Green Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: K. Huang, C. Guan, Y. Pan, E. Ang, J. Hu, C. Yao, M. Huang, H. Li and Z. Lai, *Green Chem.*, 2018, DOI: 10.1039/C8GC02186D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/green-chem

Published on 25 July 2018. Downloaded by Kaohsiung Medical University on 7/25/2018 12:31:47 PM.

YAL SOCIETY CHEMISTRY

Journal Name

Communication

Chao Guan^{a+}, Yupeng Pan^{a+}, Eleanor Pei Ling Ang^a, Jinsong Hu^a, Changguang Yao^a, Mei-Hui Huang^a, Huaifeng Li^a, Zhiping Lai^a, Kuo-Wei Huang^a* et al. reported a Ru complex, [Ru(Acriphos)(PPh₃)(Cl)(PhCO₂)], for the CO₂ hydrogenation to FA, affording an average TOF of 1,000 h⁻¹ in the presence of DMSO/H₂O at 60 °C and 120 bar of H_2/CO_2 (2:1).^[12d] Later, Peng and Zhang et al. reported a rigid N,N,N-pincer Ru complex for CO₂ hydrogenation with TOF of 63 h⁻¹ at 130 °C and 30 bar of H_2 .^[12b] However, the synthesis of most of these compounds involves the use of costly ligands (Fig. 1).^[8e] Very few examples have been reported to convert a low concentration of CO₂

Conversion of CO₂ from Air into Formate Using Amines and

Phosphorus-Nitrogen PN³P-Ru(II) Pincer Complexes

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Abstract: Well-defined ruthenium (II) PN³P pincer complexes were developed for the hydrogenation of carbon dioxide. Excellent product selectivity and catalytic activity with TOF (turnover frenquency) and TON (turnover number) up to 13,000 h⁻¹ and 33,000, respectively, in a THF/H₂O biphasic system were achieved. Notably, effective conversion of carbon dioxide from air into formate was conducted in the presence of an amine, allowing easy product separation and catalyst recycling.

Meeting increasing global energy demands by comsuming carbon-based fossil fuels has led to the carbon dioxide (CO₂) levels in the atmosphere rising from the preindustrial 280 ppm to the current 409 ppm.^[1] One attractive approach to reducing CO₂ levels is carbon capture and recycling (CCR), which utilizes CO_{2} as an important C1 source for the synthesis of value-added chemicals or liquid fuels.^[2] Several important products, such as formic acid (FA) or formate,^[3] methane,^[4] formate esters,^[5] methanol,^[6] or gasoline,^[7] can be obtained from hydrogenation of CO₂. Of these, FA is considered a promising energy carrier with an energy density of 1.77kW·h/L.^[8]

On this basis, the catalytic hydrogenation of CO₂ into FA/formate has gained significant interest in recent years and a variety of transition-metal complexes have been employed, such as those based on iron, $^{[9]}$ cobalt, $^{[10]}$ ruthenium, $^{[11]}$ iridium $^{[12]}$ and $\mathsf{rhodium}^{[13]}$ Nozaki et al. set the record for CO_2 hydrogenation activity in 2009 using a PNP-pincer iridium complex [2,6- $(PiPr_2)_2C_5H_3N]IrH_3$ in a THF/H₂O binary solvent medium. This catalyst gave a turnover frequency (TOF) of up to 150,000 h⁻¹ at 200 °C and 80 bar. However, this result was obtained in a very dilute concentration of catalyst with a low conversion.^[12a] In 2014, Pidko et al. demonstrated that a Ru-PNP pincer complex could hydrogenate CO₂ in DMF in the presence of a DBU base with a remarkable TOF of up to 1,100,000 h⁻¹ in 2 min.^[11b] In 2016, Leitner

This journal is © The Royal Society of Chemistry 20xx

into formate. Olah, Prakash, and coworkers have demonstrated hydrogenation of CO₂ from air to methanol and formate using a

commercial catalyst.^[14] However, there is still a need for more

economical and efficient approaches for such processes for future

practical applications. To realize this goal, diversified approaches to

H2O, THF / NaHCO

63

1530

Solvent/Base

TOF, h-1

TONS

H₂O, THF / NaHCO₃

13 000

33 000

a King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering (PSE), Thuwal 23955-6900 (Saudi Arabia).

