December 1993 SYNTHESIS 1239 # An Efficient, High-Yield, One-Pot Preparation of Pyrrolo[2,3-b]pyridines by a Consecutive Aza Wittig Reaction—Electrocyclic Ring Closure—Intramolecular Amination Process Pedro Molina,* Enrique Aller, M. Angeles Lorenzo Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, E-30071 Murcia, Spain Received 4 May 1993 Aza Wittig reaction of iminophosphoranes derived from ethyl (E,E,E)-1-azido-7-phenyl-2,4,6-heptatrienoate with aromatic isocyanates in nitrobenzene at reflux temperature leads directly to pyrrolo[2,3-b]pyridines in good yields. Pyrrolo[2,3-b]pyridines (7-azaindoles) have been the target of extensive synthetic studies as a consequence of their potent pharmacological activity. The most general method for the construction of this ring system involves pyrrolo annelation into a preformed pyridine ring. However, available routes to pyrrolo[2,3-b]pyridines such as Madelung^{2,3} or Fisher^{4,5} type synthesis are often of limited synthetic interest, mainly due to their narrow scope. Recently, pyrrolo annelation has been achieved either from 2-fluoropyridine by metalation-S_{RN}1 substitution coupling methodology,6 or from 3-picoline by metalation, subsequent reaction with nitriles and finally intramolecular Chichibabin type reaction.⁷ A different approach is based on the simultaneous formation of the pyridine and the pyrrole ring. Thus, intramolecular inverse electron demand Diels-Alder cycloaddition of heterocyclic azadienes such as 1,2,4-triazines8 or pyrimidines⁹ carrying a dienophilic side chain tethered through a nitrogen atom to the appropriate position of the heterocyclic ring, has been shown to be an useful methodology for the formation of dihydropyrrolo[2,3-b]pyridines. In the course of our studies directed towards the iminophosphorane-mediated synthesis of fused heterocycles, we have developed a consecutive aza Wittig reaction-electrocyclic ring closure-intramolecular amination process for the synthesis of 1,9-diazaphenalene derivatives. ^{10,11} As a further extension of this methodology we would now like to report a new synthetic strategy to the preparation of pyrrolo[2,3-b]pyridines, which commences with a common iminophosphorane precursor and constructs both the pyridine and the pyrrole ring through the aforementioned consecutive process. The starting aldehyde¹² 1 was easily prepared from the commercially available (E)- β -bromostyrene by standard chemistry: reaction with methyl acrylate in the presence of anhydrous palladium acetate (47%); reduction with DIBAL at room temperature (85%) and oxidation with activated manganese dioxide (65%). Condensation of 1 with ethyl azidoacetate in ethanol