</th> <th>110.1</th> <th>125.4</th> <th>135.3</th> <th>129.0</th> <th>129.9</th> <th>120.5</th> <th>133.6</th> <th>ł</th> <th>164.0 (CO), 61.2 (CH₂), 14.3 (CH₃)</th>	16 161.3 152.6 118.6 123.1 135.2 128.3 130.1 119.9 134.4 201.3 (COCH ₃), 18.3 (CH ₃) 17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 159.7/159.3 (COCH ₃), 18.3<(CH ₃) 14.1/14 18 165.4 136.6 135.0 132.0 125.8 121.9 132.9 159.7/159.3 (CO), 52.8/62.6 (2CH ₃), 14.1/14 19 163.5 136.6 132.0 125.8 127.7 124.0 139'5 30.9 209 (CH ₃) 14.1/14 20 163.5 143.9 100.77 125.8 127.7 124.1 136.6 30.4 224.(3CH ₃), 13.9(CH ₃) 21 161.2 134.1 136.6 127.7 124.8 136.6 30.4 259.(5CH) 54.1 57.1 14.1/16 21 161.1 151.6 94.1 127.7 124.8 136.6 30.4 224.3CH ₃), 24.1 14.1/16 13.7 124.8 127.7 123	15	160.7	152.5	110.1	125.4	135.3	129.0	129.9	120.5	133.6	ł	164.0 (CO), 61.2 (CH ₂), 14.3 (CH ₃)
17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 159.7/159.3 (2C0), 62.8/62.6 (2CH ₂), 1 18 163.4 136.8 105.6 125.0 132.0 132.9 - 159.7/159.3 (2C0), 62.8/62.6 (2CH ₂), 1 19 163.4 136.8 105.6 125.0 132.0 125.8 127.7 124.1 136.6 30.9 20.9 (CH ₃) 20 163.4 104.8 125.2 132.0 125.8 127.7 124.1 136.6 30.4 22.4 (3CH ₃), 13.9(CH ₃) 21 163.5 143.9 107.7 125.8 127.7 124.8 136.1 34.2 136.4 13.9(CH ₃) 21 161.2 134.1 117.3 127.0 130.3 128.3 116.3 27.8 34.1 13.7 136.4 (CH ₃) 21 161.2 143.9 107.7 123.1 127.8 34.1 13.7 124.1 </th <th>17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 159.7/159.3 (2CH₃) 14.1/14 18 163.4 136.8 105.6 125.0 132.8 127.1 130.5 30.9 209 (CH₃) 19 163.5 143.4 104.8 125.2 132.0 125.8 127.7 124.1 136.6 30.6 33.3 30.4 224 (3CH₃), 13.9(CH₃) 20 163.4 143.9 107.7 125.8 127.7 124.1 136.6 30.6 33.3 30.4 224 (3CH₃), 13.9(CH₃) 21 161.2 134.1 137.7 124.1 136.6 30.6 33.3 30.4 224 (3CH₃), 13.9(CH₃) 21 161.2 134.1 136.6 127.7 124.8 136.6 30.6 33.3 30.4 224 (3CH₃), 13.9(CH₃) 21 161.2 151.6 94.1 177.7 123.1 137.7 30.6 30.7 32.9 (5CH₁), 24.1 (CH₂) 22 164.1 151.6 124.8 137.7 1</th> <th>16</th> <th>161.3</th> <th>152.6</th> <th>118.6</th> <th>123.1</th> <th>135.2</th> <th>128.3</th> <th>130.1</th> <th>119.9</th> <th>134.4</th> <th></th> <th>201.3 (CO), 32.4 (COCH₃), 18.3 (CH₃)</th>	17 164.5 141.2 118.8 125.5 135.6 131.1 130.2 121.9 132.9 - 159.7/159.3 (2CH ₃) 14.1/14 18 163.4 136.8 105.6 125.0 132.8 127.1 130.5 30.9 209 (CH ₃) 19 163.5 143.4 104.8 125.2 132.0 125.8 127.7 124.1 136.6 30.6 33.3 30.4 224 (3CH ₃), 13.9(CH ₃) 20 163.4 143.9 107.7 125.8 127.7 124.1 136.6 30.6 33.3 30.4 224 (3CH ₃), 13.9(CH ₃) 21 161.2 134.1 137.7 124.1 136.6 30.6 33.3 30.4 224 (3CH ₃), 13.9(CH ₃) 21 161.2 134.1 136.6 127.7 124.8 136.6 30.6 33.3 30.4 224 (3CH ₃), 13.9(CH ₃) 21 161.2 151.6 94.1 177.7 123.1 137.7 30.6 30.7 32.9 (5CH ₁), 24.1 (CH ₂) 22 164.1 151.6 124.8 137.7 1	16	161.3	152.6	118.6	123.1	135.2	128.3	130.1	119.9	134.4		201.3 (CO), 32.4 (COCH ₃), 18.3 (CH ₃)
18 163.4 136.8 105.6 125.0 132.0 125.8 127.8 124.0 139.5 30.9 (CH ₃) 19 163.5 143.4 104.8 125.2 132.0 125.8 127.8 124.0 139.5 30.9 20.9 (CH ₃) 20 163.5 143.4 104.8 125.2 132.0 125.8 127.7 124.1 136.6 30.6 33.3 30.4 22.4 (3CH ₃) 139(CH ₃) 21 161.2 134.1 117.3 127.0 133.0 126.6 127.8 124.8 136.1 34.2 136.4 13.9 161.2 134.1 117.3 127.0 133.0 130.3 128.8 116.3 27.7 30.6 53.0 (5CH ₁) 25.9 (2CH ₂) 13.4 (CH ₂) 21 161.2 134.1 177.3 127.0 133.0 130.3 138.3 166.3 26.6 27.4 17.7 123.1 137.2 80.6 53.0<	I8 163.4 136.8 105.6 125.0 132.0 125.8 127.8 124.0 139.5 30.9 20.9 (CH ₃) 19 163.5 143.4 104.8 125.2 132.0 125.8 127.7 124.1 136.6 30.6 33.3 30.4 224.(3CH ₃), 13.9(CH ₃) 20 163.4 143.9 107.7 125.8 132.3 126.6 127.8 124.8 136.6 30.6 33.3 30.4 224.(3CH ₃), 13.9(CH ₃) 21 161.2 134.1 117.3 127.0 133.0 130.3 124.8 136.1 34.2 136.6-129.0 (5CH) 22 164.1 151.6 94.1 125.0 133.1 130.7 123.1 137.7 30.6 53.0 (2NCH ₃), 25.9 (5CH ₃) 23 166.1 151.6 94.1 125.0 132.1 124.8 127.7 30.6 53.0 (2NCH ₃), 25.9 (2CH ₃), 24.1 (CH ₂) 23 166.1 139.7 106.9 132.2 126.1 127.8 30.6	17	164.5	141.2	118.8	125.5	135.6	131.1	130.2	121.9	132.9	ļ	159.7/159.3 (2CO), 62.8/62.6 (2CH ₂), 14.1/14.0
18 105.4 136.8 107.0 125.0 125.8 127.8 124.0 139.5 30.9 20.9 (CH ₃) 19 163.5 143.4 104.8 125.2 132.0 125.8 127.7 124.1 136.6 30.4 22.4 (3CH ₂), 13.9(CH ₃) 20 163.4 143.9 107.7 125.8 127.7 124.1 136.6 30.4 22.4 (3CH ₂), 13.9(CH ₃) 20 163.4 143.9 107.7 125.8 137.3 126.6 127.8 134.2 136.4 (C), 128.6-129.0 (5CH) 21 161.2 134.1 117.3 127.0 133.0 130.3 128.3 116.3 127.8 34.1 113.7 (CN) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 55.9 (2CH ₂), 24.1 (CH ₂) 23 165.1 139.7 106.9 124.9 132.7 123.1 137.2 30.6 55.9 (2CH ₂), 24.1 (CH ₂) 23 164.1<	16 105.4 156.8 127.0 125.8 127.8 124.0 139.5 30.9 20.9 (CH ₃) 19 163.5 143.4 104.8 125.2 132.0 125.8 127.7 124.1 136.6 30.5 33.3 30.4 224 (3CH ₃), 139(CH ₃) 20 163.5 143.9 107.7 125.8 127.7 124.1 136.6 30.6 33.3 30.4 224 (3CH ₃), 139(CH ₃) 21 161.2 134.1 117.3 125.6 127.8 124.8 136.1 34.2 136.4 129.7 139.7 100.5 141.1 139.7 100.5 123.1 124.8 127.7 123.1 137.7 30.6 53.0 (20.4), 13.4 1(CH ₂) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 133.1 137.7 259 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.7 123.1 137.7 30.6 <th>ç</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.000</th> <th></th> <th>- ,,</th> <th></th> <th>(2CH₃)</th>	ç							0.000		- ,,		(2CH ₃)
19 165.5 143.4 104.8 125.2 132.0 125.8 127.1 124.1 136.6 30.6 33.3 30.4 22.4 (3CH ₃) 139(CH ₃) 20 163.4 143.9 107.7 125.8 132.3 126.6 127.8 134.1 133.0 50.3 228.3 136.1 34.2 136.4 (C), 128.6-129.0 (5CH) 21 161.2 134.1 117.3 127.0 133.0 130.3 128.3 116.3 127.8 34.1 113.7<(CN) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0<(2NCH ₂), 25.9 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 137.7 123.1 137.2 30.6 53.0<(2NCH ₂), 25.9 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.2 125.8 136.1 32.0 28.3 (CH ₂), 13.4 (CH ₂)	19 165.5 143.4 104.8 125.2 132.6 124.1 136.6 30.6 33.3 30.4 224.4 (GH ₃) 20 163.4 143.9 107.7 125.8 127.8 124.1 136.6 33.4 224.4 (GH ₃) 139.7 129.1 139.7 120.5 127.8 34.1 117.3 127.0 133.0 130.3 128.3 116.3 127.8 34.1 113.7 (CN) 21 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (CN) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (CH ₂), 25.9 (CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 136.1 32.0 28.3 (CH ₂), 13.4 (CH ₂) 23 163.1 139.7 <t< th=""><th>2</th><th>103.4</th><th>1.50.8</th><th>0.01</th><th>0.621</th><th>132.0</th><th>8.621</th><th>8.121</th><th>124.0</th><th>C.961</th><th>50.9</th><th>20.9 (CH₃)</th></t<>	2	103.4	1.50.8	0.01	0.621	132.0	8.621	8.121	124.0	C.961	50.9	20.9 (CH ₃)
20 105.4 143.9 107.7 125.8 132.3 126.6 127.8 134.1 113.7 (C), 128.6-129.0 (5CH) 21 161.2 134.1 117.3 127.0 133.0 130.3 128.3 116.3 127.8 34.1 113.7 (C) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (CN) 23 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (CNH ₂), 25.9 (CH ₂) 23 164.1 139.7 106.9 124.9 137.7 123.1 137.2 30.6 53.0 (CH ₂), 24.1 (CH ₂) 23 165.1 139.7 106.9 124.9 137.7 123.8 136.1 32.0 28.3 (CH ₂), 24.1 (CH ₂)	20 165:4 143.9 107.7 125.8 132.3 126.6 127.8 124.8 136.1 34.2 136.4 (C), 128.6-129.0 (5CH) 21 161.2 134.1 117.3 127.0 133.0 130.3 128.3 116.3 127.8 34.1 113.7 (CN) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (2NCH ₂), 25.9 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 123.8 136.1 32.0 28.3 (CH ₂), 13.4 (CH ₃)	5	<u>5.601</u>	143.4	104.8	125.2	132.0	125.8	127.7	124.1	136.6	30.6	33.3, 30.4, 22.4 (3CH ₂), 13.9(CH ₃)
21 161.2 134.1 117.3 127.0 133.0 130.3 128.3 116.3 127.8 34.1 113.7 (CN) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (2NCH ₃) 25.9 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 123.8 136.1 32.0 28.3 (CH ₃) 13.4 (CH ₃)	21 161.2 134.1 117.3 127.0 133.0 130.3 128.3 116.3 127.8 34.1 113.7 (CN) 22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (2NCH ₂), 25.9 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 123.8 136.1 32.0 28.3 (CH ₂), 13.4 (CH ₃)	20	163.4	143.9	107.7	125.8	132.3	126.6	127.8	124.8	136.1	34.2	136.4 (C), 128.6–129.0 (5CH)
22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (2NCH ₂), 25.9 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 123.8 136.1 32.0 28.3 (CH ₂), 13.4 (CH ₃)	22 164.1 151.6 94.1 125.0 132.1 124.8 127.7 123.1 137.2 30.6 53.0 (2NCH ₂), 25.9 (2CH ₂), 24.1 (CH ₂) 23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 123.8 136.1 32.0 28.3 (CH ₂), 13.4 (CH ₃)	21	161.2	134.1	117.3	127.0	133.0	130.3	128.3	116.3	127.8	34.1	113.7 (CN)
23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 123.8 136.1 32.0 28.3 (CH ₃) 13.4 (CH ₃)	23 163.1 139.7 106.9 124.9 132.2 126.1 127.8 123.8 136.1 32.0 28.3 (CH ₂), 13.4 (CH ₃)	11	164.1	0.1CI	94. I	125.0	132.1	124.8	1.7.7	1.23.1	137.2	30.6	53.0 (2NCH ₂), 25.9 (2CH ₂), 24.1 (CH ₂)
		23	163.1	139.7	106.9	124.9	132.2	126.1	127.8	123.8	136.1	32.0	28.3 (CH ₂), 13.4 (CH ₃)

