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New Synthetic Route to c-Mercaptomethyl PNA
Monomers
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1University of Naples ‘‘Federico II,’’ Department of Biological Science,
School of Biotechnological Sciences, Napoli, Italy
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Abstract: Peptide nucleic acids (PNAs) are oligonucleotide mimics widely used
as antisense, antigene molecules, and biotechnological tools. Recently, several
microarrays and other biosensors based on PNAs have been developed. The con-
struction of PNA molecular beacons or light-up probes for DNA detection
requires the labelling of the PNA moiety. Labels are usually attached at the C
or N terminal end by a flexible linker or in the middle of a PNA sequence,
substituting one PNA base with an artificial base or by attaching fluorophores to
a modified PNA backbone. The need to develop simple protocols to label PNAs
encouraged us to design a new procedure for the synthesis of c-mercaptomethyl-
modified PNA. Here we propose a new strategy for the synthesis of modified
PNAs, bearing amino acid side chains. The synthesis is straightforward and is
an improvement to the procedures reported so far, as it uses stable intermediates
and proceeds with better yields.

Keywords: Amino acid, PNA, synthesis

Peptide nucleic acids (PNAs) are oligonucleotide mimics widely used as
tools for regulating gene expression. In fact, thanks to their ability to
hybridize with high affinity and specificity with complementary DNA
and RNA and because of their high chemical and enzymatic resistance
they have found several applications, such as antisense, antigene mole-
cules and biotechnological tools.[1–5] Recently several microarrays and
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other biosensors based on PNAs were developed; relative to DNA, PNAs
are advantageous for the DNA survey in complex mixtures as cell
extracts because the hybridization event is not influenced by the ionic
strength of the media and by DNA binding proteins.[6] The construction
of PNA molecular beacons (MBs) for DNA detection requires the label-
ling of the PNA moiety at the C and N terminal end with a fluorophore
and a fluorescence quencher. Recently, quencher-free DNA-based MBs
were synthesized that utilize fluorophores quenched by nucleobases. This
strategy allows for the inclusion of fluorophores at various points in the
oligonucleotide sequence, not just at the termini, and allows in principle
for the incorporation of multiple fluorophores.

The introduction of a label in the middle of a PNA sequence was
realized by substituting one PNA base with an artificial base or by
attaching fluorophores to a modified PNA backbone. The universal
base thiazole orange was successfully inserted into a PNA oligomer
by divergent solid-phase synthesis; a doubly labelled PNA conjugate
containing one dansyl unit at the C-terminus and one dabsyl unit con-
nected through a linker to the exocyclic amine of an adenine in the mid-
dle of a PNA oligomer were obtained.[7,8] A fluorene fluorescent probe
was attached at the c-Lys-modified PNA by solid-phase synthesis.[9]

The need to develop simple protocols to label PNA encouraged us to
design a new procedure for the synthesis of c-mercaptomethyl-modified
PNA. The nucleophilic SH group, in fact, allows for the selective label-
ling of unprotected molecules.[10] Molecular dynamic simulations on
PNA=DNA duplexes containing L-c-hydroxymethyl PNA demon-
strated that the side chain in the c position points toward the outer part
of the duplex.[11] As is reasonable in a PNA=DNA duplex in which the
oligomer contains a Cys-modified PNA monomer, the L-c-Cys PNA
monomer side chain will also be directed to the outer part of the
duplex; this will allow for the modification of the PNA by a fluoro-
phore, without hampering the formation of Watson–Crick hydrogen
bonds between complementary bases. A cysteine-like PNA monomer
at the N-terminus of a chain can be used for chemical ligation purposes,
for obtaining either long PNA or PNA-peptide conjugates.[3,12] Further-
more, the presence of Cys-like residues in complementary strands
might allow for the stabilization of duplex structures upon disulfide
bond formation.

Here we propose a new strategy, an alternative to those reported in
the literature, for the synthesis of modified PNA bearing amino acid side
chains, starting from amino alcohols.[13,14]. The main advantage of this
strategy is represented by the use of more stable intermediates (azides
and amines) as compared to those used in the protocols reported so
far. Today all the synthetic procedures for Cys-modified PNA monomers
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involve the formation of an aldehyde intermediate, which cannot
be purified nor stored as it easily racemizes.[15,16] The present protocol
overcomes the racemization issue and the need to operate in extremely
dry conditions (as required for the N-protected a amino aldheydes
synthesis).

