A new method for generating organosilanones

N. N. Zemlyansky,^a I. V. Borisova,^a A. K. Shestakova,^a Yu. A. Ustynyuk,^b and E. A. Chernyshev^a

 ^aState Research Institute of Chemistry and Technology of Organoelement Compounds, 38 sh. Entuziastov, 111123 Moscow, Russian Federation. Fax: +7 (095) 273 1323
^bDepartment of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russian Federation. Fax: +7 (095) 939 0283

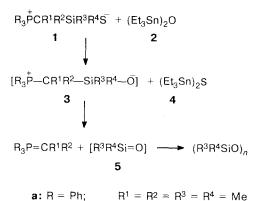
A new method for the generation of organosilanones by the reaction of betaines, R_3P^+ - CR^1R^2 -SiR³R⁴-S⁻, with $(Et_3Sn)_2O$ was suggested.

Key words: organosilicon-phosphorus betaines, organosilanones, hexaethyldistannoxane.

An extensive literature has been devoted to the chemistry of silanones.^{1,2} In the present work, we suggest a convenient preparative method for generating these intermediates by the reaction of betaines, R_3P^+ -CR¹R²-SiR³R⁴-S⁻ (1),³ with (Et₃Sn)₂O (2). Probably, the process involves a step of the formation of betaines (3), which readily undergo transformation of the retro Wittig reaction type⁴ (Scheme 1).

The formation of silanones 5 has been definitely proven by performing the reaction in the presence of Me_3SiOMe , which readily "traps" silanones.¹

5 + Me₃SiOMe
$$\longrightarrow$$
 Me₃SiOSiR³R⁴OMe
6
a: R³ = R⁴ = Me
b: R³ = Me; R⁴ = Ph


Experimental

All reactions were carried out in a 10^{-3} Torr vacuum in seamless sealed vessels, using a technique with breaking diaphragms and ampoules.

Siloxanes **6a** and **6b** used for identifying the products were obtained by the reaction of Me₃SiOLi with (chloro)methoxydimethyl- or -methylphenylsilane, respectively, in ether. The physicochemical constants of compound **6a** agree with the literature data. For **6b**: 67 %, b.p. 71–72 °C (0.1 Torr), n_D^{20} 1.4592. ¹H, ¹³C, ²⁹Si, and ³¹P NMR spectra were recorded on a Bruker AM-360 spectrometer in degassed solutions of samples in pyridine-d₅ relative to Me₄Si (¹H, ¹³C, and ²⁹Si) or relative to 85% H₃PO₄ in D₂O (³¹P). GLC analyses were carried out on an LKhM-80 chromatograph (2 m × 0.3 mm column, 5 % SE-30 on silanized Chromosorb G, 80/100 mesh).

The reaction of Ph_3P^+ — CMe_2 — $SiMe_2$ — S^- (1a) with 2. A. A mixture of compound 2 (0.41 g, 0.96 mmol) and Me_3SiOMe (1 g, 9.6 mmol) was added to a suspension of

Scheme 1

b: $R = R^3 = Ph; R^1 = R^2 = R^4 = Me$

compound **1a** (0.38 g, 0.96 mmol) in pyridine-d₅ (1.5 mL). The mixture was kept for 12 h at ~20 °C, which resulted in a dark claret solution. According to GLC data and ¹H, ¹³C, ²⁹Si, and ³¹P NMR spectroscopy, the reaction proceeded quantitatively to give Ph₃P=CMe₂, (Et₃Sn)₂S, **6a** (yield 83 %), and D₄-D₅ oligomers (17 %). ¹H NMR, δ : Ph₃P=CMe₂: 2.00 (d, Me₂C, $J_{P,H} = 16.5$ Hz); 7.38–7.80 (m, Ph₃P); (Et₃Sn)₂S: 1.07–1.28 (m, CH₂Sn); 1.33–1.54 (t, CH₃CH₂Sn); **6a**: 0.20 (s, Me₃Si); 0.17 (s, Me₂Si); 3.54 (s, SiOMe). ¹³C NMR, δ : Ph₃P=CMe₂: 8.72 (d, P=C, $J_{P,C} = 123.9$ Hz); 20.69 (d, Me₂CP, $J_{P,C} = 13.7$ Hz); 128.41 (d, C_m , $J_{P,C} = 11.0$ Hz); 130.78 (d, C_p , $J_{P,C} = 8.13$ Hz); (Et₃Sn)₂S: 7.22 (s, CH₂Sn, $J_{117Sn,13C} = 323.9$ Hz, $J_{119Sn,13C} = 338.9$ Hz); 10.77 (s, CH₃CH₂Sn, $J_{117/119Sn,13C} = 24.0$ Hz); **6a**: 1.32 (s, Me₂Si); 1.89 (s, Me₃Si); ^{49.76} (s, SiOMe). ²⁹Si NMR, δ : **6a**: ~11.19 (s, Me₂Si); 7.81 (s, Me₅Si). ³¹P NMR: Ph₃P=CMe₂: 10.69.