	C-1	C-3	C-4	C-5	C-6	C-1	C-8	6-)	C-10	NCH ₃	Andere
24	162.6	143.7	106.0	126.8	132.9	128.4	127.9	125.5	134.8	31.2	47.6 (CH.), 5.7 (CH.)
25	162.4	137.7	114.4	128.1	133.1	130.1	128.1	126.9	133.1	32.3	50.0 (CH ₂), 7.1 (CH ₃)
26	162.6	132.1	105.9	125.0	132.6	126.7	128.1	124.0	135.7	32.7	
11	162.4	121.6	110.3	124.9	132.5	126.8	128.1	124.3	136.4	35.9	
28	162.1	130.2	111.7	122.9	131.7	126.4	127.8	125.8	137.2	36.5	15.2 (CH ₃)
29	162.4	134.4	110.7	122.8	132.4	127.1	128.2	125.9	135.8	37.0	170.1(CO), 21.0(CH ₃), 62.0(CH ₂)
ଛ	162.4	141.2	115.1	126.0	133.1	127.5	127.5	125.1	134.0	37.8	195.6 (CO), 27.8 (CH ₃)
31	162.6	140.7	106.4	125.3	133.0	127.3	127.9	125.8	134.4	37.5	165.5 (CO), 51.8 (CH ₃)
32	161.5	141.2	115.6	124.0	133.6	128.6	128.1	125.0	133.6	37.7	90.7 (CN)
33	162.5	130.3	113.8	120.6	132.2	127.3	128.4	127.9	134.0	37.2	169.9 (CO), 23.6 (CH ₃)
¥	161.8	138.1	129.1	123.6	134.2	128.5	128.5	124.0	129.1	38.0	3
35	161.3	130.4	110.9	123.2	132.5	127.7	128.0	125.9	134.5	36.9	
8	161.3	132.8	99.2	125.4	132.5	127.5	127.7	125.9	135.3	36.7	
37	161.6	138.5	71.2	127.5	132.9	130.1	127.8	126.1	136.9	36.7	
38	161.3	134.8	110.5	123.5	133.2	127.7	128.3	124.2	133.8	34.1	
6 E	184.0	134.5	122.7	128.9	134.5	128.2	126.1	128.6	134.4	I	164.8 (CO), 52.4 (CH ₃)
4	200.1	156.5	104.5	126.6	135.0	128.9	132.7	130.3	132.0	1	131.2(C), 130.3(CH), 128.8 (2CH), 125.3 (2CH)
41	211.6	144.5	104.5	122.9	134.2	127.8	129.8	135.4	133.4	I	131.2(C), 128.9 (2CH), 126.5 (2CH), 129.2(CH)
4	185.5	140.8	112.9	125.8	132.2	127.5	132.8	132.7	132.3	40.5	22.4 (CH ₃)
43	162.2	131.9	112.6	122.7	132.3	127.0	128.4	126.1	136.5	37.0	29.0 (CH ₂)
4	161.0	151.1	117.9	121.6	134.7	128.7	130.3	121.1	134.6		122.7(C-11), 117.6(C-12), 130.3(C-13), 124.5 (C-14)
45	161.4	133.4	119.1	121.6	132.3	127.9	128.9	125.4	137.8	29.9	123.2(C-11), 122.4(C-12), 129.5(C-13), 115.0(C-14)
46	187.3	134.3	121.6	121.5	132.3	128.4	134.2	131.6	137.8	40.0	123.3(C-11), 124.4(C-12), 129.6(C-13), 116.7
											(C-14)

Tabelle 2. (Fortgesetzt)

* In Dimethylsulfoxid-d6.

