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ABSTRACT: Chiral dialkyl carbinamines are important in fields
such as organic chemistry, pharmaceutical chemistry, and bio-
chemistry, serving for example as bioactive molecules, chiral ligands,
and chiral catalysts. Unfortunately, most catalytic asymmetric
methods for synthesizing dialkyl carbinamines do not provide
general access to amines wherein the two alkyl groups are of similar
size (e.g., CH2R versus CH2R

1). Herein, we report two mild methods
for the catalytic enantioconvergent synthesis of protected dialkyl
carbinamines, both of which use a chiral nickel catalyst to couple an
alkylzinc reagent (1.1−1.2 equiv) with a racemic partner, specifically,
an α-phthalimido alkyl chloride or an N-hydroxyphthalimide (NHP)
ester of a protected α-amino acid. The methods are versatile,
providing dialkyl carbinamine derivatives that bear an array of
functional groups. For couplings of NHP esters, we further describe a one-pot variant wherein the NHP ester is generated in situ,
allowing the generation of enantioenriched protected dialkyl carbinamines in one step from commercially available amino acid
derivatives; we demonstrate the utility of this method by applying it to the efficient catalytic enantioselective synthesis of a range of
interesting target molecules.

■ INTRODUCTION
Because a chiral dialkyl carbinamine subunit is found in a wide
array of bioactive molecules (e.g., Figure 1A), the development
of efficient methods for its synthesis, particularly catalytic and
enantioselective processes, is an important objective in synthetic
organic chemistry.1 A variety of approaches have been described
to date, each of which has limitations,2 including the addition of
alkyl nucleophiles to imines of aliphatic aldehydes (limited
scope with respect to the nucleophile),3 the reduction/
hydrogenation of imines of unsymmetrical dialkylketones
(modest enantioselectivity when the alkyl groups are similar)
and enamines,4−6 and the hydroamination of olefins (modest
regioselectivity for many internal olefins).7−9 After our study
was completed, several groups independently demonstrated that
nickel-catalyzed asymmetric reductive couplings of olefins and
alkyl halides10 can provide access to protected dialkyl carbin-
amines.11−14

With regard to retrosynthetic analysis, the nucleophilic
substitution of an alkyl electrophile represents a straightforward
approach to the synthesis of dialkyl carbinamines (top of Figure
1B). Although substitution by a nitrogen or by a carbon
nucleophile could in principle afford the target molecules, in
order to achieve high enantioselectivity, the use of a nitrogen
nucleophile would require the effective differentiation between
two alkyl groups, whereas the use of a carbon nucleophile would
require the effective differentiation between an alkyl group and a
nitrogen substituent. We viewed the latter approach to be more

likely to provide a general solution to the asymmetric synthesis
of dialkyl carbinamines, e.g., for those bearing similar alkyl
groups (e.g., CH2R versus CH2R

1).
Recently, transition metals have been shown to catalyze an

array of enantioconvergent couplings of racemic alkyl electro-
philes with alkyl nucleophiles.15−18 However, there have been
no reports of such metal-catalyzed substitution reactions in the
case of electrophiles that bear a nitrogen substituent geminal to
the leaving group, as required for the strategy for the asymmetric
synthesis of dialkyl carbinamines illustrated at the top of Figure
1B. Herein, we describe two complementary approaches to such
enantioconvergent substitutions, specifically, nickel-catalyzed
couplings of alkylzinc reagents with α-phthalimido alkyl
chlorides (Method 1) and with N-hydroxyphthalimide (NHP)
esters of α-amino acids (Method 2).