The synthesis of the modified monomer was carried out by reactions
that do not involve the chiral carbon. Synthesis started out from commer-
cially available S-benzyl cysteinol. The amino alcohol was synthesized
following procedures reported in the literature.[17] After protection of
the terminal amino group with Boc, the alcohol (2) was transformed into
the corresponding azide derivative (3) by treatment with PPh3=NaN3 in
CCl4=DMF (Scheme 1).[18] This reaction is usually employed for the
synthesis of azides and amines from alcohols. The reaction proceeds
through an intermediate chloride derivative, which is easily transformed
into the azide, thanks to the high nucleofilicity of the azide group.
Triphenylphosphine is used both for the halogenation reaction and for
the reduction of the azide. Attempts to obtain the amine from the
alcohol, using either large amounts of phosphines or various phosphine
derivatives, were not successful. Reduction of the azide (3) was carried
out by hydrogenation on palladiated charcoal. The resulting amine (4)
was then reacted with methyl bromoacetate to give the fully protected
backbone (5) (Scheme 1). The new backbone was coupled to a functiona-
lized nucleobase, synthesized following procedures reported in the
literature (Scheme 2).[19]

Scheme 1. Regents and condition: a) (Boc)2O, TEA, 98%; b) PPh3, NaN3

CCL4=DMF, 72%; c) H2, Pd=C, 100%; d) BrCH2COOCH3, TEA, 55%.

Scheme 2. Regents and condition: a) EDC, DMAP, 99%; b)NaOH, 87%.

c-Mercaptomethyl PNA Monomers 2501
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Reaction of 5 with 1N-carboxymethylthymine afforded in high yield
the mercaptomethyl-derivatized PNA monomer (6). The same reaction
can be carried out with all the DNA bases, functionalized with a carbox-
ymethylene. Deprotection of the ester 6 by treatment with sodium
hydroxide afforded the carboxylic acid 7, which can be used for the
solid-phase synthesis of modified PNA oligomers.

All products were characterized by NMR (1H and 13C) and mass
spectrometry (ESI). To confirm the chirality of the stereogenic center
was maintained, a measurements were carried out on the backbone (4).

In conclusion, a new procedure for the synthesis of mercaptomethyl-
derivatized PNA monomer was developed starting from a commercially
available compound. The synthesis is straightforward and represents
an improvement to the procedures reported so far, as it uses stable
intermediates and proceeds with better overall yields.

MATERIALS AND METHODS

All chemicals were purchased at Fluka at the highest purity available and
used without further purification. Thin-layer chromatography (TLC) was
run on Alugram Sil G=UV254 plates developed with ninhydrin or UV
visualized. Column chromatography was performed on Fluka silica gel
60 (size: 0.04–0.063 mm). 1H and 13C NMR spectra were recorded on a
Varian Innova instrument (600 MHz) at room temperature. The signals
of the residual protonated solvents (CDCl3 or DMSO d6) were used as
reference signals. High-resolution mass spectra were measured on a
Finnigan MSQ mass spectrometer by electrospray ionization.

EXPERIMENTAL

N-Tert-butyloxycarbonyl-S-benzyl-(R)-cysteinol (2)

Triethylamine (2.56 mmol, 359 mL) was added to a solution of S-benzyl-
(R)-cysteinol (2.56 mmol, 505 mg) in THF (7.50 mL). After 10 min of stir-
ring, di-tert-butyldicarbonate (2.56 mmol, 558 mg) was added at 0 �C. The
reaction mixture was stirred for 2 h at room temperature. The solvent was
then evaporated under reduced pressure; the residue was dissolved in
ethyl acetate and washed with water. The organic layer was separated,
dried with Na2SO4, filtered, and evaporated under reduced pressure to
yield a colorless oil (744 mg, 98%). Rf: 0.60 (petroleum ether=ethyl acet-
ate 6=4 v=v). Mass spectrum: m=z (ESI), [MþH]þcalcd. 298.14; found
298.12. 1H NMR (CDCl3; d in ppm): 1.45 (9H, s, CH3Boc), 2.36 (1H, s,
OH), 2.61 (2H, m, CH2-S), 3.71–3.80 (5H, m, CH2-OH, Ph-CH2, Ca),
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7.25–7.34 (5H, m, Ph). 13C NMR (CDCl3; d in ppm): 28.85 (CH3Boc),
33.09 (SCH2), 37.04 (PhCH2), 51.99 (Ca), 64.73 (CH2OH), 127.7,
129.08, 129.4, 138.5 (Ph).