X = O bzw. S

Abb. 1. Sauerstoff-Schwefel-Austauschverschiebungen von ¹³C-Signalen in Isocumarin (a), 2-Thioisocumarin (b) und Isocarbostyril (c) (zur Erläuterung siehe Text).

Tabelle	3. ¹⁵ N	chemische	Verschiebungen
	einige	r Isocarbost	yrile*

	Chemische Verschiebung	Substituenten- effekte†
3	146.0	
18	150.5	4.5
23	150.3	4.3
24	138.5	-7.5
25	136.1	-9.9
26	149.2	3.2
27	150.2	4.2
28	143.8	-2.2
30	147.2	1.2
31	148.6	2.6
35	144.9	-1.1
36	147.7	1.7
37	152.2	6.2

*Chemische Verschiebungen beziehen sich auf externes, reines Nitromethan ($\delta = 380.2$); positive Vorzeichen bezeichnen Tieffeldverschiebungen; Lösungsmittel: CDCl₃.

[†]Chemische Verschiebung, bezogen auf diejenige von 3.

Cumarinen [20] vergleichen. Dabei zeigen sich deutliche Abweichungen nur für die C-3- und C-4-Signale, während für die Atome des benzoiden Ringes gute bis sehr gute Übereinstimmungen gefunden werden. Wie schon bei anderen aromatischen Systemen [18c] lassen sich auch hier wieder die Substituenteneinflüße qualitativ durch mesomere Grenzstrukturen verstehen.

Die direkten ¹³C-¹H-Kopplungskonstanten (${}^{1}J_{CH}$), die aus den ¹H-gekoppelten Signalen der Atome C-4 und C-5 bis C-8 erhalten werden, liegen mit nur wenigen Ausnahmen zwischen 160 und 170 Hz; ist R³ ein Cyano-, Thio- oder Halogensubstituent kann ¹J_{C⁴H} auch Werte bis zu ca 175 Hz annehmen. Im Gegensatz dazu ist die direkte Kopplung für das direkt am Heteroatom Y gebundene C-3 erheblich größer $(175-185 \text{ Hz bei } Y = S \text{ und } NCH_3)$ und kann bei Isocumarinen (Y = O) sogar bis zu ca 200 Hz ansteigen. Von vicinalen ¹³C-¹H-Kopplungen (³ J_{CH}) in ungesättigten Systemen weiß man, daß sie in transoider Anordnung ca 8 Hz und in cisoider Anordnung ca 5 Hz betragen [21]. Diese Werte finden sich auch in den Isocumarinen und Isocarbostyrilen und erweisen sich als eine ausgezeichnete Zuordnungshilfe. Die vicinalen Kopplungen der N-Methylprotonen mit C-3 und von H-3 mit dem N-Methylkohlenstoff liegen zwischen 2 und 5 Hz. Fernkopplungen über mehr als drei Bindungen sind nur sehr klein und äußern sich allenfalls in Signalverbreiterungen.

Ein wichtiges Hilfsmittel bei der Strukturanalyse organischer Verbindungen ist die Messung von NMR-Spektren in Gegenwart zunehmender Mengen von Lanthaniden-Verschiebungesreagenzien [22]. Aus diesem Grunde untersuchten wir die unsubstituierten Moleküle 1–3 (X = O, Y = O, S bzw. NCH₃), um den Komplexierungsort [23] zu bestimmen. Dazu vermaßen

Tabelle 4. ¹H-¹H-Kopplungskonstanten für die Verbindungen 1-4, 6, 11, 15, 26, 30, 34 und 35*

	J _{3,4}	J _{3,5}	J _{4,5}	J _{4,6}	J _{4,8}	J _{5,6}	J _{5,7}	J 5, 8	J _{6,7}	J _{6,8}	J _{7,8}
1	5.72	0.20	0.30	0.10	0.71	7.88	1.17	0.55	7.33	1.32	8.05
2	9.80	0.00	0.00	0.00	0.60	7.97	1.46	0.78	7.20	1.12	7.96
3	7.27	0.05	0.19	0.21	0.60	7.94	1.24	0.87	7.19	1.29	7.98
4	5.49	0.20	0.19	0.21	0.60	7.37	1.00	0.72	6.85	0.95	7.35
6	7.27	0.40	0.18	0.21	0.60	7.94	1.24	0.80	7.19	1.46	8.00
11			0.20	0.00	0.70	7.72	1.14	0.70	7.30	1.46	7.87
15		0.09				8.28	1.12	0.50	7.39	1.50	7.88
26	_		0.30	0.03	0.60	8.46	1.24	0.70	7.01	1.53	7. 9 4
30		0.01	-	-		8.54	1.02	0.78	7.15	1.24	8.03
34		0.02		_		8.50	1.10	0.71	6.81	1.43	7.91
35		0.04		—		7.99	1.11	0.56	7.52	1.12	8.26

*Aus den mit dem Programm PANIC 80 (Bruker) berechneten Spektren.

	C-3	C-4	C-5	C-6	C-7	C-8	Auflösung (Hz)
1	199.8	168.8	164.0	163.1	164.0	165.0	0.95
3	178.2	166.0	164.8	160.5	162.4	164.2	1.22
4	203.8	168.8	163.6	162.9	163.4	166.6	0.16
6	181.2	167.8	162.1	165.9	162.1	162.1	1.90
7	_	166.0	161.1	162.4	163.6	164.8	0.95
10	_	166.0	161.1	162.3	164.2	164.8	1.22
11	_	168.8	160.2	163.1	164.0	165.9	1.90
12		167.8	164.0	163.1	160.2	164.0	1.90
13	_	172.4	161.8	162.4	165.4	167.7	0.20
14		174.8	163.7	162.3	164.9	166.4	0.18
15	202.3		169.7	163.9	165.0	166.8	0.30
17	_		164.0	163.7	165.8	167.4	0.15
18	_	164.7	156.6	159.6	164.7	167.7	1.50
19		165.0	156.9	160.2	162.1	163.1	0.95
20		166.6	161.5	160.3	162.8	167.4	1.50
21		171.7	165.0	162.6	163.1	165.0	0.95
22	_	164.0	156.7	160.2	162.6	163.1	0.85
23		167.8	160.2	161.2	163.1	163.1	1.90
24		171.7	165.9	161.2	162.2	164.0	1.90
25	_	173.1	165.9	162.3	166.2	165.9	1.20
26	_	172.6	164.0	161.2	162.1	164.0	1.90
27		173.1	162.1	161.6	163.1	164.5	0.95
28	176.4	_	160.2	160.2	162.1	163.6	0.95
29	176.9		160.7	161.2	160.7	164.0	0.95
30	175.4		165.9	161.2	160.2	160.2	1.90
31	171.2		162.0	151.9	159.0	159.0	0.36
32	181.2	—	163.1	163.1	162.1	165.9	1.90
33	176.3		160.2	162.1	162.1	164.9	1.90
34	181.2	—	167.8	162.1	164.0	164.9	1.90
35	177.4	—	164.0	161.2	164.0	164.9	1.90
36	182.5	_	163.6	161.1	164.8	164.8	1.22
37	183.1	_	164.0	176.4	171.6	164.9	1.90
38		_	165.0	162.1	164.0	165.9	0.95

 Tabelle 5. Direkte
 ¹³C-¹H-Kopplungskonstanten
 (¹J_{CH}) in ausgewählten Isocumarinen und Isocarbostyrilen

wir die ¹³C-NMR-Spektren, indem wir bis zu 30 Molprozente Yb(dpm)₃ zugaben; es ist bekannt [22], daß dieses Lanthanidion nur relativ geringe Fermi-Kontakt-Anteile bei den Signalverschiebungen verursacht. Die 1-Thioderivate 4-6 zeigten unter diesen Bedingungen keine nennenswerten Effekte, was wohl auf eine zu schwache Komplexierung zurückzuführen ist.