in the presence of sodium ethoxide at -12° C leads to the azide 2 (83%) which is converted into the key iminophosphorane 3 (83%) by reaction with triphenylphosphine in dry dichloromethane at room temperature. Iminophosphorane 3 reacts with several aliphatic or aromatic isocyanates in toluene at reflux temperature to give pyridines 5 in good yields (76-86%) (Table 1). The ¹H and ¹³C NMR data of compounds 5 revealed that they have E configuration¹³ (Table 2). All attempts to cyclize compounds 5 to | 5 | R | 6 | R | |---|--|---|--| | 8 | СН, | a | C ₆ H ₅ | | b | i-C ₃ H ₇ | b | 4-H ₃ CC ₆ H ₄ | | С | C ₆ H ₅ | c | 4-FC ₆ H ₄ | | d | 4-H ₃ CC ₆ H ₄ | d | 4-H ₃ COC ₆ H ₄ | | e | 4-FC ₆ H ₄ | | | | f | 4-H ₃ COC ₆ H ₄ | | | 1240 Papers SYNTHESIS Table 1. Compounds 5 and 6 Prepareda | Prod-
uct | Yield ^b (%) | mp (°C)
Solvent | MS (70 eV)
m/z (%) | |--------------|------------------------|---|--| |
5a | 86 | 107-108 | 282 (M ⁺ , 13), 208 (100), 180 | | | | Et ₂ O/hexane | (10), 131 (23), 91 (21) | | 5b | 84 | 121-122 | 310 (M ⁺ , 26), 236 (93), 221 (60). | | | | Et ₂ O/hexane | 194 (100), 103 (17) | | 5c | 76 | 109-111 | 344 (M ⁺ , 30), 270 (50), 193 | | | | Et ₂ O/hexane | (100), 168 (41), 77 (99) | | 5d | 85 | 112-114 | 358 (M ⁺ , 25), 284 (41), 207, | | | | Et ₂ O/hexane | (33), 91 (99), 65 (100) | | 5e | 83 | $12\overline{2} - 124$ | 362 (M ⁺ , 6), 211 (25), 129 (22), | | | | Et ₂ O/hexane | 111 (20), 95 (43) | | 5f | 81 | 114-116 | 374 (M ⁺ , 69), 300 (100), 223 | | | | Et ₂ O/hexane | (53), 115 (46), 77 (78) | | 6a | 90 | 169-170 | 342 (M ⁺ , 48), 295 (39), 270 | | | | CH ₂ Cl ₂ /hexane | (100), 139 (33), 77 (33) | | 6b | 76 | 179-180 | 356 (M ⁺ , 63), 309 (56), 284 | | | | CH ₂ Cl ₂ /hexane | (100), 139 (35), 91 (28) | | 6c | 80 | 188-189 | 360 (M ⁺ , 61), 313 (35), 285 (48) | | | | CH ₂ Cl ₂ /hexane | 139 (31), 95 (36) | | 6d | 73 | 173-174 | 372 (M ⁺ , 100), 325 (93), 297 | | | | CH ₂ Cl ₂ /hexane | (58), 139 (26), 77 (16) | ^a Satisfactory microanalyses were obtained for compounds 2, 3, 5a-f, 6a-d: C, H, N \pm 0.3% compounds 6 by heating a toluene soluion at 160 °C in a sealed tube failed. However, when compounds 5 were heated in nitrobenzene at reflux temperature the corresponding pyrrolo[2,3-b]pyridines 6 were isolated in yields higher than 70 %, except for compounds 5a and 5b which were recovered unchanged. The ¹H NMR data of compounds 6 are in good agreement with the previously reported values for this kind of ring system⁶⁻⁸ (Table 2). Compounds 6 can also be prepared directly in one pot in good yields (73-90%) from the precursor iminophosphorane 3 and isocyanates, without isolation of the intermediate pyridine 5, by heating in