⁺ These authors contributed equally to this work.

available: [details of Electronic Supplementary Information (ESI) any supplementary information available should be included here]. DOI: 10.1039/x0xx00000x

COMMUNICATION

DOI: 10.1039/C8GC02186D Journal Name

Complex **1** was synthesized using the Ru metal precursor RuHCl(CO)(PPh₃)₃ and a PN³P ligand derived from 2,6diaminopyridine and chlorodiphenylphosphine (N,N'bis(diphenylphosphino)-2,6-diaminopyridine) (Scheme 1). By slow evaporation, colorless single crystals of **1'** (Fig. 2), suitable for X-ray crystallography, were obtained from the solution. The molecular structure of **1** (M·Cl·Cl) contains two Ru(II) centers and three PN³P ligands. As indicated in **1'** (M·Cl·HCO₃), during crystal growth one of the chloride ions was readily replaced by a bicarbonate ion, presumably due to the absorption of CO₂ and moisture from air. The other chloride ion was held in the crystal cell by the formation of N-H⁻⁻Cl hydrogen bonds (Fig. 2).

Scheme 1. Preparation of complex 1, 2 and 3.

Each Ru center of **1'** was symmetric with respect to the plane of the pyridine ring in the pincer ligand to which it was coordinated, indicated by the almost equal C1-N1 (1.378(6) Å) and C2-N3 (1.375(6) Å) bond lengths of the two pincer arms. Moreover, the P1-N1-C1 angle (120.1(3) °) and P2-N3-C2 angle (121.4(3) °) were almost the same, revealing the aromatized nature of **1'** (Fig. 2).

Figure 2. Molecular structure of **1'** $(M \cdot Cl \cdot HCO_3)$ with thermal ellipsoids set at 50% probability. The H atoms were omitted for clarity. Selected bond lengths (Å): Ru1–P2 2.2961(12) Ru1–P1 2.2821(12), Ru1–P3 2.4232(10), C1-N1 (1.378(6), C2-N3 (1.375(6), Selected bond angles (°): P1-N1-C1 120.1(3), P2-N3-C2 121.4(3).

The dearomatized complex **2** was achieved by the treatment of complex **1** with potassium *t*-butoxide in THF according to a similar procedure previously reported by us (Scheme 1).^[16] Upon coordination of **2** with a neutral PPh₃ ligand, a dearomatized monometallic species **3** was obtained. Pale yellow crystals of **3**, suitable for X-ray crystallography, were obtained from a concentrated THF solution in a glovebox. The structure of **3** was characterized by a PPh₃ coordinated to the Ru center with a CO, hydride and pincer-type $PN^{3}P$ ligand (Fig. 3). In contrast to **1'**, the C1-N1(1.377(5) Å) and C2-N3 (1.341(5) Å) bond lengths of the two arms in the pincer ligand were very different in **3**, as were the P1-N1-C1 angle (121.2(3) °) and the P2-N3-C2 angle (115.7(3) °), indicating that the pyridine ring in **3** underwent dearomatization (Fig. 3). Consistently, the different chemical shifts in the ³¹P{¹H}</sup> NMR of **3** corresponded to the different chemical environments of phosphine at the two arms of the pincer ligand (Fig. S10).

Figure 3. (a) Molecular structure of **3** with thermal ellipsoids set at 50% probability. The H atoms were omitted for clarity. Selected bond lengths (Å): Ru1–P2 2.3156(11) Ru1–P1 2.3153(11), C1-N1(1.377(5) C2-N3 (1.341(5). Selected bond angles (°): P1-N1-C1 121.2(3), P2-N3-C2 115.7(3).

