BISABOLENE DERIVATIVES AND ACETYLENIC COMPOUNDS FROM PERUVIAN COREOPSIS SPECIES

FERDINAND BOHLMANN, SHANTA BANERJEE, JASMIN JAKUPOVIC, ROBERT M. KING* and HAROLD ROBINSON*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany; *Smithsonian Institution, Department of Botany, Washington, DC 20560, U.S.A.

(Received 21 June 1984)

Key Word Index—Coreopsis microlepis; C. woytkowskii; C. senaria; Compositae; sesquiterpenes; perezone derivatives; pipitzol-like compound; acetylenes.

Abstract—The investigation of three Peruvian Coreopsis species afforded, in addition to compounds isolated previously from this genus, two new tetraynenes and five sesquiterpenes all related to perezone, including a tricyclic ketone with a cedrane skeleton closely related to pipitzol. The structure were elucidated by spectroscopic methods.

INTRODUCTION

In continuation of our chemical investigations of the genus *Coreopsis* (Compositae, tribe Heliantheae, subtribe Coreopsidinae) [1] we have now studied three Peruvian species. Again acetylenic compounds and bisabolene derivatives were isolated. The results are discussed in this paper.

RESULTS AND DISCUSSION

The aerial parts of Coreopsis microlepis Blake et Sherff. afforded the tetraynene derivatives 1 and 2. The UV spectrum of 1 was chracteristic of a tetraynene [2] and the ¹H NMR spectral data (Table 1) clearly showed that one side of the chromophore was substituted by a methyl, while the other side was flanked by CH(OH)CH₂OCOCHMe₂. The coupling of H-4 indicated an *E*-configuration for the double bond. Accordingly, the structure of 1 was settled. The ¹H NMR spectrum of 2 (Table 1), as well as the mass spectrum, showed that the compounds differed only in the nature of the ester group. Therefore in the ¹H NMR spectrum only the isobutyrate signals were replaced by those of an isovalerate.

The aerial parts of *Coreopsis woytkowskii* Sherff. gave 11*E*- and 11*Z*-trideca-1,11-dien-3,5,7,9-tetrayne and phenylhepta-1,3-diyn-5-ene present in many *Coreopsis* species [2], while the roots afforded the phenylpropane derivatives 3 [3], 4 [3], cinnamyl alcohol and its acetate as well as sesquiphellandrene.

The aerial parts of *Coreopsis senaria* Blake et Sherff. gave caryophyllene, the cinnamate 5 [4], nerolidol, the isomeric perezone derivatives 8[1] and 9, 10 and perezone (11) [5], as well as perezone methyl ether [6] and the quinols 6 and 7.

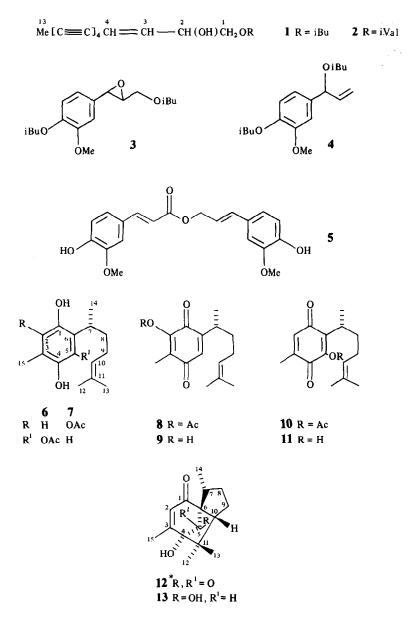

The structures of the latter two could be deduced from the ¹H NMR spectra and those of the oxidation products 8 and 10 (Table 2). The relative position of the acetoxyl group in the quinones clearly followed from the splitting of the H-2 or H-5 signal. 9 differs from perezone only in the position of the hydroxyl group. Again the position

Table 1. ¹ H NMR spectral data of
1 and 2 (400 MHz, CDCl ₃ , TMS as
internal standard)

	1	2
H-1	4.19 dd	4.20 dd
H- 1′	4.04 dd	4.03 dd
Н-2	4.48 br t	4.48 br t
H-3	6.37 dd	6.37 dd
H-4	5.91 dd	5.92 dd
H-13	1.99 s	2.00 s
OCOR	2.57 qq	2.23 d
	1.16 <i>d</i>	2.10 <i>m</i>
		0.94 <i>d</i>

followed from the changed splitting of the corresponding olefinic proton.