In Tabelle 6 sind die relativen ¹³C-Signalverschiebungen angegeben. Die quantitative Auswertung (ohne die Daten von C-1)erfolgte mit dem Rechnerprogramm LIRAS-3 [23], wobei zwei mögliche Komplexierungsorte A und B resultierten. Molekülkoordinaten wurden aus publizierten Röntgenstrukturdaten [24] erhalten. Die Ergebnisse (Abb. 2) zeigen, daß der Komplex B bei weitem überwiegt, daß aber vor allem bei 3 der Komplex A ein merkliches Gewicht erhält, weil in B eine sterische Abstoßung durch die N-Methylgruppe existiert. Dieses Ergebnis steht im Gegensatz zu einem entsprechenden Experiment mit Cumarin (47) (Abb. 2), für das ebenfalls Röntgenstrukturdaten [25] verwendet wurden. Hier ist der Hauptkomplexierungsort auf der dem Ringsauerstoff abgewandten Seite (A). Offenbar spielt beim Gleichgewicht der beiden Komplexe mit 1-3 der peri-Wasserstoff an C-8 eine entscheidende Rolle. Es sollte erwähnt werden, daß ein frühercs Experiment mit 47 + Eu(fod)₃, bei dem nur ein einziger Komplexierungsort errechnet wurde, die Werte r = 3.0Å und $\alpha = 156^{\circ}$ ergab [26], ein Resultat, das mit dem unseren in gutem Einklang steht.

Longitudinale Relaxationszeiten (T_1) von ¹³C-

Tabelle 6. Relative ¹³C-Signalverschiebungen in 1-3 (in ppm), extrapoliert auf ein 1:1-Verhältnis von
Yb(dpm)₃ zu Substrat und bezogen auf den jeweils niedrigsten Wert (C-6)

	C-1	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10
1	9.97	2.19	1.60	1.19	1.00	1.21	2.60	4.77	1.99
2 3	10.66 11.55	1.76 2.45	2.19	1.18	1.00	1.18	3.22	4.52 5.25	2.12

				47		
	Y	r[Å]	α	Besetzung in %	α	Besetzung in %
1	0	1.9	166 - 170°	10 - 19	190 - 194°	81 - 90
2	S	2.4	167 - 175°	0 - 20	185 - 193	80 - 100
3	NH3	2.0	170 - 175	20 - 31	185 - 190	70 - 80
47		3.7	133	87	227	13

47

Kernen liefern Informationen über das molekulare Bewegungsverhalten, wenn unter den verschiedenen Relaxationsmechanismen der dipolare (T_1^{dd}) dominiert [27]. Es erschien uns daher interessant zu prüfen, inwieweit ein Substituent in 4-Stellung die Lage der Hauptrotationsachse (Abb. 3) verändert.

Die T_1 -Werte für die Methinkohlenstoffatome einiger Isocarbostyrile liegen zwischen 2 und 4 s, und die für diese Signale gemessenen Overhauser-Effekte (NOE) liegen alle um 2.9, sodaß $T_1 \approx T_1^{dd}$. Bei quartären Kohlenstoffatomen sind die Relaxationszeiten viel länger (13–80 s) und die entsprechenden NOE viel kleiner (1-2), sodaß diese bei der folgenden Betrachtung außer Acht gelassen wurden.

In Tabelle 7 fällt auf, daß sich das Verhältnis der Relaxationszeiten von C-6 und C-7 mit zunehmender Größe von \mathbb{R}^4 verändert und schließlich umkehrt, was qualitativ durch eine entsprechende Verschiebung der Hauptrotationsachse in die in Abb. 3 bezeichnete

Abb. 3. Ungefähre Lage der Hauptrotationsachse in einigen Isocarbostyrilen (zur Erläuterung siehe Text).

Richtung gedeutet werden kann. Analoge Trends lassen sich für die Wertepaare C-5/C-8 nicht erkennen, vermutlich weil ihre relativen Abstände sich mit den verschiedenen R^4 nicht genügend stark ändern.

¹⁵N-NMR-Spektren

In Tabelle 3 finden sich die ¹⁵N chemischen Verschiebungen einer Reihe von Isocarbostyrilen; die Werte in Klammern sind die Substituenteneffekte von

	R⁴	C-1	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10
3	Н	79.6	3.0	4.1	3.9	2.9	3.6	3.8	31.1	41.5
31	COOCH ₃	35.3	1.9	32.5	1.9	1.9	2.0	2.1	—†	27.3
37	Br	45.9	3.5	13.8	3.2	3.1	2.7	3.3	36.4	32.1
38	I	43.1	3.1	13.8	3.7	3.1	1.6	2.8	28.3	56.7

Tabelle 7. Longitudinale Relaxationszeiten (T_1) in einigen Isocarbostyrilen*

*In s; Fehlergrenzen bei 3, 31 und 37 ca $\pm 6\%$, bei 38 ca $\pm 15\%$.

†Wegen Überlagerung nicht auswertbar.

 R^3 bzw. R^4 . Die Einflüße von R^3 (β -Effekte) sind absolut gesehen größer als die von R^4 (γ -Effekte).

3. EXPERIMENTELLER TEIL

Spektroskopie und Chromatographie

Die ¹H-NMR-Spektren wurden mit einem Bruker WP-80 (80 MHz) und einem Bruker WM-250 (250 MHz) Spektrometer und die ¹³C-NMR-Spektren mit einem Bruker WM-250 (62.9 MHz), beide in CDCl₃-Lösung mit internem TMS ($\delta = 0$), gemessen. Bei der Anfertigung der ¹Hgekoppelten ¹³C-NMR-Spektren bedienten wir uns der "gated-decoupling"-Technik, bei der durch Anschalten des Entkopplers zwischen den FID-Messungen der Overhauser-Effekt (NOE) ausgenutzt werden kann. In diesen Fällen wurde jeweils vor der Fourier-Transformation der FID durch "Zero-Filling" verlängert, um eine möglichst hohe digitale Auflösung zu erreichen.

Die ¹³C-T₁-Messungen und Auswertungen erfolgten nach der "Saturation-Recovery"-Methode nach DIETRICH et al. [28]. Die ¹⁵N-NMR-Spektren wurden bei 25.32 MHz (WM-250) mit Hilfe der Pulsfolge DEPT [29] in CDCl₃-Lösung gegen Nitromethan als externem Standard (δ = 380.2) gemessen. In allen Fällen bedeuten positive chemische Verschiebungen Entschirmung.

Die Infrarot-Spektren wurden auf den Geräten Shimadzu IR-400, Perkin-Elmer 221 oder 257 in Chloroform aufgenommen.

Alle UV-Spektren wurden in Ethanol (95%) auf einem Cary 17 gemessen.

Zur Aufnahme der Massenspektren standen die Geräte MAT CH-5 und CH-7 (70 eV) der Fa. Varian zur Verfügung.

Die Berechnungen der Lanthanid-Komplexe erfolgte mit dem Programm LIRAS-3 [23] auf einem Cyber-175-Rechner (Control Data) des Rechenzentrums der Ruhr-Universität Bochum. Die ¹H-NMR-Spektren wurden mit dem Programm PANIC 80 (Fa. Bruker) simuliert. Die präparative Säulenchromatographie erfolgte mit Petrolether/Aceton-Gemischen auf Lobar-Fertigsäulen, Lichroprep Si 60 (0.04-0.063 mm) (Fa. Merck).

Synthesen

Isocumarin (1) [30]. IR: 3000, 1745, 1650, 1590, 1495, 1255, 1060 cm⁻¹. UV: 318 (3750), 270 (5200), 261 (7450), 252 (7500), 239 (17350) nm (*e*). MS: 146 (71)(M⁺), 118 (100), 90 (66), 89 (50).

2-Thio-isocumarin (2). In 150 ml Chloroform werden 13 g (60 mmol) 4-(N,N-Dimethylaminoformyliden)-isochroman-1,3-dion [31] gelöst. Dann leitet man drei Stunden lang Schwefelwasserstoff ein und rührt über Nacht bei Raumtemperatur. Danach werden 7ml Trifluoressigsäure hinzugegeben und die Lösung vier Stunden am Rückfluß erhitzt. Nach dem Abkühlen wird das ausgefallene Produkt abfiltriert und aus Petrolether/Aceton umkristallisiert. Man erhält 4-Carboxy-2-thio-isocumarin als farblose Kristalle, Fp. 230-232°C, Ausbeute: 8.2 g (66%).

IR: 3600-2100, 2950, 1620, 1460, 1360, 1320 cm⁻¹. UV: 350 (sh, 3450), 335 (4200), 302 (6150), 287 (sh, 5750), 268 (6450), 237 (24000), 222 (28500) nm (ϵ). MS: 206 (100) (M⁺), 178 (21), 161 (41), 134 (42), 118 (31), 105 (30), 89 (66).

