ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Communication

Palladium-catalyzed Suzuki cross-coupling of N'-tosyl arylhydrazines†

Jin-Biao Liu,^a Hui Yan,^a Hui-Xuan Chen,^a Yu Luo,^a Jiang Weng,^a and Gui Lu*^{a,b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

⁵ The first palladium-catalyzed Suzuki cross-coupling of *N*²tosyl arylhydrazines with various organoboron reagents has been developed for the preparation of biaryl compounds in high yields. *N*²-tosyl arylhydrazine as a readily available and stable electrophile also demonstrated its generality in a ¹⁰ number of coupling reactions.

The transition-metal-catalyzed cross-coupling reactions are among the most powerful methods for the formation of carboncarbon and carbon-heteroatom bonds.¹ Although aryl halides and triflates are the most commonly employed electrophilic partners, ¹⁵ broadening the scope of electrophiles would be significant to practitioners of chemical synthesis. Carbon-nitrogen compounds may be another candidate of electrophilic components, for example, aryl diazonium salt,² aryltrimethylammonium salt³ and aryltriazene⁴ have been utilized in some cross-coupling reactions.

- ²⁰ However, aryl diazonium salts are often dangerously explosive and prone to decomposition upon storage. The use of highly corrosive $BF_3 \cdot OEt_2^4$ or some strong protic acids⁵ to activate aryltriazenes and the unavailability of aryltrimethylammonium salts have also respectively restrict their general uses.
- ²⁵ The recent development of metal-catalyzed cross-coupling reaction using tosylhydrazone as coupling partner has attracted renewed interest in this reagent (Scheme **1a**).⁶ Moreover, Barluenga *et al.* reported a new C–C bond-forming reaction between tosylhydrazones and boronic acids via a metal-free
- ³⁰ reductive coupling procedure (Scheme **1b**).⁷ However, the commonly used tosylhydrazones made this methodology only suitable for the synthesis of polysubstituted olefins and diarylalkanes. Inspired by these pioneering work, we speculated that N^2 -tosyl arylhydrazine (another safe and effective source of
- ³⁵ active diazo compounds), which can be easily prepared from arylhydrazine and TsCl under mild condition,⁸ might also be utilized as proper electrophile in cross-coupling reactions to form aryl-aryl bonds. Herein, we reported the first Suzuki reaction of *N*'-tosyl arylhydrazines with various organoboron reagents
 ⁴⁰ (Scheme **1c**). This new methodology may be used as a
- complement for the classical Suzuki cross-coupling reaction. At first, N²-tosyl arylhydrazine **1a** and 4-methoxyphenyl

boronic acid **2a** were chosen as substrates for the model reaction. Various conditions were screened and the results were summarized in Table 1. When $Pd(OAc)_2$ was used as the palladium source and K_2CO_3 as the base, we were pleased to find that the reaction proceeded smoothly to offer the desired product

Scheme 1 a) Palladium-catalyzed cross-coupling of tosylhydrazones with ⁵⁰ arylboronic acids; b) Metal-free reductive coupling of tosylhydrazones with arylboronic acids; c) Pd-catalyzed cross-coupling of N-tosyl arylhydrazines with organoboron reagents discussed in this work. Ts = tosyl.

3a in 56% yield in DMSO at room temperature (Table 1, entry 1). Encouraged by this result, more Pd-catalysts and bases were examined. However, none of them was more efficient than the combination of $Pd(OAc)_2/K_2CO_3$ for this reaction (entries 2-9). Moreover, we observed a significant solvent effect in this process (entries 9-15). Although DMSO and MeOH showed comparable results, we adopted MeOH as the optimal solvent for its ⁶⁰ simplification on the separation of the product. Higher temperature was advantageous for this reaction, and the coupling product **3a** could be obtained in 83% yield in 60 °C (entry 16 versus 12). The amount of Pd-catalyst can even be decreased to 2 mol% without compromising the yield (entry 18 versus 16). ⁶⁵ Palladium catalyst is necessary for the cross-coupling and no

product was observed in the absence of any Pd-catalyst (entry 19). Then the scope of the Pd-catalyzed Suzuki cross-coupling of *N*'-tosyl arylhydrazines with aryl boronic acids was investigated (Table 2). 4-Methoxyphenylboronic acid **2a** can react with 70 various *N*'-tosyl arylhydrazines to afford the corresponding products in good to excellent yields (Table 2, entries 1-8). *N*'-Tosyl arylhydrazines with both electron-donating and electron-withdrawing groups attached to the aromatic ring were all good partners in this transformation. For example, *N*'-tosyl *p*-