The catalytic activity of the dearomatized Ru-PN³P pincer complex 2 was tested for CO₂ hydrogenation in a THF/H₂O solution at 110 °C (Table 1). Under the base-free condition, very low reactivity was observed even after a prolonged reaction time (Entry 1). Subsequently, various bases were used, including NaOH, Na₂CO₃ and NaHCO₃. Compared to the base-free results, the catalytic performance of 2 was greatly improved in the presence of a base (Entry 2-5). These observations suggest that the base played an important role in the catalytic activity. A maximum average TOF of 740 $h^{\text{-1}}$ was achieved using Na_2CO_3 as the base and excess CO_2 (Entry 3). When the reaction was carried out under the same conditions in the absence of CO_2 , a negligible amount of formate product was obtained $^{\left[17\right] }$ (Entry 4), indicating the importance of CO_{2} as the source of the formate production. In all cases, the liquid composition of the product was confirmed by ¹H NMR and ¹³C NMR (Fig. S12-S13), and GC analysis of gas mixture after reaction showed no detectable amount of CO. To our delight, the catalyst showed excellent selectivity for CO₂ hydrogenation to formate. Interestingly, when $NaHCO_3$ was used instead, only H_2 was needed to produce formate, indicating that NaHCO₃ can serve as both the source of CO₂ and the base; the catalyst also afforded a moderate TOF and TON (Entry 5). In general, however, higher catalytic activity was obtained when both CO₂ and H₂ were present (Entry 2-3), since a bicarbonate makes the hydrogenation process more efficient to carry out.^[18] Hence, in subsequent studies, hydrogenation of bicarbonates were further examined.

Published on 25 July 2018. Downloaded by Kaohsiung Medical University on 7/25/2018 12:31:47 PM.

Journal Name

Table 1. Hydrogenation of CO_2 , carbonate and bicarbonate in the presence of complex **2**^{*}.

Entry	Base	P(H_)/P(CO_)	Time	Formate NMR			TOF
		(psi)	(h)	(mmol)	yield (%)	TON	(h ⁻¹)
1	/	400/400	17	0.089	/	12	0.7
2	NaOH	400/400	2.25	9.9	/	1338	600
3	Na ₂ CO ₃	400/200	2.25	12.3	/	1662	740
4	Na ₂ CO ₃	400/0	2.25	trace	/	/	/
5	NaHCO ₃	400/0	2.25	7.14	69	965	430

*General conditions: T=110 $^{\circ}$ C, base (10.4 mmol), THF/H₂O (1:1, 20 mL). n(**2**)=3.7 μ mol, internal standard DMSO (1.4 mmol). TOF is an average value and calculated according to the reaction time.

To illustrate the possible macro-process taking place during bicarbonate hydrogenation, an image of the reaction with three phases, gas, liquid 1 (THF) and liquid 2 (THF/H₂O), is shown in Fig. 4. It was rationalized that complex **2** (or the active catalytic species derived from **2**) would prefer to stay in the organic THF phase where the catalytic reaction occurred, because of the presence of phenyl groups that made it relatively hydrophobic. Hydrogen and bicarbonate then diffused into the THF phase to react to yield formate, which was desolved back into the THF/H₂O phase.

Figure 4. The macro-process of bicarbonate hydrogenation.

The catalytic performance of **2** was also optimized by varying different parameters, such as the reaction temperature, catalyst loading, bicarbonate concentration and pressure of H_2 (Fig. S14-17). The relationship between TON and the reaction time for the bicarbonate hydrogenation under the optimized reaction conditions (130 °C, catalyst loading of 0.1µmol, 1600 psi H_2) is shown in Fig. S18. TON increased as a function of the reaction time, and a maximum TON of 33,000 was achieved after approximately 50 hours.

Based on the feature of aromatization-dearomatization of complex 2 and our previous mechanistic studies of ^tBu-PN³P Rucatalyzed FA dehydrogenation^[16a], we proposed a plausible mechanism involving metal-ligand cooperation^[19] (Figure 5). The initial dissociation of a PN³P ligand from the bimetallic ruthenium complex 2, gives two coordinately unsaturated 16-electron complex A as the catalytically active species. Upon hydrogenation, A undergoes rearomatization of the pyridine ring and a bihydride species **B** is formed. HCO_3 could dissociate into CO_2 and OH,^[20] serving as the CO₂ source. Insertion of CO₂ into the Ru-H bond of **B** then affords a Ru-formate complex C, similar to the intermediate formed in the ^tBu case. Finally, elimination of the formate product in the presence of OH⁻ can regenerate the catalytically active A. To support A is a plausible active species, further investigation was carried out using the monometallic 3 in the reaction. In the presence of additional PPh₃, there was indeed a significant drop in catalytic activity (Fig. S19), strongly suggesting that the dissociation of the phosphine ligand is needed to achieve a catalytically active species, i.e. A.