In addition to these compounds, a further compound was isolated, which turned out to be the pipitzol-like ketone 13. The mass spectrum of compound 13 led to the molecular formula $C_{15}H_{22}O_3$ and the IR spectrum showed the presence of an α,β -unsaturated carbonyl function. The ¹H NMR spectrum (see Experimental) showed a signal of an olefinic proton, similar to that of perezone. There were two OH signals (exchangeable with D_2O), one of which was a singlet and the other a doublet. Two double-bond methyl signals of perezone were replaced by two sharp singlets at $\delta 0.94$ and 1.15. The C-7 methyl doublet now appeared at lower field and the signal of the olefinic C-10 proton of perezone was absent. These facts suggested that we were dealing with a cyclized product of perezone involving C-6, C-10, C-11 and either C-4 or C-5, forming a tricyclic ketone. The participation of C-5 in ring formation could be excluded by NOE

* Numbering as in 6 - 11

Table 2. ¹H NMR spectral data of 6, 7, 9 and 10 (400 MHz, CDCl₃, TMS as internal standard)

	6	7	9	10
H-2	6.16 s			6.55 q
H-5		6.28 s	6.43 d	
H-7	3.19 m	3.18 m	2.89 m	2.97 m
H-10	5.10 br t	5.05 br t	5.03 br t	5.03 br t
H-12	1.51 br s	1.52 br s	1.53 br s	1.52 br s
H-13	1.65 br s	1.66 br s	1.64 br s	1.64 br s
H-14	1.30 d	1.12 <i>d</i>	1.12 d	1.17 d
H-15	2.03 s	2.11 s	1. 94 s	2.05 s
OAc	2.31 s	2.34 s		2.34 s

J (Hz): 7,14 = 9,10 = 7.

difference spectroscopy, which together with spin decoupling led to the structure 13. The proposed configuration at C-5 was also very likely, if the biogenesis was considered. Perhaps perezone could react as a 1,3-dipole (formed by intramolecular H-shift followed by electron pair shifts). Thus the formation of 13 could be explained as an intramolecular 1,3-dipolar addition giving 12. Inspection of a model shows that the formation of 13 would be favoured in the reduction of the C-5 carbonyl group. Thus the formation of 13 is an additional pathway from perezone to tricyclic compounds like the pipitzols [7]. We have named this cedrane derivative coreosenarione.

EXPERIMENTAL

The air-dried plant material (collected in January 1983 in Peru)

was extracted with Et₂O-petrol-MeOH (1:1:1) and worked up in the usual fashion [8]. The CC fraction (Et₂O-petrol, 1:1) obtained from the extract of 210 g of aerial parts from Coreopsis microlepis (voucher RMK 9141) was separated by TLC (Et₂O-petrol, 1:1), affording 15 mg 1 (R_f 0.55) and 8 mg 2 $(R_{f} 0.50)$. The combined CC fractions (Et₂O-petrol, 1:10 and 1:1) obtained from the extract of 50 g roots of C. woytkowskii (voucher RMK 9242) were separated by TLC (Et₂O-petrol, 1:1) to give 10 mg sesquiphellandrene (R_f 0.9), 12 mg 4 (R_f 0.8), a mixture (III, $R_f 0.7$), 10 mg 3 ($R_f 0.6$) and 5 mg cinnamyl alcohol. Repeated TLC of III (Et₂O-petrol, 3:7) gave 5 mg cinnamyl acetate. The extract of the aerial parts gave a CC fraction with petrol, which by TLC (Et₂O-petrol, 1:9) afforded 18 mg 11Eand 11Z-trideca-1,11-dien-3,5,7,9-tetrayne (R , 0.75) and 20 mg 1phenylhept-5*E*-en-1,3-diyne (R_f 0.65). The extract of aerial parts of C. senaria (voucher RMK 9121) gave CC fractions as follows: 1 (petrol), 2 (Et₂O-petrol, 1:4), 3 (Et₂O-petrol, 1:1) and 4 (Et₂O). TLC (petrol) of fraction 1 gave 15 mg caryophyllene; TLC (Et₂O-petrol, 1:10) of fraction 2 afforded 42 mg 11 (R_f 0.5), 15 mg perezone methyl ether $(R_f 0.4)$, 7 mg nerolidol $(R_f 0.3)$ and 18 mg 9 (R₁ 0.25). TLC (Et₂O-petrol, 3:7) of fraction 3 gave 10 mg 10 (R_f 0.7), 28 mg 6 (R_f 0.55), 5 mg 7 (R_f 0.4), 15 mg 11 and 9 mg 13 (R_f 0.2). TLC of fraction 4 (Et₂O-petrol, 1:1) gave 40 mg 5 (R_f 0.6). Known compounds were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material and by co-TLC. The new compounds showed no impurities in the ¹H NMR spectra or by TLC in different solvent mixtures.

1-Isobutyryloxy-tridec-3E-en-5,7,9,11-tetrayn-2-ol (1). Yellow, unstable oil; UV $\lambda \frac{E_{1},0}{max}$ nm: 376, 345, 324, 306; MS m/z (rel. int.): 180.057 [M - RCO₂H]⁺ (100) (calc. for C₁₃H₈O: 180.057), 167 [M - CH₂OCOR]⁺ (18), 139 [167 - CO]⁺ (27), 71 [C₃H₇CO]⁺ (62).