- ⁷⁵ tolylhydrazine 1b reacted with 2a to provide the coupling biaryl product in 85% yield (entry 2). Good yield (78%) could also be obtained for *N*-tosyl 4-nitrophenylhydrazine 1h (entry 8). In addition, 1d with *ortho*-methyl substituent at aryl moiety also participated in the desired cross-coupling process (entry 4).
 ⁸⁰ Besides 2a, other substituted aryl boronic acids 2b-e were all effective in this kind of reaction and high yields of products were
- effective in this kind of reaction and high yields of products were observed (entries 9-15). Heteroaryl-substituted (entry 13) and halogen-substituted boronic acids (entries 12 and 14) were also tolerant in this reaction and showed good yields.

Communications Accepted Manuscri

PhNHNHTs	+ MeO-B(OH)	catalyst / base	OMe
		solvent	
1a	2a	rt	3a
Entry	Catalyst	Solvent	Yield $(\%)^b$
1	Pd(OAc) ₂ /K ₂ CO ₃	DMSO	56
2	PdCl ₂ /K ₂ CO ₃	DMSO	54
3	PdCl ₂ (PPh ₃) ₂ /K ₂ CO ₃	DMSO	43
4	Pd (PPh ₃) ₄ /K ₂ CO ₃	DMSO	40
5	Pd(OAc) ₂ /KF	DMSO	50
6	Pd(OAc) ₂ /K ₃ PO ₄	DMSO	44
7	Pd(OAc) ₂ /KOAc	DMSO	40
8	Pd(OAc) ₂ /Na ₂ CO ₃	DMSO	41
9	Pd(OAc) ₂ /Et ₃ N	DMSO	40
10	Pd(OAc) ₂ /K ₂ CO ₃	DMF	50
11	Pd(OAc) ₂ /K ₂ CO ₃	MeCN	30
12	Pd(OAc) ₂ /K ₂ CO ₃	MeOH	57
13	Pd(OAc) ₂ /K ₂ CO ₃	THF	trace
14	Pd(OAc) ₂ /K ₂ CO ₃	DME	trace
15	Pd(OAc) ₂ /K ₂ CO ₃	toluene	36
16^c	Pd(OAc) ₂ /K ₂ CO ₃	MeOH	83
$17^{c,d}$	Pd(OAc) ₂ /K ₂ CO ₃	MeOH	80
18 ^{c,e}	Pd(OAc) ₂ /K ₂ CO ₃	MeOH	84
$19^{c,f}$	Pd(OAc) ₂ /K ₂ CO ₃	MeOH	75
20^c	K ₂ CO ₃	MeOH	trace

^a Reaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), Pd catalyst (5 mol %), base (2.0 equiv.), solvent (2 mL), rt, 4-24 h, under N₂. ^b Isolated yields. ^c 60 °C. ^d Pd catalyst (10 mol %). ^e Pd catalyst (2 mol %). ^f Pd catalyst (1 mol %).

Table 2 Suzuki reaction of N'-tosyl arylhydrazines with arylboronic acids.

	ArNHNHTs +	Ar'B(OH) ₂	Pd(OAc) ₂ (2 mol %) K ₂ CO ₃ (2.0 equiv.) MeOH / N ₂ / 60 °C	Ar-Ar'			
Entry	Ar =	2	Ar'=	3	Yield		
Lintry	711 -		711 -		$(\%)^{\nu}$		
1	phenyl ((1a)	4-methoxypher	ryl (2a)	84		
2	4-methylphenyl (1b)		4-methoxypher	ıyl (2a)	85		
3	4-methoxyphenyl (1c)		4-methoxypher	ıyl (2a)	75		
4	2-methylphenyl (1d)		4-methoxypher	ıyl (2a)	82		
5	4-(trifluoromethoxy)phenyl		4-methoxypher	nyl (2a)	86		
	(1e)						
6	4-chlorophe	nyl (1f)	4-methoxypher	nyl (2a)	83		
7	3-chlorophe	nyl (1g)	4-methoxypher	nyl (2a)	80		
8	4-nitrophen	yl (1h)	4-methoxypher	nyl (2a)	78		
9	phenyl (1a)	phenyl (2b)	•	92		
10	4-methylphe	nyl (1b)	4-methylphen	yl (2c)	93		
11	4-methoxyphenyl (1c)		phenyl (2b)	• • •	76		
12	4-methoxyph	enyl (1c)	3-chlorophenyl	(2d)	70		
13	4-methoxyphenyl (1c)		2-naphthyl	(2e)	71		
14	3-chlorophenyl (1g)		3-chloropheny	yl (2d)	80		
15	4-nitrophen	ıyl (1h)	4-methylphen	yl (2c)	79		
^{<i>a</i>} Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), Pd(OAc) ₂ (2 mol %),							