Bimetallic 2

Active species A

 H_{2}

Figure 5. Proposed mechanism for hydrogenation of bicarbonate using complex 2.

With the possible macro-process involving three phases and the plausible mechanism of bicarbonate hydrogenation in hand, we further developed a model for CO_2 capture and utilization.^[21] First, we sought to capture CO_2 from air using various bases to create bicarbonate, which could then be hydrogenated into formate using our Ru-PN³P pincer complex **2**. A series of commercially available bases were screened to evaluate their capacity for CO_2 capture by bubbling air through their aqueous solution (Table S1, Fig. S20). It was observed that the CO_2 absorption abilities of the inorganic bases were too low even after a prolonged period of time (over 50 hours), except for NaOH (Table S1, Entry 1). However, a quantitative ¹³C NMR spectroscopy analysis of the salt formed in the aqueous NaOH solution after CO_2 absorption showed that only carbonate had formed, not suitable for our intended hydrogenation

This journal is © The Royal Society of Chemistry 20xx

Green Chemistry gins

COMMUNICATION

conditions (Table 1, Entry 4). Gratifyingly, the organic bases, such as amines, showed much better CO_2 absorption potential. $^{[22]}\mbox{All}$ the amines chosen for this study captured CO₂ from air or a gas cylinder (1 bar) to give carbamate, bicarbonate or both (Table S1, Entry 4-9, Fig. S21).^[22c] Among the monoamines (Table S1, Entry 4-6), MEA, which has been used industrially as a CO_2 absorber^[23], exhibited the highest absorption efficiency (17%), which was more than or almost double that of AMP (7%) and MDEA (9%). When the CO₂ absorption time was shortened to 24 hours, TEPA, NTEA and PMDTA still showed outstanding CO₂ absorption potential with absorption efficiencies of 38%, 59% and 39%, respectively, when the source of CO_2 was from a gas cylinder (1 bar) instead of air. It is noteworthy that only tertiary amine PMDTA (efficiency 39% (1.16 eq)) and MDEA (9%) captured and converted CO2 into solely bicarbonate (Table S1; Fig. S22).^[22a] Hence, PMDTA amine was the optimal choice for CO₂.

The final aqueous solution of the PMDTA amine, obtained after CO₂ capture from air and salt formation, was then subjected to hydrogenation in the presence of our Ru-PN³P pincer complex 2.^[21] An average TOF of 990 h^{-1} (yield 71%) was achieved at 130 °C with a $\rm H_2$ pressure of 1600 psi. (Fig. S23). In addition, recyclability studies were also performed in a 2-MeTHF/H₂O biphasic system using PMDTA as the CO₂ absorber. The low miscibility of 2-MeTHF with water allows a clean organic-water phase separation.^[24] In this way, both product separation and catalyst recovery could be easily realized since the formate formed in the aqueous phase and the catalyst was in the organic phase. In the recyclability test, the organic layer, containing the catalyst, could be reused for five consecutive cycles in the hydrogenation of CO_2 captured from air in the presence of PMDTA without a significant reduction in catalytic activity (Figure 6). After five consecutive cycles, the resting state of the catalyst is confirmed to be complex 2 (Fig. S24) and only 4.1 % of the catalyst was leached into the aqueous phase as confirmed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Moreover, GC analysis of gas mixture and the ¹H NMR results indicated that the product consisted solely of formate, without any by-products (Fig. S23) to evidence that our catalyst demonstrated excellent product selectivity. Such a catalytic system shows not only the excellent selectivity and catalytic activity of a homogeneous catalyst, but also separability and reusability similar to those of a heterogeneous catalyst, due to the biphasic nature of the reaction

mixture.

Published on 25 July 2018. Downloaded by Kaohsiung Medical University on 7/25/2018 12:31:47 PM.

Figure 6. Recyclability test of complex **2**. Reaction conditions: 13 mmol PMDTA+ 10 mL H₂O (CO₂ captured in each cycle = 15 mmol), 10 mL 2-MeTHF, T=130 °C, Time=12 h, n(2)=20 μ mol.

Conclusions

In summary, the $PN^{3}P$ bimetallic Ru complex **2** serves as a catalyst precusor with excellent selectivity and catalytic activity with TOF and TON up to 13,000 h⁻¹ and 33,000, respectively. Our catalytic system allowed both product separation and catalyst recycling, offering the advantages of both homogeneous and heterogeneous systems.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by King Abdullah University of Science and Technology (KAUST).