2.0 g (9.7 mmol) 4-Carboxy-2-thio-isocumarin werden eine Stunde auf 160°C erhitzt. Das Rohprodukt wird chromatographisch gereinigt, und man erhält 300 mg (19%) 2 als farblose Kristalle, Fp. 74–76°C.

IR: 1630, 1580, 1480, 1325, 1150 cm^{-1} . UV: 355 (sh, 3600), 343 (4400), 332 (sh, 3550), 294 (5050), 282 (5000), 272 (sh, 4450), 263 (5200), 243 (28700), 238 (sh, 25000), 218 (25600) nm (ϵ). MS: 162 (82) (M⁺), 134 (100), 89 (27).

N-Methyl-isocarbostyril (3) [31]. IR:1650, 1480, 1420, 1360, 1300, 1250, 1210, 1080 cm⁻¹. UV: 332 (sh, 3000), 317 (sh, 4800), 293 (8000), 243 (9000), 232 (sh, 10 450), 215 (25 800) nm (e). MS: 159 (100) (M⁺), 130 (21), 118 (22), 116 (23), 89 (17).

1-Thio-isocumarin (4). Aus 1 nach [32], gelbrote Kristalle, Ausbeute: 78 %. IR: 2970, 1620, 1540, 1480, 1340, 1280, 1160, 1090 cm⁻¹.

IR: 29/0, 1620, 1540, 1480, 1340, 1280, 1100, 1090 cm⁻². UV: 402 (5250), 381 (8650), 363 (7400), 310 (sh, 2900), 296 (sh, 3750), 284 (10200), 274 (10500), 237 (sh, 7100), 208 (sh, 19900) nm (ϵ). MS: 162 (95) (M⁺), 134 (100), 89 (38).

19 900) nm (c). MS: 162 (95) (M⁺), 134 (100), 89 (38). 1,2-Dithio-isocumarin (5). Aus 2 nach [32], gelbrote Kristalle, Ausbeute: 64 %.

IR: 2970, 1600, 1540, 1470, 1330, 1150, 1000 cm⁻¹. MS: 178 (92) (M⁺), 134 (100), 89 (24).

1-Thio-N-Methyl-isocarbostyril (6). Aus 3 nach [32], gelbe Kristalle, Fp. 108-109°C, Ausbeute: 40%.

IR: 2980, 1640, 1550, 1500, 1340, 1180, 1150, 1090, 1020 cm⁻¹. UV: 382 (sh, 9050), 367 (11 300), 315 (sh, 4650), 290 (6300), 282 (6500), 221 (45 900) nm (ϵ).

3-*Methyl-isocumarin* (7) [33, 34]. IR: 2990, 1720, 1660, 1610, 1580, 1490, 1360, 1170, 1070 cm⁻¹. UV: 325 (4100), 272 (7300), 263 (9250), 254 (8000), 240 (17 600), 227 (30 500) nm (e). MS: 160 (100) (M⁺), 145 (23), 118 (31), 89 (42), 43 (25).

3-n-Butyl-isocumarin (8) [35]. IR: 2850, 1710, 1640, 1590, 1560, 1470, 1140 cm⁻¹. UV: 320 (1300), 273 (3100), 263 (3600), 227 (13200) nm (ε). MS: 202 (33) (M⁺), 160 (26), 131 (21), 118 (100), 89 (34).

3-(2'-Carboxybenzyl)-isocumarin (9). 1 g (6.3 mmol) Homophthalsäureanhydrid (Aldrich) wird mit 1.2 g (11.8 mmol) Triethylamin, 1 ml trockenem Ether und 1 ml trockenem Chloroform versetzt. Man rührt das Gemisch 12 Stunden bei Raumtemperatur, dampft ein und nimmt mit 50 ml Methylenchlorid auf. Dann schüttelt man mit verdünnter Salzsäure und Wasser aus, trocknet über Magnesiumsulfat und dampft ein. Das Produkt wird anschließend zwei Stunden auf 160°C erhitzt und chromatographisch gereinigt, Fp. 209-210°C, Ausbeute 72%.

IR: 1700, 1600, 1580, 1520, 1440, 1340, 1280, 1180, 1160, 1100 cm⁻¹. UV: 323 (4700), 274 (10500), 263 (11900), 255 (10150), 239 (sh, 21000), 228 (39400) nm (e). MS: 280 (3) (M⁺), 262 (97), 234 (93), 206 (20), 178 (47), 89 (100).

3-Phenyl-isocumarin (10) [33a, 36]. IR: 1680, 1590, 1550, 1510, 1430, 1090 cm⁻¹. UV: 347 (sh, 9150), 336 (9700), 310 (18 300), 296 (21 400), 233 (21 300) nm (ɛ). MS: 222 (100) (M⁺), 194 (81), 165 (62), 105 (43), 89 (38), 77 (60).

3-Methoxycarbonyl-isocumarin (11) [13]. IR: 1720, 1600, 1440, 1360, 1310, 1100 cm⁻¹. UV: 326 (sh, 4200), 314 (5700), 291 (11900), 279 (12200), 251 (11600), 242 (13800), 229 (19600) nm (ϵ). MS: 204 (70) (M⁺), 145 (78), 89 (100).

3-Methoxy-isocumarin (12) [37]. IR: 1730, 1640, 1560, 1480, 1360, 1305, 1000 cm⁻¹. MS: 176 (29) (M⁺), 148 (42), 133 (100), 105 (15), 89 (31).

3-Chlor-isocumarin (13) [38]. IR: 1750, 1630, 1560, 1480, 1350, 1075, 1000 cm⁻¹. UV: 323 (3750), 276 (7100), 266 (9100), 256 (7700), 241 (16600), 228 (29700) nm (ε). MS: 182/180 (11/34) (M⁺), 154/152 (16/49), 145 (47), 89 (100).

3-Brom-isocumarin (14). 5 g (30.9 mmol) Homophthalsäureanhydrid (Aldrich) werden mit 20 ml Phosphortribromid versetzt und sechs Stunden am Rückfluß gekocht. Danach wird das Phosphortribromid abdestilliert und der Rückstand in Wasser aufgenommen. Die Wasserphase wird mit Methylenchlorid ausgeschüttelt und die organische Phase über Magnesiumsulfat getrocknet und eingedampft. Nach chromatographischer Reinigung des Rohproduktes erhält man 1.8 g (26 %) 14 als weiße Kristalle, Fp. 104–105°C.

IR: 1730, 1610, 1550, 1465, 1335, 1050, 980 cm^{-1} . MS: 226/224 (9/10) (M⁺), 145 (81), 117 (13), 89 (77), 63 (100).

4-Ethoxycarbonyl-isocumarin (15) [30]. IR: 2950, 1715, 1700, 1610, 1480, 1280, 1110, 1030, 990 cm⁻¹. UV: 312 (3600), 266 (4800), 254 (sh, 7600), 225 (21 100) nm (ε).

3-Methyl-4-acetyl-isocumarin (16) [39]. UV: 320 (3800), 274 (sh, 6900), 264 (sh, 8900), 255 (9300), 229 (28 600) nm (e).

3,4-Diethoxycarbonyl-isocumarin (17) [40]. IR: 2980, 1730, 1635, 1605, 1380, 1310, 1145, 1050 cm⁻¹. UV: 326 (4300), 310

(6500), 292 (11 700), 227 (20 400), 203 (15 200) nm (c). MS: 290 (15) (M⁺), 263 (2), 245 (8), 217 (70), 189 (100).

3-Methyl-N-Methyl-isocarbostyril (18) [41]. Ausbeute 62%, Fp. 100-101°C.

IR: 2980, 1650, 1620, 1610, 1590, 1480, 1420, 1340, 1150 cm⁻¹. UV: 345 (sh, 3100), 330 (4700), 318 (sh, 4100), 288 (9400), 270 (9600), 247 (7700), 220 (18 500), 205 (36 900) nm (e). MS: 173 (100) (M⁺), 168 (21), 144 (16), 131 (9), 89 (9), 56 (16).

3-n-Butyl-N-methyl-isocarbostyril (19) [41]. Ausbeute 45%, Fp. 94-96°C.

IR: 2920, 1635, 1610, 1580, 1415, 1335, 1145 cm⁻¹. UV: 345 (sh, 3600), 330 (5400), 320 (sh, 4850), 289 (10 750), 281 (10 750), 223 (20 200), 205 (39 500) nm (ϵ). MS: 215 (75) (M⁺), 200 (6), 186 (21), 173 (100), 146 (60), 89 (13).