nitrobenzene at reflux temperature (Scheme). The conversion $3 \rightarrow 6$ can be rationalized in terms of an initial aza Wittig reaction to give the intermediate carbodiimide 4 (as evidenced by IR) which undergoes electrocyclic ring closure followed by [1,3] proton shift to give the pyridine 5. This compound eventually undergoes an unusual thermal intramolecular amination followed by oxidative aromatization to provide the bicyclic compound 6. Although intramolecular cyclization of a primary or secondary amino group onto a remote carbon–carbon double bond has been achieved by photolysis, 14,15 mediated by a transition metal catalyst (aminomercuration, 16,17,18 aminopalladation 19,20), and by the action of a catalytic amount of butyllithium, 21 the thermal intramolecular cyclization is rare. 22 This experimentally convenient sequence provides direct access to pyrrolo[2,3-b]pyridines in a one-pot process, and is competitive with previously reported syntheses of this ring system. Table 1 presents some pyrrolo[2,3-b]-pyridines 6 made readily available via this methodology. Melting points are uncorrected. IR spectra were recorded on a Nicolet FT 5DX spectrophotometer. ¹H and ¹³C NMR spectra were obtained using a Bruker AC-200 spectrometer. Mass spectra were recorded on a Hewlett-Packard 5993C instrument. #### Ethyl (E,E,E)-2-Azido-7-phenyl-2,4,6-heptatrienoate (2): To a well stirred solution containing Na (0.54 g, 22 mmol) in dry EtOH (20 mL), a solution of ethyl azidoacetate (3.25 g, 22 mmol) and (*E,E*)-5-phenyl-2,4-pentadienal (1) (1.0 g, 6.3 mmol) in dry EtOH (30 mL) was added dropwise at $-12\,^{\circ}\mathrm{C}$ under nitrogen. The reaction mixture was stirred for 6 h at the same temperature and then allowed to warm to r. t. After this it was poured into aq 30 % NH₄Cl (50 mL) and the formed solid was separated by filtration, washed with H₂O (30 mL), air-dried and chromatographed on a silica gel column (40 cm \times 3.5 cm, 70–230 mesh) eluting with CH₂Cl₂/hexane (1:1) to give 2; yellow prisms; yield 1.41 g (83 %); mp 72–73 °C. IR (Nujol): ν = 2135 (N₃), 1709 (COOEt) cm $^{-1}$. ¹H NMR (CDCl₃): δ = 1.35 (t, 3 H, J = 7.1 Hz, CH₃), 4.30 (q, 2 H, J = 7.1 Hz, CH₂O), 6.66 (m, 3 H), 6.87 (m, 1 H), 7.32 (m, 6 H). ¹³C NMR (CDCl₃): δ = 14.1 (CH₃), 61.8 (CH₂O), 125.2 (C_α), 126.3, 126.6, 126.7 (C_ο), 128.3 (C_p), 128.5, 128.7 (C_m), 136.2, 136.6 (C_i), 139.4, 163.1 (C=O). MS: m/z (%) = 269 (M⁺, 4), 168 (100). # Ethyl (*E,E,E*)-7-Phenyl-2-(triphenylphosphoranylidene)amino-2,4,6-heptatrienoate (3): To a solution of Ph₃P (0.54 g, 2.1 mmol) in dry CH₂Cl₂ (15 mL), a solution of the azide 2 (0.56 g, 2.1 mmol) in the same solvent (10 mL) was added dropwise