Notes and references

- I. P. o. C. Change, *Climate change 2014: mitigation of climate change, Vol. 3,* Cambridge University Press, 2015.
- [2] (a) D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058; (b) T. Gasser, C. Guivarch, K. Tachiiri, C. Jones, P. Ciais, Nat. Commun. 2015, 6, 3958. (c) Q.-W. Song, Z.-H. Zhou and L.-N. He, Green Chem. 2017, 19, 3707.
- [3] S. Moret, P. J. Dyson, G. Laurenczy, Nat. Commun. 2014, 5, 4017.
- [4] S. Park, D. Bézier, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 11404.
- [5] (a) A. Dubey, L. Nencini, R. R. Fayzullin, C. Nervi, J. R. Khusnutdinova, *ACS Catal.* 2017, *7*, 3864; (b) C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, *Angew. Chem. Int. Ed.* 2010, *49*, 9777.
- [6] (a) S. Kar, R. Sen, A. Goeppert, G. S. Prakash, *J. Am. Chem. Soc.* 2018; (b) G. A. Olah, G. S. Prakash, A. Goeppert, *J. Am. Chem. Soc.* 2011, *133*, 12881; (c) J. Schneidewind, R. Adam, W. Baumann, R. Jackstell, M. Beller, *Angew. Chem. Int. Ed.* 2017, *56*, 1890; (d) K. Sordakis, A. Tsurusaki, M. Iguchi, H. Kawanami, Y. Himeda, G. Laurenczy, *Chem. Eur. J.* 2016, *22*, 15605; (e) Z. Han, L. Rong, J. Wu, L. Zhang, Z. Wang and K. Ding, *Angew. Chem. Int. Ed.* 2012, *51*, 13041.
- [7] J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nat. Commun. 2017, 8, 15174.
- [8] (a) D. Mellmann, P. Sponholz, H. Junge, M. Beller, *Chem. Soc. Rev.* 2016, *45*, 3954; (b) K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller, G. b. Laurenczy, *Chem. Rev.* 2017; (c) W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, *Chem. Rev.* 2015, *115*, 12936; (d) X. Yu, P. G. Pickup, *J. Power Sources* 2008,

Journal Name

182, 124. (e) J. Eppinger, K.-W. Huang, *ACS Energy Lett.* **2016**.