■ RESULTS AND DISCUSSION

Couplings of α-Phthalimido Alkyl Chlorides: Scope.
The phthalimide functional group is a well-established protected
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form of a primary amine.19 We have determined that a chiral
nickel/pybox catalyst can achieve the coupling of an alkylzinc
reagent (1.1 equiv) with a racemic α-phthalimido alkyl chloride
to afford a protected dialkyl carbinamine in good yield and
enantioselectivity (Figure 2A, entry 1: 90% yield, 92% ee).
Essentially no alkyl−alkyl bond formation is observed in the
absence of NiBr2·glyme or of the pybox ligand (entries 2 and 3),
whereas a slightly diminished yield (but good ee) is obtained
when half of the standard catalyst loading is used (entry 4). The
presence of water or of air impedes carbon−carbon bond
formation, while the enantioselectivity is not affected (entries 5
and 620) (for the impact of other reaction parameters, see
Section VI of the Supporting Information).
As illustrated in Figure 2B.1, the scope of this method for the

catalytic enantioconvergent synthesis of protected dialkyl
carbinamines is fairly broad with respect to the electrophile.
For example, good yields and ee’s are observed when alkyl
substituent R (red) varies in size from methyl to isobutyl
(products 1−4), although a poor yield is observed if it is a bulky
isopropyl group. A variety of functional groups are compatible
with the method, including an aryl iodide, ester, carbonate,

unactivated primary alkyl halide (fluoride, chloride, and
bromide), indazole, and activated heteroaryl chloride (products
5−14). In the case of an electrophile that bears a remote
stereocenter, the stereochemistry of the catalyst, rather than that
of the substrate, controls the stereochemistry of the product
(products 15 and 16). On a gram scale (1.40 g of product), the
coupling to generate product 2 proceeds in similar yield and ee
(93% yield, 92% ee) as for a reaction conducted on a 0.6 mmol
scale (94% yield, 92% ee).
The scope of this enantioconvergent alkyl−alkyl coupling is

also broad with respect to the nucleophile, leading to an array of
protected dialkyl carbinamines with good yield and ee. For
example, the R (blue) substituent can range in size from n-hexyl
to isobutyl (Figure 2B.2, products 17−19; however, the use of a
secondary alkylzinc reagent results in a low yield of the coupling
product), and a variety of functional groups can be present
(entries 20−35; for additional studies of the functional-group
compatibility of the method, see the Supporting Information).

Couplings of α-Phthalimido Alkyl Chlorides: Mecha-
nistic Observations. We have previously reported that two
distinct nickel-catalyzed enantioconvergent couplings (Negishi
reactions of propargylic halides and Kumada reactions of α-
haloketones) appear to proceed through a common pathway
(Figure 3A), wherein the predominant resting state of the
catalyst is an organonickel(II) complex (A).21,22 For the
couplings of α-phthalimido alkyl chlorides with alkylzinc
reagents described herein, our mechanistic observations are
again consistent with this pathway.
For example, quantitative EPR analysis indicates that odd-

electron nickel intermediates (e.g., NiI or NiIII) do not
accumulate to a significant extent during the reaction (<2% of
the total nickel present). Furthermore, ESI−MS analysis of a
coupling (Figure 2A) at partial conversion reveals masses
consistent with A1 and A2 (Figure 3B). Finally, when the same
coupling is conducted in the presence of TEMPO, a TEMPO
adduct of the electrophile can be isolated (Figure 3C),
consistent with the generation of an organic radical from the
alkyl chloride.

Couplings of NHP Esters of α-Amino Acids: Scope.
Redox-active esters (e.g., NHP esters) serve as useful partners in
a variety of metal-catalyzed carbon−carbon bond-forming
reactions.23−27 The use of NHP esters derived from readily
available α-amino acids28−32 could provide a complementary
strategy to the use of α-amino halides, many of which are
relatively unstable, to generate an organic radical (Figure 3A) en
route to enantioenriched dialkyl carbinamines.
After an extensive survey of reaction parameters, we

determined that the desired decarboxylative coupling of a
racemic NHP ester with an alkylzinc reagent can be achieved in
the presence of a chiral nickel/diamine catalyst, providing theN-
protected dialkyl carbinamine in good yield and ee (Figure 4A,
entry 1; 79% yield, 91% ee). It is worth noting that only 1.2 equiv
of the nucleophile is used, despite the presence of a potentially
labile N−H proton; in contrast, most previous metal-catalyzed
couplings of NHP esters have employed at least 2 equiv of the
organometallic nucleophile, even in the absence of an acidic
proton.23,24