at r.t. and stirred for 2 h. The solvent was removed under reduced pressure at 35 °C and the residual material was chromatographed on a silica gel column (40 cm \times 3.5 cm, 70–230 mesh) eluting with EtOAc/hexane (1:3) and then recrystallized from CH₂Cl₂/hexane (1:1) to give 3; yellow prisms; yield 0.91 g (86%); mp 85–86 °C. IR (Nujol): v = 1696 (COOEt) cm⁻¹. ¹H NMR (CDCl₃): δ = 1.00 (t, 3 H, J = 7.1 Hz, CH₃), 3.86 (q, 2 H, J = 7.1 Hz, CH₂O), 6.57 (m, 3 H), 6.96 (dd, 1 H, J = 15.3, 11.0 Hz), 7.28 (m, 15 H), 7.74 (m, 6 H). $^{13}\text{C NMR (CDCl}_3): \delta = 14.0 \text{ (CH}_3), 60.5 \text{ (CH}_2\text{O)}, 120.0 \text{ (d,} \\ ^3J_{\text{P-C}} = 19.7 \text{ Hz}, \text{ C}_\beta), 126.1, 126.8, 128.1 \text{ (d,} ^3J_{\text{P-C}} = 12.2 \text{ Hz}, \\ \text{C}_{\text{m}}\text{PhP}), 128.5, 130.5, 130.6, 131.0 \text{ (d,} ^4J_{\text{P-C}} = 2.8 \text{ Hz}, \text{C}_p\text{PhP}), 131.2, \\ 131.5, 132.3 \text{ (d,} ^2J_{\text{P-C}} = 9.5 \text{ Hz}, \text{C}_o\text{PhP}), 132.74 \text{ (d,} ^1J_{\text{P-C}} = 103.1 \text{ Hz}, \\ \text{C}_i\text{PhP}), 137.4 \text{ (d,} ^2J_{\text{P-C}} = 5.8 \text{ Hz}, \text{C}_a), 137.9 \text{ (C}_i\text{Ph}), 167.2 \text{ (d,} \\ ^3J_{\text{P-C}} = 6.4 \text{ Hz}, \text{C} = \text{O}).$ MS: m/z (%) = 503 (M⁺, 5), 183 (100). ## Ethyl 6-Alkyl(aryl)amino-5-styrylpyridine-2-carboxylates 5; General Procedure: A solution of iminophosphorane 3 (0.25 g, 0.49 mmol) and the appropriate isocyanate (0.49 mmol) in dry toluene (15 mL) was stirred at r. t. for 2 h, and then heated at reflux for 48 h. After cooling, the solvent was removed under reduced pressure at 35 °C and the residual material was chromatographed on a silica gel column (40 cm \times 3.5 cm, 70–230 mesh) eluting with EtOAc/hexane (1:3) to give 5 which was isolated as a crystalline solid after recrystallization from Et₂O/hexane (1:1) (Table 1). ## Ethyl 1-Aryl-2-phenyl-1*H*-pyrrolo[2,3-*b*]pyridine-6-carboxylates 6; General Procedure: Method A. A solution of pyridine 5 (1 mmol) in nitrobenzene (5 mL) was heated at reflux for 12 h. After cooling, the solvent was removed under reduced pressure and the residual material was chromatographed on a silica gel column (40 cm \times 3.5 cm, 70–230 mesh) eluting with CH₂Cl₂ to give 6 which was isolated as a yellow crystalline solid after recrystallization from CH₂Cl₂/hexane (1:1). Method B. A mixture of iminophosphorane 3 (0.5 g, 0.99 mmol) and the corresponding isocyanate (0.99 mmol) in nitrobenzene (5 mL) was stirred at r.t. for 1 h and then heated at reflux for 12 h. Workup was similar to that described in method A (Table 1). ^b Yield of isolated pure product. Table 2. Spectral Data of Compounds 5 and 6. | Com-