- [9] (a) R. Langer, Y. Diskin-Posner, G. Leitus, L. J. Shimon, Y. Ben-David, D. Milstein, *Angew. Chem. Int. Ed.* 2011, *50*, 9948; (b) F. Zhu, L. Zhu-Ge, G. Yang, S. Zhou, *ChemSusChem.* 2015, *8*, 609.
- [10] (a) Y. M. Badiei, W.-H. Wang, J. F. Hull, D. J. Szalda, J. T. Muckerman, Y. Himeda, E. Fujita, *Inorg. Chem.* 2013, *52*, 12576; (b) C. Federsel, C. Ziebart, R. Jackstell, W. Baumann, M. Beller, *Chem. Eur. J.* 2012, *18*, 72; (c) M. S. Jeletic, M. T. Mock, A. M. Appel, J. C. Linehan, *J. Am. Chem. Soc.* 2013, *135*, 11533.
- [11] (a) J. Kothandaraman, M. Czaun, A. Goeppert, R. Haiges, J. P. Jones, R. B. May, G. Prakash, G. A. Olah, *ChemSusChem*. 2015, *8*, 1442; (b) G. A. Filonenko, R. van Putten, E. N. Schulpen, E. J. Hensen, E. A. Pidko, *ChemCatChem*. 2014, *6*, 1526; (c) C. Federsel, R. Jackstell, A. Boddien, G. Laurenczy, M. Beller, *ChemSusChem*. 2010, *3*, 1048; (d) H. Horváth, G. Laurenczy, Á. Kathó, *J. Org. Chem*. 2004, *689*, 1036; (e) C.-C. Tai, J. Pitts, J. C. Linehan, A. D. Main, P. Munshi, P. G. Jessop, *Inorg. Chem*. 2002, *41*, 1606.
- [12] (a) R. Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc.
 2009, 131, 14168; (b) T. J. Schmeier, G. E. Dobereiner, R. H. Crabtree, N. Hazari, J. Am. Chem. Soc. 2011, 133, 9274; (c)
 S. Xu, N. Onishi, A. Tsurusaki, Y. Manaka, W. H. Wang, J. T. Muckerman, E. Fujita, Y. Himeda, Eur. J. Inorg. Chem.
 2015, 2015, 5591; (d) K. Rohmann, J. Kothe, M. W. Haenel, U. Englert, M. Hölscher, W. Leitner, Angew. Chem. Int. Ed.
 2016, 55, 8966; (e) Z. Dai, Q. Luo, H. Cong, J. Zhang, T. Peng, New J. Chem. 2017, 41, 3055.
- [13] Y.-N. Li, L.-N. He, A.-H. Liu, X.-D. Lang, Z.-Z. Yang, B. Yu and C.-R. Luan, Green Chem. 2013, 15, 2825.
- [14] J. Kothandaraman, A. Goeppert, M. Czaun, G. A. Olah, G. S. Prakash, J. Am. Chem. Soc. 2016, 138, 778.
- [15] (a) T. Chen, H. Li, S. Qu, B. Zheng, L. He, Z. Lai, Z.-X. Wang, K.-W. Huang, Organometallics 2014, 33, 4152; (b) T. P. Gonçalves, K.-W. Huang, J. Am. Chem. Soc. 2017, 139, 13442; (c) L.-P. He, T. Chen, D. Gong, Z. Lai, K.-W. Huang, Organometallics 2012, 31, 5208; (d) H. Li, Y. Wang, Z. Lai, K.-W. Huang, ACS Catal. 2017, 7, 4446; (e) Y. Wang, B. Zheng, Y. Pan, C. Pan, L. He, K.-W. Huang, Dalton Trans. 2015, 44, 15111; (f)H. Li, B. Zheng, K.-W. Huang, Coord. Chem. Rev. 2015, 293, 116.
- [16] (a) Y. Pan, C. L. Pan, Y. Zhang, H. Li, S. Min, X. Guo, B. Zheng, H. Chen, A. Anders, Z. Lai, K.-W. Huang, *Chem. Asian J.* **2016**, *11*, 1357; (b) L.-P. He, T. Chen, D.-X. Xue, M. Eddaoudi, K.-W. Huang, *Organomet. Chem.* **2012**, *700*, 202.
- [17] J. Su, M. Lu and H. Lin, Green Chem. 2015, 17, 2769.
- [18] A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6411.
- [19] (a) E. Balaraman, C. Gunanathan, J. Zhang, L. J. Shimon and D. Milstein, *Nat. Chem.* 2011, *3*, 609; (b) G. A. Filonenko, E. J. Hensen and E. A. Pidko, *Catal. Sci. Technol.* 2014, *4*, 3474.
- [20] (a) P. Kang, C. Cheng, Z. Chen, C. K. Schauer, T. J. Meyer and M. Brookhart, *J. Am. Chem. Soc.* 2012, *134*, 5500; (b) Y. Maenaka, T. Suenobu and S. Fukuzumi, *Energy Environ. Sci.* 2012, *5*, 7360.
- [21] (a) N. M. Rezayee, C. A. Huff, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 1028; (b) B. Yu, B. B. Cheng, W. Q. Liu, W.

Li, S. S. Wang, J. Cao and C. W. Hu, *Adv. Synth. Catal.* **2016**, *358*, 90.

- [22] (a) P. V. Kortunov, M. Siskin, L. S. Baugh, D. C. Calabro, *Energy Fuels* 2015, 29, 5919; (b) C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res. 2012, 12, 745; (c) Y. J. Kim, J. K. You, W. H. Hong, K. B. Yi, C. H. Ko, J. N. Kim, Sep. Sci. Technol. 2008, 43, 766.
- [23] D. Arnold, D. Barrett, R. Isom, Oil Gas J.; (United States) 1982, 80.
- [24] (a) M. Scott, B. Blas Molinos, C. Westhues, G. Franciò, W. Leitner, *ChemSusChem.* 2017, 10, 1085; (b) J. Kothandaraman, A. Goeppert, M. Czaun, G. A. Olah, G. S. Prakash, *Green Chem.* 2016, 18, 5831.