3-Phenyl-N-methyl-isocarbostyril (20) [41]. Ausbeute 62%, farbloses Öl.

IR: 2990, 1640, 1620, 1600, 1590, 1560, 1480, 1340 cm⁻¹. UV: 345 (sh, 3100), 330 (sh, 4750), 292 (8850), 248 (sh, 9700), 220 (sh, 24 200), 206 (40 000) nm (ϵ). MS: 235 (100) (M⁺), 178 (6), 118 (9).

3-Cyano-N-methyl-isocarbostyril (21) [42]. In 40 ml Dimethylformamid wird 1.0 g (5.2 mmol) 26 gelöst und mit 0.8 g (8.9 mmol) Kupfer-I-cyanid, 0.4 g (6.15 mmol) Kaliumcyanid und einer Spatelspitze 18-Krone-6 (Aldrich) versetzt. Man erhitzt acht Stunden auf 150°C, dampft das Dimethylformamid ab und versetzt den Rückstand mit Wasser und Methylenchlorid. Die Methylenchloridphase wird noch zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingedampft. Das Rohprodukt wird chromatographisch gereinigt und zweimal aus Ethanol umkristallisiert, Ausbeute 27 %.

IR: 2210, 1650, 1580, 1290 cm⁻¹. MS: 184 (100) (M⁺), 155 (17), 144 (21), 89 (10).

3-Piperidino-N-methyl-isocarbostyril (22) [43]. In einem Bombenrohr wird 1.0 g 26 (5.2 mmol) mit 10 ml Piperidin acht Stunden auf 160°C erhitzt. Das Piperidin wird abgedampft und der Rückstand zweimal chromatographisch gereinigt. Man erhält ein stark lichtbrechendes, zersetzliches Öl, Ausbeute 26 %.

UV: 335 (5000), 293 (14 400), 227 (23 100), 203 (33 900) nm (s). MS: 242 (100) (M⁺), 227 (6), 214 (23), 159 (30), 131 (30), 118 (31), 89 (50), 84 (35).

3-Ethylthio-N-methyl-isocarbostyril (23) [44]. Ausbeute: 62%, Fp. 63-64°C.

IR: 1630, 1580, 1550, 1340 cm⁻¹. UV: 360 (sh, 2600), 340 (sh, 5200), 325 (sh, 5500), 298 (13900), 251 (6800), 243 (sh, 10 000), 226 (22 700), 207 (31 100) nm (e). MS: 219 (100) (M⁺), 191 (65), 186 (24), 158 (24), 149 (65), 89 (68).

3-Ethylsulfoxy-N-methyl-isocarbostyril (24) [44]. Ausbeute: 82%, Fp. 115–116°C.

IR: 2960, 1640, 1610, 1580, 1330, 1290, 1060, 1040 cm⁻¹. UV: 347 (sh, 4950), 322 (sh, 7650), 295 (13700), 288 (sh, 12600), 253 (8650), 243 (sh, 10600), 225 (sh, 21800), 208 (36000) nm (e). MS: 235 (28) (M⁺), 207 (62), 158 (31), 89 (100). 2-Ethylsulfonyl-N-methyl-isocarbostyril (25) [44]. Aus-

beute: 92%, Fp. 144–146°C. IR: 1650, 1600, 1370, 1190 cm⁻¹. UV: 329 (sh, 4550), 315

18: 1650, 1600, 1370, 1190 cm $^{-2}$. UV: 329 (sn, 4550), 315 (sh, 7300), 295 (10 500), 252 (sh, 7000), 222 (sh, 19 300), 209 (34 300) nm (e). MS: 251 (55) (M $^+$), 187 (19), 158 (61), 146 (23), 131 (15), 115 (15), 89 (100).

3-Chlor-N-methyl-isocarbostyril (26) [45, 46]. Ausbeute: 59%, Fp. 108-110°C.

IR: 1640, 1610, 1590, 1550, 1480, 1330 cm⁻¹. UV: 344 (sh, 3200), 327 (4800), 318 (sh, 4400), 292 (10 800), 282 (10 900), 249 (7400), 206 (36 900) nm (ϵ). MS: 195/193 (35/100) (M⁺), 158 (65), 89 (75).

3-Brom-N-methyl-isocarbostyril (27) [45a, 46, 47]. Ausbeute: 47% (leicht verunreinigt mit 26).

IR: 1650, 1610, 1590, 1550, 1480, 1340 cm⁻¹. MS: 239/237 (31/33) (M^+), 158 (100), 89 (95).

4-Methyl-N-methyl-isocarbostyril (28). Ein Gemisch aus 483 mg (12.7 mmol) Natriumborhydrid, 933 mg (6.3 mmol) Calciumchlorid-Dihydrat und 50 ml Tetrahydrofuran wird 15 Minuten bei Raumtemperatur gerührt, mit 2.4 g (12.7 mmol) α -Methyl-N-methylhomophthalimid [43] versetzt und weitere 48 Stunden gerührt. Nach Zugabe von 50 ml 10% iger Salzsäure erhitzt man eine Stunde am Rückfluß. Danach wird die Lösung eingedampft und der Rückstand mit Wasser und Methylenchlorid aufgenommen. Die organische Phase wird wie üblich (siehe oben) aufgearbeitet. Nach chromatographischer Reinigung des Rohproduktes erhält man einen weißen Feststoff, Fp. 78-80°C, Ausbeute: 64%.

IR: 3000, 1665, 1630, 1610, 1570, 1495, 1320 cm⁻¹. UV: 340 (sh, 1950), 328 (2850), 318 (sh, 2650), 287 (5100), 250 (sh, 3600), 243 (4400), 225 (sh, 9800), 220 (sh, 10 100), 206 (33 050) nm (e). MS: 173 (100) (M⁺), 158 (8), 144 (20), 132 (18).

4-Acetoxymethyl-N-methyl-isocarbostyril (29). 4.0 g (25.2 mmol) 3 werden mit 10 ml konzentrierter Salzsäure und 1.68 g Paraformaldehyd versetzt. Man erhitzt drei Stunden auf 100°C und gibt 5.2 g (50.1 mmol) Acetanhydrid und 17 g (125 mmol) Natriumacetat-Trihydrat zu. Danach erhitzt man eine weitere Stunde auf 100°C, und versetzt die abgekühlte Lösung mit Natriumcarbonat bis zur alkalischen Reaktion. Anschließend arbeitet man wie üblich (siehe oben) mit Chloroform auf. Das erhaltene Rohprodukt, ein Gemisch aus 29 und 43 [48], wird chromatographisch aufgetrennt. Man eluiert zunächst 1.41 g 29 (24%) als farbloses Öl.

IR: 2950, 1720, 1640, 1620, 1480, 1340, 1300, 1050 cm⁻¹. UV: 332 (sh, 2950), 321 (4350), 310 (sh, 3900), 287 (7900), 278 (sh, 7700), 247 (7450), 240 (sh, 7900), 223 (sh, 16100), 206 (36400) nm (ϵ). MS: 231 (34) (M⁺), 172 (100).

Die zweite Fraktion (1.2 g, Ausbeute: 29%, Fp. 303–304°C) ist: 4,4'-*Methylen-bis*(N-*methyl-isocarbostyril*) (43) [48]. IR: 2980, 1640, 1620, 1600, 1480, 1350, 1310 cm⁻¹. UV: 340 (sh, 8300), 328 (sh, 11 350), 320 (sh, 10 100), 292 (15 800), 285 (sh, 15 500), 250 (sh, 14 350), 243 (sh, 16 500), 225 (sh, 31 800), 206 (76 500) nm (ε). MS: 330 (100) (M⁺), 172 (41).

4-Acetyl-N-methyl-isocarbostyril (30) [12, 49]. IR: 1660, 1490, 1370, 1330 cm⁻¹. UV: 332 (sh, 6300), 316 (sh, 10400), 296 (12800), 247 (sh, 11900), 218 (29950) nm (ε). MS: 301 (56) (M⁺), 186 (100), 158 (8), 89 (32).

4-Methoxycarbonyl-N-methyl-isocarbostyril (31) [13]. IR: 1710, 1650, 1490, 1440, 1360, 1320, 1070 cm^{-1} . UV: 330 (sh, 3900), 327 (sh, 6400), 294 (10400), 244 (sh, 11600), 215 (33100) nm (ε). MS: 217 (85) (M⁺), 186 (100).