Essentially no carbon−carbon bond formation is observed in
the absence of NiBr2·glyme (Figure 4A, entry 2), and the
coupling proceeds in significantly lower yield and/or ee when
chiral diamine L2, LiCl,33,34 TMSCl,35,36 or DMAP37 is omitted
(entries 3−6). The use of half of the standard catalyst loading
results in a small loss in efficiency (entry 7; 65% yield, 88% ee).

Figure 1. Dialkyl carbinamines. (A) Examples of compounds that
include a chiral dialkyl carbinamine subunit. (B) This study: Nickel-
catalyzed enantioconvergent substitution reactions of alkyl electro-
philes to generate protected dialkyl carbinamines.
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Figure 2. Enantioconvergent substitution reactions of alkyl chlorides to generate phthalimide-protected dialkyl carbinamines. (A) Effect of reaction
parameters. (B) Scope. All data are the average of two experiments run on a 0.6 mmol scale (unless otherwise noted), and all yields are of purified
products. aThe reaction was conducted at r.t.
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From a practical point of view, it is noteworthy that this
enantioconvergent coupling is not highly water- or air-sensitive:
the addition of 0.05 equiv of water or of 1 mL of air to the
reaction vessel has only a minor deleterious effect (entries 8 and
9) (for the impact of other reaction parameters, see Section VI of
the Supporting Information).
A variety of NHP esters serve as suitable coupling partners in

these nickel-catalyzed enantioconvergent couplings to generate
protected dialkyl carbinamines (Figure 4B.1 and B.2). The alkyl
group R (red) can vary in steric demand from Me to i-Pr
(products 36−40), and it can bear a range of functional groups,
including a thioether, an indole, and a thiophene (products 41−
48). The method can be applied to glutamic acid and proline
derivatives, thereby affording enantioenriched protected γ-
amino acids38,39 and 2-alkylpyrrolidines40,41 in good ee from
readily available starting materials (products 47 and 48). Not
only Boc-protected, but also Fmoc- and Cbz-protected, amines
are useful reaction partners (products 49 and 50). The coupling
products are generally crystalline, allowing ready enhancement
of stereochemical purity (e.g., products 51 and 69).
The scope of this method is also broad with respect to the

nucleophile (Figure 4B.3). Unbranched and branched primary
(but not secondary) alkylzinc reagents serve as suitable
nucleophiles (products 51−54), as do a variety of functionalized
alkylzincs (products 55−72;42 see the Supporting Information
for additional functional-group compatibility studies).
This approach to the catalytic asymmetric synthesis of

protected dialkyl carbinamines can be achieved in a one-pot

process without isolation of the NHP ester,43 thereby providing
the desired products in one step from commercially available
protected α-amino acids (Figure 5A). The yields for the one-pot
procedure are similar to or modestly lower than those for the
corresponding couplings of purified NHP esters, and the
enantioselectivities are essentially identical. The success of this
process is a testament to the robustness of the method:
impurities and side products from the DIC coupling, including
N,N′-diisopropylurea, neither poison the catalyst nor consume
the alkylzinc reagent via protonation, enabling the reaction to
proceed with only 1.2 equiv of the nucleophile.44