B. Compound **2** (0.432 g, 1.02 mmol) was added to a suspension of compound **1a** (0.4 g, 1.02 mmol) in pyridine- d_5 (2 mL). After 5–10 min the solution turned pink. After 2–3 h the coloring turned to dark claret simultaneously with dissolu-

tion of betaine **1a**. According to GLC data and ¹H, ¹³C, ²⁹Si, and ³¹P NMR spectroscopy, the reaction almost ceased after 5 days. The main products included $Ph_3P=CMe_2$, $(Et_3Sn)_2S$, and a mixture of D_4-D_5 oligomers in an almost quantitative yield. ²⁹Si NMR, δ : -18.90; -21.28.

The reaction of Ph_3P^+ — CMe_2 —SiMePh—S⁻ (1b) with 2. *A.* Compound 1b (0.53 g, 1.16 mmol) was mixed with compound 2 (0.49 g, 1.16 mmol) and Me_3SiOMe (1 g, 9.6 mmol) in pyridine-d₅ (1.5 mL). According to GLC data and ¹H, ¹³C, ²⁹Si, and ³¹P NMR spectroscopy, after ~12 h the reaction mixture contained $Ph_3P=CMe_2$, (Et₃Sn)₂S, and **6b** (yield 95 %) along with a small amount of oligomers derived from methylphenylsilanone. For compound **6b**: ¹H NMR, δ : 0.28 (s, Me₃Si); 0.44 (s, MeSi); 3.57 (s, SiOMe); 7.39—7.84 (m, PhSi). ¹³C NMR, δ : -2.17 (s, MeSi); 1.93 (s, Me₃Si); 50.16 (s, SiOMe); 128.24 (s, PhSi-*m*); 130.26 (s, PhSi-*p*); 134.10 (s, PhSi-*o*); 136.65 (s, PhSi-*i*). ²⁹Si NMR, δ : -24.08 (s, MeSi); +9.11 (s, Me₃Si).

B. Compound **1b** (0.56 g, 1.23 mmol) was mixed with compound **2** (0.52 g, 1.23 mmol) in pyridine- d_5 (2 mL). According to GLC data and ¹H, ¹³C, ²⁹Si, and ³¹P NMR

spectroscopy, after 7 days the solution contained the original compounds (~65 %), $Ph_3P=CMe_2$, $(Et_3Sn)_2S$, and methylphenylsilanone oligomers.

This study was financially supported by the Russian Foundation for Basic Research, Project No. 94-03-09710.

References

- G. Raabe and J. Michl, in *The Chemistry of Organosilicon Compounds*, Eds. S. Patai and Z. Rappoport, John Wiley and Sons, New York, 1989, 1015.
- M. G. Voronkov, S. V. Basenko, and M. V. Ustinov, *Dokl. Akad. Nauk*, 1993, 333, 180 [*Dokl. Chem.*, 1993, 333 (Engl. Transl.)].
- N. N. Zemlyanskii, I. V. Borisova, A. K. Shestakova, and Yu. A. Ustynyuk, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 2143 [*Russ. Chem. Bull.*, 1993, 42, 2056 (Engl. Transl.)].
- 4. B. E. Maryanoff and A. B. Reiz, Chem. Rev., 1989, 89, 863.

Received July 6, 1994 in revised form August 19, 1994