4-C yano-N-methyl-isocarbostyril (32) [7, 42]. IR: 2230, 1660, 1630, 1500, 1360, 1320 cm⁻¹. UV: 343 (sh, 3200), 318 (sh, 5600), 311 (sh, 7300), 293 (12600), 252 (9000), 243 (sh, 10700), 231 (sh, 14500) nm (ϵ). MS: 184 (100) (M⁺), 135 (17), 143 (41), 115 (18).

4-Acetylamino-N-methyl-isocarbostyril (33). In 30 ml Essigsäure/Acetanhydrid (1:1) werden 500 mg (2.45 mmol) 34 gelöst. Man gibt eine Spatelspitze Palladium/Aktivkohle dazu und hydriert bei Raumtemperatur. Nach Abschluß der Wasserstoffaufnahme filtiert man den Katalysator ab und dampft die Lösung ein. Das Rohprodukt wird aus Petrolether/Aceton umkristallisiert. Man erhält weiße Kristalle, Ausbeute 490 mg (93%), Fp. 208-210°C.

IR: 1650, 1620, 1600, 1470 cm^{-1} . UV: 324 (5200), 290 (9200), 250 (sh, 7800), 214 (38 900) nm (ε).

4-Nitro-N-methyl-isocarbostyril (34) [7]. IR: 1670, 1630, 1510, 1490, 1320, 1280, 1080 cm⁻¹. UV: 347 (8500), 320 (sh, 6600), 270 (sh, 6700), 235 (sh, 16 100), 222 (23 100) nm (e). MS: 208 (100) (M⁺), 174 (16), 158 (12), 133 (27), 89 (62), 42 (52).

4-Chlor-N-methyl-isocarbostyril (35) [7,46]. IR: 2980, 1640, 1620, 1600, 1480, 1380, 1350, 1310 cm⁻¹. UV: 342 (sh, 2600), 323 (sh, 4000), 294 (8100), 253 (5500), 244 (5800), 226 (sh, 13 500), 207 (36 100) nm (ε). MS: 195/193 (33/100) (M⁺), 158 (39), 89 (25).

4-Brom-N-methyl-isocarbostyril (**36**) [7]. IR: 1650, 1620, 1480, 1350, 1310 cm⁻¹. MS: 239/237 (94/100) (M⁺), 158 (51), 89 (56), 56 (51).

4-Iod-N-methyl-isocarbostyril (37) [7]. IR: 2950, 1640, 1610, 1600, 1480, 1350, 1320, cm⁻¹. UV: 345 (sh, 3300), 330 (sh, 5400), 295 (9000), 257 (5800), 247 (6300), 208 (39 400) nm

(e). MS: 285 (100) (M⁺), 158 (21), 89 (39).

3,4-Dichlor-N-methyl-isocarbostyril (38) [43]. IR: 3025, 1730, 1680, 1655, 1610, 1590 cm⁻¹. MS: 229/227 (4/6) (M⁺).

4-Methoxycarbonyl-2-thio-isocumarin (39). 1.0 g (4.85 mmol) 4-Carboxy-2-thio-isocumarin (siehe Darstellung von 2) wird in Methanol gelöst und solange mit etherischer Diazomethanlösung versetzt, bis die Lösung leicht gelb bleibt. Nach 15 Minuten Rühren gibt man wenige Tropfen Essigsäure hinzu, dampft ein und reinigt chromatographisch. Ausbeute: 931 mg (87%).

UV: 350 (sh, 3350), 336 (4300), 322 (sh, 3500), 300 (6200), 290 (sh, 5900), 238 (24100), 224 (30100) nm (e). MS: 220 (100) (M⁺), 192 (13), 189 (17), 161 (34), 160 (39), 89 (27).

3-Phenyl-1-thio-isocumarin (40) [33a]. IR: 2980, 1640, 1600, 1550, 1480, 1340, 1290, 1160, 1110 cm⁻¹. UV: 423 (sh, 8100), 403 (11 500), 383 (sh, 9900), 350 (sh, 6500), 330 (sh, 8500), 302 (26 800), 298 (28 100), 235 (27 900) nm (e). MS: 238 (100) (M⁺), 210 (48), 194 (5), 165 (16), 105 (41), 89 (24), 77 (33).

3-Phenyl-1,2-dithio-isocumarin (41) [38]. IR: 3000, 1645, 1610, 1480, 1350, 1300, 1170, 1140 cm⁻¹.

3-Methyl-N-methyl-1-thio-isocarbostyril (42). Aus 18 nach [33], gelbe Kristalle, Ausbeute: 27 %, Fp. 105–106°C. IR: 2950, 1700, 1620, 1540, 1360, 1260, 1160, 1140 cm⁻¹. MS: 189 (100) (M⁺), 143 (39), 105 (29).

4,4'-Methylen-bis(N-methyl-isocarbostyril) (43) [48]. Siehe oben (Darstellung von 29).

Benzocumarin (44) [50]. In 20 ml Trifluoressigsäure werden 3.0 g (16.7 mmol) Fluorenon (Merck) gelöst. Dann gibt man 5 ml Wasserstoffperoxid (40%) zu und erhitzt 12 Stunden auf 40°C. Danach dampft man ein und nimmt mit Wasser auf. Übliche Aufarbeitung (siehe oben) mit Methylenchlorid und chromatographische Reinigung gibt 2.08 g (64%) 44.

IR: 3000, 1720, 1600, 1300, 1260, 1090, 1070 cm⁻¹. MS: 196 (100) (M⁺), 168 (46), 139 (42).

N-Methyl-benzocarbostyril (45). Durch Methylierung [46] von Phenanthridon [51], Ausbeute: 44 %. IR: 1625, 1600, 1580, 1340 cm⁻¹. UV: 337 (6600), 323

IR: 1625, 1600, 1580, 1340 cm^{-1} . UV: 337 (6600), 323 (7500), 257 (16 000), 237 (38 500), 231 (39 500), 223 (sh, 30 000) nm (e). MS: 209 (100) (M⁺), 152 (17).

N-Methyl-1-thio-benzocarbostyril (46). Aus 45 nach [33], gelbe Kristalle, Ausbeute: 69%.

IR: 1600, 1560, 1490, 1340, 1070 cm^{-1} . MS: 225 (100) (M⁺), 179 (55), 165 (15), 151 (13).

Danksagungen—Die Autoren danken Prof. S. SPASSOV, Sofia, für die technische Hilfe bei den Messungen der $^{13}C-T_1$ - und der ^{15}N -NMR-Spektren sowie Dr. W. DIETRICH, Bochum, für die $^{13}C-T_1$ -Auswertungen. Dr. D. J. CHADWICK, Liverpool, stellte freundlicherweise sein Programm LIRAS-3 zur Verfügung. M. K. dankt der Deutschen Forschungsgemeinschaft und der Bulgarischen Akademie der Wissenschaften (BAW) für die Gewährung eines Stipendiums zum Besuch des Organisch-Chemischen Instituts der BAW in Sofia. Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie finanziell unterstützt.

4. LITERATUR

- [1] (a) R. D. BARRY, Chem. Rev. 64, 229 (1964); (b) R. R. ARRIGO, Farmaco Ed. Sci. 30, 947 (1975); Chem. Abstr. 84, 69414 q (1975); (c) D. R. BUCKLE, B. C. C. CANTELLO und H. SMITH, Ger. Offen. 2,448,387; Chem. Abstr. 83, 79080w (1975); (d) S.W. PELLETIER, Chemistry of Alkaloids. Van Nostrand Reinhold, New York (1970); (e) M. SHAMMA, The Isoquinoline Alkaloids. Academic Press, New York (1972); (f) R. G. COOKE, Prog. Chem. Org. Nat. Prod. (W. HERZ, H. GRISEBACH und G. W. KIRBY, Hrsg.) 40, 153 (1981).
- [2] A. KAMAL, N. KAZI, T. BEGUM, M. A. KHAN und A. A.

QURESHI, Pak. J. Sci. Ind. Res. 14, 1 (1971); Chem. Abstr. 75, 124738q (1971).