K₂CO₃ (2.0 equiv.), MeOH (2 mL), 60 °C, 2-12 h, under N₂. ^b Isolated yields.

- Besides arvl boronic acid, arvlborane and boronic ester were also tolerated in this reaction although the solvent need to be reoptimized. When diethyl (3-pyridyl)borane 2f was employed, no desired product was detected in MeOH while high yield of biaryl product was observed in DMSO (Table 3, entry 1). So we carried 10 out the Suzuki reaction of those organoboron reagents in DMSO at 60 °C. A wide range of N'-tosyl arylhydrazines that incorporates electron-donating and electron-withdrawing groups at ortho-, meta-, and para-positions were found to be efficient for this Suzuki reaction (Table 3, entries 1-8). For ortho-substituted 15 N'-tosyl arylhydrazines, larger amount of Pd-catalyst was needed
- due to the larger steric hindrance of the substrates (entries 5-6). Boronic ester with an amino-group 2g also offered the corresponding products in 85% and 81% yield respectively

(entries 9-10). We have also tried this reaction with N'-tosyl 20 benzylhydrazine and N'-tosyl isopropylhydrazine under similar conditions, but observed few cross-coupling products. We attributed this to the low stability of alkyl intermediate.

Table 3 Suzuki reaction of N'-tosyl arylhydrazines with alkylborane or boronic ester.

	ArNHNHTs + Ar' <i>B</i> 1 2	Pd(OAc) ₂ (2 mol %) K ₂ CO ₃ (2.0 equiv.) DMSO / N ₂ / 60°C 3	
25	$B = BEt_2 \text{ or } B$	i(pin)	
Entry	Ar =	$Ar^{B} =$	Yield $(\%)^{t}$
1	phenyl (1a)	(2f)	85
2	4-methylphenyl (1b)	2f	74
3	3-methylphenyl (1i)	2f	70
4	4-methoxyphenyl (1c)	2f	68
5^c	2-methylphenyl (1j)	2f	55
6^c	2-methoxyphenyl (1k)	2f	64
7	4-chlorophenyl (1f)	2f	76
8	3-chlorophenyl (1g)	2f	73
9	phenyl (1a)	$H_2N \rightarrow B(pin)$ N $(2g)$	85
10	4-methylphenyl (1b)	2g	81
^a Reaction	n conditions: 1 (0.24 mmol), 2 (0.2 mmol), Pd(OAc) ₂ (2 m	nol %),

K₂CO₃ (2.0 equiv.), DMSO (1 mL), 60 °C, 2-6 h, under N₂. ^b Isolated yields. ^c Pd(OAc)₂ (5 mol %).

For the palladium catalyzed coupling reaction of bromosubstituted N'-tosyl arylhydrazine, a significant chemoselectivity can be observed. For example, 11 reacted with 2a to afford 3l as the major product (Scheme 2). Here the regioselectivity comes $_{30}$ both from the basic condition for N'-tosyl arylhydrazine coupling unlike that for halide coupling, and from different Ar-X bond strengths.² Compared with aryl bromide, N^{2} -tosyl arylhydrazines proved to be more efficient and milder electrophile under the aforementioned reaction conditions. This chemoselectivity may 35 be used for the synthesis of some multi-aryl compounds by stepwise cross-coupling of N'-tosyl arylhydrazine and halide.