pound | IR (Nujol) v (cm ⁻¹) | 1 H NMR (200 MHz) (solvent/TMS) a δ , J (Hz) | $^{13}\mathrm{C}\ \mathrm{NMR}\ (50\ \mathrm{MHz})\ (\mathrm{solvent/TMS})^{\mathrm{a}}$ δ | |---------------|----------------------------------|--|--| | 5a | 3428, 1717 | 1.38 (t, 3 H, $J = 7.2$, CH_3CH_2), 3.08 (s, 3 H, NCH_3), 4.38 (q, 2 H, $J = 7.2$, CH_3CH_2), 4.87 (s, 1 H, NH), 6.99 (d, 1 H, $J = 15.9$, H_{α}), 6.99 (d, 1 H, $J = 15.9$, H_{β}), 7.28, t, 1 H, $J = 6.9$, $H_{\rho}Ph$), 7.33 (t, 2 H, $J = 6.9$, $H_{m}Ph$), 7.41 (d, 1 H, $J = 7.6$, H-3), 7.47 (d, 2 H, $J = 7.2$, $H_{\rho}Ph$), 7.57 (d, 1 H, $J = 7.6$, H-4) | 14.13 (CH_3CH_2), 28.46 (NCH_3), 61.3 (CH_3CH_2), 114.52 (C -3), 121.89 (C_α), 122.31 (C -5), 126.52 (C_ρ Ph), 128.13 (C_p Ph), 128.59 (C_m Ph), 133.34 (C_ρ), 133.71 (C -4), 136.51 (C_i Ph), 145.09 (C -2), 156.05 (C -6), 165.76 (C = O) | | 5b | 3405, 1717 | 1.26 [d, 6H, $J = 5.8$, (CH ₃) ₂ CH], 1.39 (t, 3 H, $J = 7.1$, CH ₃ CH ₂), 4.38 (q, 2 H, $J = 7.1$, CH ₃ CH ₂), 4.45 [m, 2 H, NH, (CH ₃) ₂ CH], 6.94 (d, 1 H, $J = 16.0$, H _a), 7.01 (d, 1 H, $J = 16.0$, H _b), 7.33 (m, 4 H), 7.51 (d, 2 H, $J = 7.4$, H _o Ph), 7.58 (d, 1 H, $J = 7.6$, H-4) | 14.19 (CH_3CH_2), 22.98 [(CH_3) ₂ CH], 42.68 [(CH_3) ₂ CH], 61.04 (CH_3CH_2), 114.33 (C-3), 121.98 (C-5), 122.17 (C_a), 126.62 (C_o Ph), 128.23 (C_p Ph), 128.70 (C_m Ph), 133.43 (C_p), 134.13 (C-4), 136.67 (C_i Ph), 145.34 (C-2), 154.89 (C-6), 165.78 (C=O) | | 5c | 3412, 1715 | 1.40 (t, 3 H, $J = 7.1$, CH_3CH_2), 4.37 (q, 2 H, $J = 7.1$, CH_3CH_2), 6.66 (s, 1 H, NH), 6.86 (t, 1 H, $J = 7.4$, H_0Ph), 6.91 (d, 1 H, $J = 16.2$, H_a), 6.91 (d, 1 H, $J = 16.2$, H_b), 7.18 (m, 5 H), 7.31 (d, 2 H, $J = 7.5$), 7.49 (d, 1 H, $J = 7.8$, H-3), 7.57 (m, 3 H, H-4, H_0Ph) | 14.08 CH_3CH_2), 61.26 (CH_3CH_2) , 117.08 $(C-3)$, 118.73, 121.65, 121.84 (C_a) , 124.00 $(C-5)$, 126.65 (C_aPh) , 128.40 (C_pPh) , 128.63, 128.66 (C_mPh) , 134.32 (C_b) , 135.14 $(C-4)$, 136.21 (C_iPh) , 140.53 (Q) , 144.60 $(C-2)$, 151.83 $(C-6)$, 165.26 $(C=O)$ | | 5d | 3449, 1710 | 1.43 (t, 3 H, $J = 7.1$, CH_3CH_2), 2.29 (s, 3 H, CH_3Ar), 4.40 (q, 2 H, $J = 7.1$, CH_3CH_2), 6.63 (s, 1 H, NH), 7.01 (d, 1 H, $J = 16.0$, H_a), 7.06 (d, 1 H, $J = 16.0$, H_b), 7.10 (d, 2 H, $J = 8.4$), 7.32 (t, 1 H, $J = 6.9$, H_pPh), 7.36 (t, 2 H, $J = 7.2$, H_mPh), 7.45 (d, 2 H, $J = 7.2$, H_oPh), 7.55 (d, 2 H, $J = 8.4$), 7.60 (d, 1 H, $J = 7.8$, H-3), 7.72 (d, 1 H, $J = 7.8$, H-4) | 14.21 (CH_3CH_2), 20.68 (CH_3Ar), 61.34 (CH_3CH), 116.89 (C-3), 119.12, 121.95 (C_a), 123.86 (C-5), 126.75 (C_o Ph), 128.52 (C_o Ph), 128.77 (C_m Ph), 129.30, 131.53 (q), 134.38 (C_{β}), 135.28 (C-4), 136.41 C_i Ph), 138.04 (q), 144.87 (C-2), 152.22 (C-6), 165.41 (C=O) | | 5e | 3324, 1750 | 1.35 (t, 3 H, $J = 7.1$, CH_3CH_2), 4.31 (q, 2 H, $J = 7.1$, CH_3CH_2), 7.13 (dd, 2 H, $J = 8.3$), 7.46 (m, 7 H), 7.74 (d, 2 H, $J = 7.2$, H_oPh), 7.93 (dd, 2 H, $J = 7.8$, 4.7), 8.10 (d, 1 H, $J = 7.4$, H-4) | 14.14 (CH_3CH_2), 60.85 (CH_3CH_2), 114.65 (d, ${}^2J_F = 21.7$), 116.35 (C-3), 121.50 (d, ${}^3J_F = 7.1$), 121.75 (C ₂), 123.10 (C-5), 127.24 (C _p Ph), 128.32 (C _p Ph), 128.68 (C _m Ph), 133.22 (C _p), 134.37 (C-4), 136.88 (q), 137.62 (C _i Ph), 143.68 (C-2), 151.93 (C-6), 157.20 (q, d, ${}^1J_F = 238.9$), 164.61 (C=O) | | 5f | 3447, 1718 | 1.41 (t, 3 H, $J = 7.1$, CH_3CH_2), 3.76 (s, 3 H, CH_3OAr), 4.38 (q, 2 H, $J = 7.1$, CH_3CH_2), 6.60 (s, 1 H, NH), 6.85 (d, 2 H, $J = 8.7$), 7.01 (d, 1 H, $J = 16.5$, H_a), 7.04 (d, 1 H, $J = 16.5$, H_a), 7.31 (t, 1 H, $J = 6.9$, H_pPh), 7.35 (t, 2 H, $J = 7.1$, H_mPh), 7.45 (d, 2 H, $J = 6.9$, H_oPh), 7.58 (m, 3 H), 7.70 (d, 1 H, $J = 7.8$, H-4) | 14.17 (CH_3 CH ₂), 55.43 (CH ₃ OAr), 61.28 (CH ₃ CH_2), 114.02. 116.62 (C-3), 120.89, 121.90 (C _a), 123.53 (C-5), 126.71 (C _o Ph), 128.45 (C _p Ph), 128.72 (C _m Ph), 133.91 (q), 134.23 (C _b), 135.15 (C-4), 136.39 (C _i Ph), 144.81 (C-2), 152.41 (C-6), 154.98 (q), 165.40 (C=O) | | 6a | 1740, 1589 | 1.38 (t, 3 H, $J = 7.1$, CH_3CH_2), 4.39 (q, 2 H, $J = 7.1$, CH_3CH_2), 6.75 (s, 1 H, H-3), 7.26 (m, 5 H), 7.33 (m, 5 H), 8.00 (d, 1 H, $J = 8.0$, H-5), 8.00 (d, 1 H, $J = 8.0$, H-4) | 14.17 (CH ₃ CH ₂), 61.20 (CH ₃ CH ₂), 101.64 (C-3), 118.60 (C-5), 123.55 (C-3a), 127.21, 128.02 (C _p Ph), 128.13 (C-4), 128.22 (C _p Ph), 128.22, 128.71, 128.91 (C _m Ph), 131.59 (C-2), 136.26 (q), 141.43 (C _i Ph), 144.44 (C-6), 149.11 (C-7a), 165.98 (C=O) | | 6b | 1734, 1595 | 1.27 (t, 3 H, J = 7.1, CH_3CH_2), 2.23 (s, 3 H, CH_3Ar), 4.28 (q, 2 H, J = 7.1, CH_3CH_2), 6.62 (s, 1 H, H-3), 7.10 (m, 9 H), 7.87 (d, 1 H, J = 7.9, H-5), 7.87 (d, 1 H, J = 7.9, H-4) | 14.18 (CH ₃ CH ₂), 21.00 (CH ₃ Ar), 61.14 (CH ₃ CH ₂), 101.38 (C-3), 118.47 (C-5), 123.49 (C-3a), 127.92, 127.92 (C _p Ph), 128.13 (C-4), 128.20 (C _p Ph), 128.89 (C _m Ph), 129.37, 131.69 (C-2) 133.67 (q), 136.96 (q), 141.39 (C _p Ph), 144.43 (C-6), 149.18 (C-7a), 165.70 (C=O) | | 6c | 1713, 1516 | 1.31 (t, 3 H, $J = 7.1$, CH_3CH_2), 4.31 (q, 2 H, $J = 7.1$, CH_3CH_2), 6.67 (s, 1 H, H-3), 6.99 (dd, 2 H, $J = 8.6$), 7.20 (m, 7 H), 7.92 (d, 1 H, $J = 7.9$, H-5), 7.92 (d, 1 H, $J = 7.9$, H-4) | 14.22 (CH_3CH_2), 61.31 (CH_3CH_2), 101.74 (C -3), 115.74 (d , ${}^1J_F = 22.8$), 118.75 (C -5), 123.53 (C -3a), 128.22 (C -4), 128.46 (C_pPh), 128.46 (C_pPh), 129.04 (C_mPh), 129.85 (d , ${}^3J_F = 8.5$), 131.41 (C -2), 132.29 (d , d , d , d , d , d , 131.41 (d , 143.41 (d , 144.34 (d , 157.41 1 | | 6d | 1713, 1518 | 1.29 (t, 3 H, $J = 7.1$, CH_3CH_2), 3.70 (s, 3 H, CH_3OAr), 4.29 (q, 2 H, $J = 7.1$, CH_3CH_2), 6.64 (s, 1 H, H-3), 6.80 (d, 2 H, $J = 8.8$), 7.18 (m, 7 H), 7.89 (d, 1 H, $J = 7.8$, H-5), 7.89 (d, 1 H, $J = 7.8$, H-4) | 14.20 (CH ₃ CH ₂), 55.31 (CH ₃ OAr), 61.16 (CH ₃ CH ₂)