- [3] D. E. KORTE, L. S. HEGEDUS und R. K. WIRTH, J. org. Chem. 42, 1329 (1977).
- [4] R. H. CARTER, M. J. GARSON, R. A. HILL, J. STAUNTON und D. C. SUNTER, J. chem. Soc. Perkin I 471 (1981).
- [5] N. S. NARASIMHAN und R. S. MALI, Synthesis 797 (1975).
 [6] G. G. SMITH, C. W. DELONG, W. H. HETZEL und V. P.
- MURALIDHARAN, J. heterocycl. Chem. 4, 501 (1967). [7] R. A. HENRY, C. A. HELLER und D. W. MOORE, J. org.
- Chem. 40, 1760 (1975).
- [8] T. SAKAGUCHI und S. TANABE, Yakugaku Zasshi 97, 223 (1977); Chem. Abstr. 87, 38405v (1977).
- [9] R. BEUGELMANS und M. BOIS-CHOUSSY, Synthesis 729 (1981).
- [10] C. H. WANG, Chem. Pharm. Bull. 21, 2760 (1973).
- [11] A. PELTER, R. S. WARD und T. I. GRAY, J. chem. Soc. Perkin I 2475 (1976).
- [12] H. TOMISAWA und R. FUJITA, Chem. Pharm. Bull. 21, 2585 (1973).
- [13] S. L. SPASSOV, I. A. ATANASSOVA und M. A. HAIMOVA, Org. Magn. Reson. 22, 194 (1984).
- [14] G. J. KARABATSOS, G. C. SONNICHSEN, N. HSI und D. J. FENOGLIO, J. Am. chem. Soc. 89, 5067 (1967).
- [15] U. E. MATTER, C. PASCUAL, E. PRETSCH, A. PROSS, W. SIMON und S. STERNHELL, *Tetrahedron* 25, 691 (1969).
- [16] (a) M. H. A. ELGAMAL, N. H. ELEWA, E. A. M. ELKHRISY und H. DUDDECK, *Phytochemistry* 18, 139 (1979); (b) H. DUDDECK, M. H. A. ELGAMAL, F. K. ABD ELHADY und N. M. M. SHALABY, Org. Magn. Reson. 14, 256 (1980).
- [17] (a) I. W. J. STILL, N. PLAVAC, D. M. MCKINNON und M. S. CHAUHAN, Can. J. Chem. 54, 280 (1976); (b) W. V. TURNER und W. H. PIRKLE, J. org. Chem. 39, 1935 (1974).
- [18] (a) W. KITCHING, M. BULLPITT, D. DODDRELL und W. ADCOCK, Org. Magn. Reson. 6, 289 (1974); (b) P. R. WELLS, D. P. ARNOLD und D. DODDRELL, J. chem. Soc. Perkin II 1745 (1974); (c) L. ERNST, J. Magn. Reson. 20, 544 (1975).
- [19] S. R. JOHNS und R. I. WILLING, Aust. J. Chem. 29, 1617 (1976).
- [20] H. DUDDECK und M. KAISER, Org. Magn. Reson. 20, 55 (1982).
- [21] (a) H. GÜNTHER, J. PRESTIEN UND P. JOSEPH-NATHAN, Org. Magn. Reson. 7, 339 (1975); (b) C. CHANG, H. G. FLOSS UND W. STECK, J. org. Chem. 42, 1337 (1977); (c) L. ERNST, Chem. Ber. 108, 2030 (1975).
- [22] (a) J. K. M. SANDERS und D. H. WILLIAMS, Nature, Lond. 240, 385 (1972); (b) B. C. MAYO, Chem. Soc. Rev. 2, 49 (1973); (c) A.F. COCKERILL, G. L. O. DAVIES, R. C. HARDEN und D. M. RACKHAM, Chem. Rev. 73, 553 (1973); (d) F. INAGAKI und T. MIYAZAWA, Prog. NMR Spectrosc. 14, 67 (1981).
- [23] R. J. ABRAHAM, D. J. CHADWICK, L. GRIFFITHS und F. SANCASSAN, Tetrahedron Lett. 4691 (1979).
- [24] (a) A. G. MICHEL und F. DURANT, Acta crystallogr. B32, 321 (1976); (b) A. G. MICHEL, A. WALNIER und F. DURANT, Acta crystallogr. B32, 323 (1976).
- [25] E. GAVUZZO, F. MAZZA und E. GIGLIO, Acta crystallogr. B30, 1351 (1974).
- [26] A.I. GRAY, R. D. WAIGH und P. G. WATERMAN, J. chem. Soc. Perkin II 1978, 391.
- [27] (a) G. C. LEVY, Acc. Chem. Res. 6, 161 (1973); (b) E.
 BREITMAIER, K.-H. SPOHN und S. BERGER, Angew. Chem. 87, 152 (1975); (c) J. B. LAMBERT, R. J. NIENHUIS und J. W. KEEPERS, Angew. Chem. 93, 553 (1981); (d) R.
 GERHARDS, W. DIETRICH, G. BERGMANN und H.
 DUDDECK, J. Magn. Reson. 36, 189 (1979).
- [28] W. DIETRICH, G. BERGMANN und R. GERHARDS, Z. Analyt. Chem. 279, 177 (1976).
- [29] M. R. BENDALL, D. T. PEGG, D. M. DODDRELL, S. R.

JOHNS und R. I. WILLING, J. chem. Soc. Chem. Commun. 1138 (1982).

- [30] V. H. BELGAONKAR und R. N. USGAONKAR, Chem. Ind., Lond. 954 (1976).
- [31] V. H. BELGAONKAR und R. N. USGAONKAR, Tetrahedron Lett. 3849 (1975).
- [32] (a) L. LEGRAND und N. LOZACH, Bull. Soc. chim. Fr. 1787 (1964); (b) L. LEGRAND und N. LOZACH, Bull. Soc. chim. Fr. 2227 (1970).
- [33] (a) R. B. TIRODKAR und R. N. USGAONKAR, Ind. J. Chem. 10, 1060 (1972); (b) R. B. TIRODKAR und R. N. USGAONKAR, J. Ind. chem. Soc. 48, 192 (1971).
- [34] R. B. TIRODKAR und R. N. USGAONKAR, J. Ind. chem. Soc. 46, 935 (1969).
- [35] (a) J. N. CHATTERJEA, S. K. MUKHERJEE, C. BHAKTA, H.
 C. JHA und F. ZILLIKEN, *Chem. Ber.* 113, 3927 (1980);
 (b) I. CHOKSEY und R. N. USGAONKAR, *Ind. J. Chem.* 14B, 596 (1976).
- [36] A. HOREAU und J. JACQUES, Bull. Soc. chim. Fr. 53 (1948).
- [37] J. SCHNEKENBURGER, Arch. Pharm. 298, 4 (1965).
- [38] (a) W. DAVIES und H. G. POOLE, J. chem. Soc. 1616 (1928); (b) L. F. FIESER und M. M. PECHET, J. Am. chem. Soc. 68, 2577 (1946).
- [39] P. KAISER und J. SCHNEKENBURGER, Z. Naturforsch. 25b, 1190 (1970).

- [40] H. W. JOHNSTON, C. E. KASLOW, A. LANGSJOEN und R. L. SHRINER, J. org. Chem. 13, 477 (1948).
- [41] V. H. BELGAONKAR und R. N. USGAONKAR, J. heterocycl. Chem. 15, 257 (1978).
- [42] L. FRIEDMAN und H. SHECHTER, J. org. Chem. 26, 2522 (1961).
- [43] M. D. NAIR und S. R. MEHTA, Ind. J. Chem. 5, 467 (1967).
- [44] K. KUBO, N. ITO, Y. ISOMURA, J. SOZU, H. HOMMA und M. MURAKAMI, Chem. Pharm Bull. 27, 2372 (1979).
- [45] (a) G. SIMCHEN und C. ENTENMANN, Angew. Chem. 85, 155 (1973); (b) G. SIMCHEN, Angew. Chem. 78, 674 (1966).
- [46] L. W. DEADY, W. L. FINLAYSON und C. H. POTTS, Aust. J. Chem. 30, 1349 (1977).
- [47] G. SIMCHEN und W. KRÄMER, Chem. Ber. 102, 3666 (1969).
- [48] H. TOMISAWA, K. SAITO, H. HONGO und R. FUJITA, Chem. Pharm. Bull. 18, 933 (1970).
- [49] H. TOMISAWA, R. FUJITA, H. HONGO und H. KATO, Chem. Pharm. Bull. 23, 292 (1975).
- [50] A. GRINGANZ und E. TOSK, Org. Prep. Proceed. 2, 185 (1970); Chem. Abstr. 74, 31628t (1971).
- [51] Organikum (Autorenkollektiv), VEB Deutscher Verlag der Wissenschaften, Berlin (1976).