Couplings of NHP Esters of α-Amino Acids: Applica-
tions. We have applied our catalytic asymmetric synthesis of
protected dialkyl carbinamines to a variety of target molecules,
starting from commercially available α-amino acid derivatives
(Figure 5B). For example, urea 74, an analogue of an inhibitor of
protein kinases 1 and 2,45 can be synthesized in two steps and
40% overall yield from N-Boc-alanine, via a one-pot coupling,
followed by conversion of the carbamate to the urea.
Furthermore, Fmoc-protected aminoalcohol 75, an intermedi-
ate in the synthesis of a constrained peptidomimetic (prior
route: eight steps),46 can be produced in two steps from N-
Fmoc-phenylalanine using our method; although the nickel-
catalyzed coupling itself proceeds with moderate enantioselec-
tivity (81% ee), Fmoc-protected aminoalcohol 75 can readily be
recrystallized to >99% ee. Pyrrolidine 76, which has previously
been generated in four steps from N-Cbz-proline en route to a
hydrazone-based chiral auxiliary,47 can be synthesized in one pot
and 72% yield from N-Boc-proline via our approach. Finally,
pyrrolidine 78, which has been employed as an intermediate in a
study of serotonin inhibitors, can be formed in 50% overall yield
in three, rather than eight, steps, via a nickel-catalyzed
coupling.48

Couplings of NHP Esters of α-Amino Acids: Mecha-
nistic Observations. Our working hypothesis is that these
nickel-catalyzed enantioconvergent couplings of NHP esters
may be following a pathway analogous to that outlined in Figure
3A for couplings of alkyl halides, wherein the same radical R·
may be generated by the decarboxylative reduction of the NHP
ester by LXNiI.23,49 As in the case of couplings of α-phthalimido
alkyl chlorides (see above), the EPR spectrum of the nickel-
catalyzed reaction of the NHP ester illustrated in Figure 4A
indicates that odd-electron nickel intermediates do not
accumulate to a significant extent during the coupling (<2% of
the total nickel present). Furthermore, C−C bond formation is
inhibited by the presence of TEMPO.50

We have examined whether the chiral nickel catalyst achieves
any kinetic resolution in the enantioconvergent coupling of a
racemic NHP ester. Although this issue has been explored in the
case of alkyl halides,51,52 we are not aware of corresponding
investigations in the case of NHP esters. When the coupling of a
racemic NHP ester is stopped at partial conversion, the
unreacted NHP ester is still racemic (<1% ee; Figure 5C,
experiment 1). Taken together with our observation that the
enantioenriched NHP ester does not racemize under the
reaction conditions (experiment 2), these data indicate that the
chiral nickel catalyst is reacting at essentially identical rates with
each enantiomer of the NHP ester (no kinetic resolution).

■ CONCLUSIONS
We have developed two versatile methods for the catalytic
asymmetric synthesis of dialkyl carbinamines, an important
family of molecules in chemistry and biology, through the use of

Figure 3. Nickel-catalyzed enantioconvergent substitution reactions:
Mechanism. (A) Outline of a possible pathway. (B) ESI−MS data for
the coupling illustrated in Figure 2A. (C) TEMPO adduct of the
electrophile (Figure 2A). X = halide (an inner- or an outer-sphere
ligand).
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chiral catalysts based on nickel, an earth-abundant metal. With
an alkylzinc reagent (1.1−1.2 equiv) as the nucleophile,

enantioconvergent couplings can be achieved under mild
conditions with either an α-phthalimido alkyl chloride or an

Figure 4. Enantioconvergent synthesis of protected dialkyl carbinamines from racemic NHP esters. (A) Effect of reaction parameters. (B) Scope. All
data are the average of two experiments run on a 0.6 mmol scale, and all yields are of purified products. a10 mol % NiBr2·glyme, 12 mol % L2, and 5.0
equiv of LiCl were used (no DMAP or TMSCl). bThe product was recrystallized to >99% ee or >99.5:0.5 d.r.
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NHP ester of a protected α-amino acid; both methods display a
broad scope and good functional-group tolerance. The NHP
esters can be generated in situ from commercially available α-

amino acid derivatives and coupled directly, resulting in a
straightforward one-pot catalytic enantioselective synthesis of a
variety of interesting target molecules.

Figure 5. Asymmetric synthesis of protected dialkyl carbinamines via substitution reactions of NHP esters. (A) One-pot procedure. The values in
parentheses are the data for the corresponding couplings of purified NHP esters (see Figure 4B). (B) Applications. (C) Study of kinetic resolution.
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