Scheme 2 Suzuki reaction of N'-tosyl arylhydrazine 11 with arylboronic acid 2a

- As N'-tosyl arylhydrazine is readily available and stable reagent, we also explored whether this substrate could be extended to some other coupling reactions. When N'-tosyl phenylhydrazine 1a was employed in the Hiyama coupling of arylsilane,9 the biphenyl product could be obtained in 88% yield 45 (Scheme **3a**). N'-tosyl arylhydrazine also works well for the coupling reaction with aryl halide, for example, 1a can react with aryl iodide to produce 4-methoxybiphenyl in 79% yield (Scheme 3b). Further laboratory studies will be conducted to elucidate its generality in these new coupling reactions.
- To explore the mechanism of this Suzuki reaction, we carried out two control experiments. In the first reaction, 1-phenyl-2tosyldiazene **1a'** could be isolated in 26% yield from N'-tosyl phenylhydrazine 1a under basic conditions, and the direct crosscoupling reaction between 1a' and 4-methoxyphenylboronic acid

Scheme 3 a) Hiyama reaction of N'-tosyl phenylhydrazine with arylsilane. **b)** Cross-coupling of N'-tosyl phenylhydrazine with aryl iodide

also afforded 4-methoxybiphenyl **3a** in 100% conversion 5 (Scheme **4a**). In the absence of any palladium catalyst and aryl boronic acid, the *in situ* generated diazene **1a**' would presumably dissociate to give $C_6H_5N_2$ · radical and $TolSO_2$ · radical, the former may release nitrogen and form diphenyl compound, while the latter yields the thiosulfonate (Scheme **4b**).^{10a}

Scheme 4 Control experiments. PMP = p-methoxyphenyl, Ts = tolylsulfinate, Tol = tolyl.

Based on these experiments, a possible mechanism for this hydrazine Suzuki reaction has been proposed (Figure 1). *N*²-tosyl arylhydrazine **A** was dehydrogenated in the presence of base to provide the diazene **B**, which was in equilibrium with the corresponding diazonium ion.¹⁰ Then an oxidative addition of diazonium ion to Pd-catalyst gave the organopalladium intermediate **C**, which promoted the transmetallation of the ²⁰ arylboronic acid to form the diaryl-palladium species **D**. Finally a reductive elimination of **D** afforded the corresponding biaryl product **E** and regenerated the Pd-catalyst.

Figure 1 Proposed mechanism for the Suzuki cross-coupling of N⁻-tosyl 25 arylhydrazines with arylboronic acid

In summary, we have described a new procedure for the preparation of biaryl compounds by Pd-catalyzed Suzuki crosscoupling between *N*²-tosyl arylhydrazine and various organoboron reagents. Notably, *N*²-tosyl arylhydrazine as a ³⁰ readily available and stable electrophile demonstrated its generality in a number of coupling reactions. This new methodology can be used as a complement for the classical Suzuki cross-coupling reaction.

We thank the National Natural Science Foundation of China ₃₅ (No. 20772161, 21262008), Guangdong Innovative Research Team Program (No. 2009010058) and The National High-tech R&D Program of China (863 Program, No. 2013AA092903) for financial support.