1-Isovaleryloxy-tridec-3E-en-5,7,9,11-tetrayn-2-ol (2). Yellow, unstable oil; UV $\lambda \frac{E_{10}}{max}$ o mn: 376, 345, 324, 306; MS m/z (rel. int.): 180.057 [M - RCO₂H]⁺ (100) (calc. for C₁₃H₈O: 180.057), 167 [M - CH₂OCOR]⁺ (20), 139 [167 - CO]⁺ (29), 85 [C₄H₉CO]⁺ (45).

5-Acetoxycurcuquinol (6). Colourless oil; IR $v_{max}^{CL_{4}}$ cm⁻¹: 3500 (OH), 1770 (PhOAc); MS m/z (rel. int.): 292.167 [M]⁺ (20) (calc. for C₁₇H₂₄O₄: 292.167), 250 [M-ketene]⁺ (60), 167 [250 $-C_{6}H_{11}$]⁺ (100), 166 [250 $-C_{6}H_{12}$]⁺ (54).

2-Acetoxycurcuquinol (7). Colourless oil; IR $v_{\text{max}}^{\text{CL}_{4}}$ cm⁻¹: 3500 (OH), 1770 (PhOAc); MS m/z (rel. int.): 292.167 [M]⁺ (24) (calc. for C₁₇H₂₄O₄: 292.167), 250 [M - ketene]⁺ (65), 167 [250 - C₆H₁₁]⁺ (100), 166 [250 - C₆H₁₂]⁺ (50). Both 6 and 7 on standing in soln in the presence of air gave 8 and 10, respectively, after purification by TLC.

 $\begin{array}{l} 1-Hydroxycurcuquinone (9). \end{tabular} Yellow needles (Et_2O-petrol), mp \\ 106^\circ; \end{tabular} IR v_{max}^{CHCJ_3} \mbox{ cm}^{-1}: 3400 \mbox{ (OH)}, 1665, 1655, 1640 \mbox{ (quinone)}; \\ MS m/z \mbox{ (rel. int.): } 248.141 \mbox{ [M]}^+ \mbox{ (23) (calc. for $C_{15}H_{20}O_3$: 248.141), $167 \mbox{ [M}-C_6H_9]^+ \mbox{ (100)}, $166 \mbox{ [M}-C_6H_{10}$, \\ McLafferty]^+ \mbox{ (62), } 138 \mbox{ [166}-CO]^+ \mbox{ (40)}. \end{array}$

Perezone acetate (10). Yellow oii; $[\mathbb{R} \nu_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}: 1785 \text{ (OAc)}, 1670, 1655, 1610 (quinone); MS m/z (rel. int): 290.152 [M]⁺ (10) (calc. for C₁₇H₂₂O₄: 290.152), 248 [M - ketene]⁺ (40), 166 [248 - C₆H₁₀]⁺ (100).$

Coreosenarione (15). Colourless crystals, mp 179° (Et₂O-petrol); IR v_{max}^{CHC1}, cm⁻¹: 3400 (OH), 1675 (C=CC=O); MS m/z (rel. int.): 250.157 [M]⁺ (42) (calc. for C₁₅H₂₂O₃: 250.157), 232 [M - H₂O]⁺ (70), 217 [232 - Me]⁺ (22), 192 (44), 167 (32), 151 (100), 137 (38); ¹³C NMR (CDCl₃, 67.9 MHz) (C-1-C-15); 201.9 s, 125.8 d, 165.6 s, 88.8 s, 80.5 d, 66.3 s, 33.8 d, 37.3 t, 28.0 t, 59.2 d, 44.0 s, 28.0 q, 19.4 q, 14.4 q, 20.4 q; ¹H NMR (CDCl₃, 400 MHz): $\delta 5.71 q$ (H-2, J = 1.5 Hz), 3.38 ddq (H-7, J = 7, 7, 7 Hz), 1.93 m (H-8), 1.56 m (H-8'), 1.96 m (H-9), 1.50 m (H-9'), 1.95 dd (H-10, J = 11, 6 Hz), 0.94 s (H-12), 1.15 s (H-13), 1.31 d (H-14, J = 7 Hz), 2.03 d (H-15, J = 1.5 Hz), 2.71 s (C-4, OH), 2.33 br d (C-5, OH, J = 7 Hz).

Acknowledgements—We thank Dr. L. E. Bishop, Seattle, Washington, for his help during plant collection and the Fonds der Chemie and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Bohlmann, F., Ahmed, M., Grenz, M., King, R. M. and Robinson, H. (1983) Phytochemistry 22, 2858.
- Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.
- 3. Bohlmann, F. and Zdero, C. (1968) Chem. Ber. 101, 3242.
- 4. Bohlmann, F. and Zdero, C. (1977) Chem. Ber. 110, 468.
- 5. Archer, D. A. and Thompson, R. H. (1965) Chem. Commun. 354.
- Anderson, L. A. P., de Kock, W. T., Pachler, K. G. R. and Brink, C. V. d. M. (1967) *Tetrahedron* 23, 4153.
- Walls, F., Padilla, J., Joseph-Nathan, P., Giral, F. and Romo, J. (1965) Tetrahedron Letters 1577.
- Bohlmann, E., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.