101.15 (C-3), 114.06, 118.44 (C-5), 123.41 (C-3a) 127.90
(C _p Ph), 128.15 (C-4), 128.24 (C _o Ph), 128.93 (C _m Ph),
129.17 (q), 129.24, 131.67 (C-2), 141.40 (C _i Ph), 144.49
(C-6), 149.26 (C-7a), 158.53 (q) 166.01 (C=O) | ^a Solvent: CDCl₃ for 5a-d, 5f, 6a-d; DMSO- d_6 for 5e. The authors are indebted to the Dirección General de Investigación Científica y Técnica for financial support, Project Number PB89-0436. One of us (E. A.) also thanks the Ministerio de Educación Ciencia for a fellowship. - (1) Syscheva, T.V.; Ershov, L.V.; Azimov, V.A.; Yuzkakov, S.D.; Yakhontov, L.N. Farm. Zh., 1986, 20, 281, and references cited therein - (2) Robinson, M. M.; Robinson, B. L. J. Am. Chem. Soc. 1955, 77, 1242 Papers SYNTHESIS (3) Lorenz, R. R.; Tullar, B. R.; Koelsch, C. F.; Archer, S. J. Org. Chem. 1965, 30, 2531. - (4) Frydmann, B.; Despuy, M. E.; Rapoport, H. E. J. Am. Chem. Soc. 1965, 87, 3530. - (5) Herbert, R.; Wibberley, D.G. J. Chem. Soc. (C) 1969, 1505. - (6) Estel, L.; Marsais, F.; Quéguiner, G. J. Org. Chem. 1988, 53, 2740. - (7) Davis, M. L.; Wakefield, B. J.; Wardell, J. A. Tetrahedron 1992, 48, 939. - (8) Taylor, E.C.; Macor, J.E.; Pont, J.L. Tetrahedron 1987, 43, 5145, and references cited therein. - (9) Frissen, A. E.; Marcelis, A. T. M.; van der Plas, M. C. Tetrahedron 1989, 45, 812. - (10) Molina, P.; Alajarín, M.; Vidal, A. J. Chem. Soc. Chem. Commun. 1990, 7. - (11) Molina, P.; Alajarín, M.; Vidal, A. J. Org. Chem. 1990, 55, 6140. - (12) Akiyama, S.; Akatsuyi, S.; Hamamura, T. Tetrahedron Lett. 1979. 2809. - (13) Aun, C.E.; Clarkson, T.J.; Happer, D.A.R. J. Chem. Soc., Perkin Trans 2 1990, 635. - (14) Xu, W.; Jeon, Y.T.; Hasegawa, E.; Yoon, V.C.; Mariano, P.S. J. Am. Chem. Soc. 1989, 111, 406. - (15) Lewis, F.D.; Reddy, G.D. Tetrahedron Lett. 1990, 5293. - (16) Wilson, S.R.; Sawicki, R.A. J. Org. Chem. 1979, 44, 330. - (17) Gase, M.B.; Lattes, A.; Perie, J.L. Tetrahedron 1983, 39, 703. - (18) Tokuda, M.; Yamada, Y.; Takagi, T.; Suginome, H. Tetrahedron 1987, 43, 281. - (19) Hegedus, L. S.; Allen, G. F.; Waterman, E. L. J. Am. Chem. Soc. 1976, 98, 2674. - (20) Hegedus, L.S.; Allen, G.F.; Borell, J.J.; Waterman, E.L. J. Am. Chem. Soc. 1978, 100, 5800. - (21) Fujita, H.; Tokuda, M.; Nitta, M.; Suginome, H. Tetrahedron Lett. 1992, 6359. - (22) Semmelhack, M. Comprehensive Organic Synthesis; Trost, B. H.; Fleming, I., Eds.; Pergamon: Oxford 1991, Vol 4.