Notes and references

- ^a Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 (P. R. China). Fax: (+86)-20-39943048; E-mail: lugui@mail.sysu.edu.cn
 ^b Institute of Human Virology, Sun Yat-sen University, Guangzhou, 510080 (P. R. China)
- ⁴⁵ [†] Electronic Supplementary Information (ESI) available: [Experimental procedures, characterization data, ¹H and ¹³C NMR spectra]. See DOI: 10.1039/b000000x/
- 1 (a) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457; (b) *Metal-Catalyzed Cross-Coupling Reactions* (Eds.: F. Diederich and
- P. J. Stang), Wiley-VCH: Weinheim, 1998; (c) 30 Years of Cross-Coupling Reaction (Eds.: K. Tamao, T. Hiyama and E.-i. Negishi), J. Organomet. Chem. 2002, 653 (Special Issue); (d) Transition Metals for Organic Synthesis: Building Block and Fine Chemicals, 2nd ed. (Eds.: M. Beller and C. Bolm), Wiley-VCH: Weinheim, Germany, 2004; (e) J. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651; (f) E. Negishi, Bull. Chem. Soc. Jpn., 2007, 80, 233; (g) N. Miyaura, Bull. Chem. Soc. Jpn., 2008, 81, 1535; (h) A. Suzuki, Angew. Chem., Int. Ed., 2011, 50, 6722.
- (a) A. Roglans, A. Pla-Quintana and M. Moreno-Mañas, *Chem. Rev.*,
 2006, **106**, 4622; (b) F. Mo, G. Dong, Y. Zhang and J. Wang, *Org. Biomol. Chem.*, 2013, **11**, 1582.
 - 3 (a) S. B. Blakey and D. W. C. MacMillan, J. Am. Chem. Soc., 2003, 125, 6046; (b) D. V. Partyka, Chem. Rev., 2011, 111, 1529.
- 4 (a) T. Saeki, E.-C. Son and K. Tamao, Org. Lett., 2004, 6, 617; (b)
 ⁶⁵ X.-F. Wu, H. Neumann and M. Beller, Chem. Soc. Rev., 2011, 40, 4986.
- 5 (a) S. Bhattacharya, S. Majee, R. Mukherjee and S. Sengupta, *Synth. Commun.*, 1995, 25, 651; (b) S. Sengupta and S. K. Sadhukkan, *Tetrahedron Lett.*, 1998, 39, 715; (c) S. Sengupta and S. K. Sadhukkan, *Org. Synth.*, 2002, 79, 52; (d) Y. Chen, S. Guo, K. Li, J. Qu, H. Yuan, Q. Hua, and B. Chen, *Adv. Synth. Catal.*, 2013, 355, 711.
- 6 (a) M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley-75 Interscience: New York, 1998; (b) T. Ye and M. A. McKervey, Chem. Rev., 1994, 94, 1091; (c) J. Barluenga, P. Moriel, C. Valdés and F. Aznar, Angew. Chem., Int. Ed., 2007, 46, 5587; (d) C. Peng, Y. Wang and J. Wang, J. Am. Chem. Soc., 2008, 130, 1566; (e) C. Peng, W.Zhang, G. Yan, and J. Wang, Org. Lett., 2009, 11, 1667; (f) C. Peng, G. Yan, Y. Wang, Y. Jiang, Y. Zhang and J. Wang, 80 Synthesis, 2010, 4154; (g) Y.-T. Tsoi, Z. Zhou, A. S. C. Chan and W.-Y. Yu, Org. Lett., 2010, 12, 4506; (h) X. Zhao, J. Jing, K. Lu, Y. Zhang and J. Wang, Chem. Commun., 2010, 46, 1724; (i) C. Peng, G. Yan, Y. Wang, Y. Jiang, Y. Zhang and J. Wang, Synthesis, 2010, 4154; (j) J. Barluenga and C. Valdés, Angew. Chem., Int. Ed., 2011, 85 50, 7486; (k) Z. Shao and H. Zhang, Chem. Soc. Rev., 2012, 41, 560;
 - (I) Y. Zhang and J. Wang, *Top. Curr. Chem.*, 2012, **327**, 239. (m) Q. Xiao, Y. Zhang and J. Wang, *Acc. Chem. Res.*, 2013, **46**, 236.
 [7] J. Barluenga, M. Tomas-Gamasa, F. Aznar and C. Valdée, *Nat.*
- 7 J. Barluenga, M. Tomas-Gamasa, F. Aznar and C. Valdés, *Nat.* 90 *Chem.*, 2009, **1**, 494.
- 8 N'-tosyl arylhydrazines were prepared from the corresponding arylhydrazine by tosylation with TsCl. See: N. Zhao, Y. Li, Y. Wang and J. Wang, J. Sulfur Chem., 2006, 27, 427.
- 9 (a) N. A. Strotman, S. Sommer, S. E. Denmark and R. F. Sweis, Acc.
 ⁹⁵ Chem. Res., 2002, 35, 835; (b) G. C. Fu, Angew. Chem., Int. Ed.,
 2007, 46, 3556; (c) L. Zhang and J. Wu, J. Am. Chem. Soc., 2008,
 130, 12250.
- (a) J. L. Kice and R. S. Gabrielsen, J. Org. Chem., 1970, 35, 1004;
 (b) C. D. Ritchie, J. D. Saltiel and E. S. Lewis, J. Am. Chem. Soc.,
 1961, 83, 4601.