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Chiral amine-catalyzed asymmetric conjugate addition of 

aldehydes to α-phenylselenoenones as formal Z-allylating agents 

Taichi Kano*, Hiroki Maruyama, Chihiro Homma and Keiji Maruoka* 

α-Selenoenones could be employed  as  Z-allyl precursors in the 

chiral amine-catalyzed asymmetric conjugate addition of 

aldehydes. The obtained formal allylation product, a Z-olefin 

having a sulfonate leaving group, was employed as a synthetically 

useful chiral alkylating agent. 

Organocatalysis is a highly promising tool for the rapid 

construction of chiral building blocks in the asymmetric 

synthesis of natural products and biologically active 

compounds.1 Chiral amine organocatalysts promote various 

asymmetric carbon–carbon bond forming reactions such as 

aldol reactions, Mannich reactions and conjugate additions 

through enamine intermediates.2 However, the asymmetric 

alkylation of aldehydes and ketones remains a challenge due 

to the undesired N-alkylation and deactivation of the amine 

organocatalyst.3-6 On the other hand, the amine-catalyzed 

asymmetric allylation of aldehydes proceeds with the aid of 

transition metal co-catalysts to give allylation products with E-

geometry (Scheme 1a).7 Asymmetric allylation of aldehydes 

using SOMO (singly occupied molecular orbital) activation 

gives the β-branched allylation products.8 Alternatively, 

optically enriched allylation products can be prepared through 

chiral amine-catalyzed conjugate additions (Scheme 1b).9 

However, the enantioselective introduction of Z-allyl groups 

has not been developed to date.10 In this context, we became 

interested in the possibility of using α-phenylselenoenones11 

as new synthetic equivalents to Z-allylating agents. Conjugate 

addition of aldehydes to α-selenoenones will provide α-

selenoketones,12,13 which can be converted to Z-olefins by 

reduction and treatment with a sulfonyl chloride as shown in 

Scheme 1c.14 The obtained Z-olefins, formal allylation products 

have a chiral tertiary carbon atom with three different carbon 

chains and a sulfonate leaving group derived from the 

aldehyde moiety as a useful synthetic handle for further 

elaboration into valuable compounds. Herein we report the 

chiral amine-catalyzed asymmetric conjugate addition of 

aldehydes to α-phenylselenoenones as formal Z-allylating 

agents. 
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Scheme 1 Stereoselective introduction of allyl groups. 

 We first examined the chiral amine-catalyzed asymmetric 

conjugate addition of an aldehyde to α-phenylselenoenone 1a 

(Table 1). In the presence of 10 mol% of Hayashi-Jørgensen 
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catalyst (S)-2
15

 and benzoic acid as cocatalyst, the conjugate 

addition of 3-phenylpropanal to 1a proceeded in toluene to 

give the desired adduct 5a in 72% yield with low 

diastereoselectivity (entry 4). While the major diastereomer 

was obtained with good enantioselectivity (84%), the ee of the 

minor diastereomer was low (24%). The ees of both 

diastereomers are required to be high enough, since they are 

averaged after the elimination of the seleno group in 

conversion to the olefinic compound. By using tritylpyrrolidine 

(S)-3
16

 as catalyst, both diastereomers were obtained with high 

enantioselectivity (entry 5). Very recently, we have developed 

novel tritylpyrrolidine catalysts (S,R)-4a and (R,R)-4a that are 

readily synthesized from L-hydroxyproline.
17

 The reaction 

catalyzed by (S,R)-4a gave a low yield of 5a with higher 

enantioselectivity (entry 6). On the other hand, use of 

diastereomeric catalyst (R,R)-4a improved the yield of 5a 

without loss of enantioselectivity (entry 7). When the modified 

catalyst (R,R)-4b was employed, the product was obtained in 

higher yield, albeit with slightly lower enantioselectivity (entry 

8). Among the solvents tested, the best enantioselectivity was 

obtained in dichloromethane (entry 12). Use of 2,4,6-

trimethylbenzoic acid cocatalyst instead of benzoic acid 

resulted in an increase of yield (entry 13). 

 

Table 1 Optimization of reaction conditions
a 

 
Entry Catalyst Solvent Yield (%)b drc ee (%)d 

1 L-proline toluene trace - - 

2e pyrrolidine toluene 6 2.0/1 - 

3 pyrrolidine toluene 66 1.4/1 - 

4 (S)-2 toluene 72 1.9/1 –84/–24 (63) 

5 (S)-3 toluene 55 2.2/1 –93/–86 (91) 

6 (S,R)-4a toluene 20 1/1.1 –90/–97 (94) 

7 (R,R)-4a toluene 48 3.7/1 97/89 (95) 

8 (R,R)-4b toluene 64 5.2/1 98/69 (93) 

9 (R,R)-4b DMF n.d. - - 

10 (R,R)-4b MeCN 66 3.4/1 96/81 (93) 

11 (R,R)-4b THF n.d. - - 

12 (R,R)-4b CH2Cl2 66 3.8/1 99/85 (96) 

13f (R,R)-4b CH2Cl2 75 2.2/1 98/88 (95) 

a Reactions were performed on a 0.1 mmol scale in 0.1 mL of a solvent. b 1H-NMR 

yield utilizing mesitylene as an internal standard. c Determined by 1H-NMR. d 

Determined by HPLC analysis using a chiral column. Numbers in parentheses are 

averaged ee values of two diastereomers. e Reaction performed without benzoic 

acid. f Use of 2,4,6-trimethylbenzoic acid instead of benzoic acid. n.d. = not 

detected. 

 With the optimized conditions in hand, we explored the 

reaction scope (Table 2). The reaction of a branched aldehyde, 

3-methylbutanal also gave the conjugate adduct in excellent 

enantioselectivity (entry 3). Use of phenylacetaldehyde led to 

a decrease in yield, probably due to the low nucleophilicity of 

the enamine intermediate (entry 4). The lower 

stereoselectivity can be attributed to product epimerization. 

Replacing R
2
 (Ph) on α-selenoenone 1a with other aryl groups 

did not affect the enantioselectivity (entries 5–7). In the 

reaction of α-selenoenones bearing alkyl groups, the yield 

decreased slightly as the alkyl groups were longer (entries 8–

10), but an increased yield was observed with a longer reaction 

time (entry 11).  The moderate yields might be attributed to 

the instability of 1 under the reaction contidions.
18

 

Table 2 Substrate scopea 

 
Entry R1 R2 Yield (%)b drc ee (%)d 

1 Bn Ph 5a 84 2.2/1 98/88 

2 Hex Ph 5b 69 2.2/1 96/75 

3 i-Pr Ph 5c 74 2.4/1 97/95 

4 Ph Ph 5d 38 1.7/1 85/46 

5 Bn 4-MeO-C6H4 5e 59 2.0/1 98/92 

6 Bn 4-Br-C6H4 5f 79 2.8/1 98/90 

7 Bn 2-Naphth 5g 68 2.3/1 96/88 

8 Bn Me 5h 74 3.5/1 98/83 

9 Bn Et 5i 56 3.5/1 98/84 

10 Bn Hept 5j 48 3.5/1 98/87 

11e Bn Hept 5j 60 3.7/1 97/74 

a Reactions were performed on a 0.1 mmol scale in 0.1 mL of CH2Cl2. b Isolated 

yield. c Determined by 1H-NMR. d Determined by HPLC analysis using a chiral 

column. e Performed for 48 h. 

 The obtained conjugate adducts 5 were successfully 

converted to the corresponding olefins (Table 3). The 

conjugate adducts 5 in diethyl ether or THF were reduced with 

LiAlH4 and then treated with methanesulfonyl chloride and 

triethylamine in dichloromethane.
14

 In all cases, olefins 6 were 

obtained in good yields and Z-selectivities without loss of 

enantiopurity. As shown in Scheme 2, addition of hydride ion 

from LiAlH4 would give syn-adducts,
14a

 regardless of the 

stereochemistry at the α-position of ketone 5, and the 

following anti-elimination after mesylation leads to Z-

olefins.
14b 
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Table 3 Transformation of conjugate adducts 5 to Z-olefins 6a 

 
Entry R Yield (%)b Z/E

c ee (%)d 

1 Ph 6a 84 >20/1     95 

2 4-MeO-C6H4 6e 81 19/1     95 

3 4-Br-C6H4 6f 82 >20/1     94 

4 Me 6h 70 10/1     94 

5 Et 6i 83 11/1     94 

6 Hept 6j 82 8.1/1     96 

a See Supporting Information for details. b Isolated yield. c Determined by 1H-

NMR. d The ee of Z-isomer was determined by HPLC analysis using a chiral 

column. 

 

Scheme 2 Formation of Z-olefins. 

 The resulting olefin 6a with the mesylate leaving group was 

used as an alkylating agent having a stereocenter at the β-

position (Scheme 3). In the presence of CuI, the reaction of 6a 

with butylmagnesium bromide gave Z-olefin 7. The 

nucleophilic substitution of 6a by piperidine afforded the 

tertiary amine 8 in good yield. 

 

Scheme 3 Application of 6a as a chiral alkylating agent. 

 In summary, we have developed the chiral amine-catalyzed 

asymmetric conjugate addition of aldehydes to α-

phenylselenoenones as synthetic equivalents of Z-allyl groups. 

The obtained olefinic compound having a sulfonate leaving 

group was employed as a chiral alkylating agent and the 

synthetic utility was successfully demonstrated. 
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