N-Tert-butyloxycarbonyl-2-azido-1-(benzylthiomethyl)ethylamine (3)

A mixture of NH-Boc-S-benzyl-(R)-cysteinol (2.50 mmol, 744 mg), sodium
azide (3.00 mmol, 195 mg), and PPh3 (2.50 mmol, 656 mg) in 28.0 mL of
CCl4=DMF (1=4 v=v) was warmed at 90 �C with stirring. The starting
material was completely consumed (TLC monitoring) within 1 h. The reac-
tion mixture was then cooled down to room temperature, diluted with
water, and extracted with ether. The organic layer was dried over Na2SO4,
concentrated on a rotary evaporator, and dried under vacuum to give a
crude colorless oil. The residue was purified by flash-column chromato-
graphy (petroleum ether=ethyl acetate 95=5 v=v) to give 579 mg (72%) of
pure azide. Rf: 0.52 (petroleum ether=ethyl acetate 7=3 v=v). Mass spec-
trum: m=z (ESI), [MþH]þcalcd. 323.15; found 323.10. 1H NMR (CDCl3;
d in ppm): 1.45 (9H, s, CH3Boc), 2.57 (2H, m, CH2S), 3.47– 3.86 (5H, m,
5H, m, CH2N3, PhCH2, Ca), 7.25–7.34 (5H, m, Ph). 13C NMR (CDCl3; d in
ppm): 28.82 (CH3Boc), 33.59 (SCH2), 36.95 (PhCH2), 49.76 (Ca), 53.51
(CH2N3), 127.7, 129.1, 129.4, 138.3 (Ph), 156.3 (C ¼ O).

N-Tert-butyloxycarbonyl-2-(benzylthiomethyl)ethylendiamine (4)

To a solution of 3 (3.11 mmol, 1.00 g) in dry CH2Cl2 (20.0 mL) at room tem-
perature was added Pd on charcoal (100 mg); after stirring for 60 min under
an atmosphere of hydrogen, the reaction was complete as judged by TLC.
The catalyst was filtered off, and the filtrate was concentrated. The product
was used in the next step without further purification. Rf: 0.52 (ethyl aceta-
te=methanol 8=2 v=v). Mass spectrum: m=z (ESI), [MþH]þcalcd. 297.16;
found 297.10. 1H NMR (CDCl3; d in ppm): 1.45 (9H, s, CH3Boc), 2.50–
2.65 (2H, m, CH2S), 2.80 (2H, bs, CH2NH2), 3.60–3.73 (3H, bs, CH2Ph,
Ca), 7.25–7.34 (5H, m, Ph). 13C NMR (CDCl3; d in ppm): 28.88 (CH3Boc),
34.27 (SCH2), 37.15 (PhCH2), 44.71 (CH2NH2), 52.21 (Ca ), 80.01 (CBoc),
127.6, 129.0, 129.5, 138.6 (Ph), 156.2 (C ¼ O).

N-Tert-butyloxycarbonyl-1-(benzylthiomethyl)-N0-
methoxycarbonylmethyl-ethylendiamine (5)

To a solution of 4 (3.04 mmol, 900 mg) and Et3N (3.34 mmol, 470 mL)
in dry CH2Cl2 (10.0 mL), methyl bromoacetate (3.04 mmol, 279 mL)

c-Mercaptomethyl PNA Monomers 2503
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in CH2Cl2 (200 mL) was added dropwise. The reaction was stirred over-
night, and subsequently aqueous NaHCO3 was added. The organic layer
was dried over Na2SO4, filtered, and concentrated to dryness. Purifi-
cation of the crude oil by silica-gel column chromatography (diethyl
ether= petroleum ether 6=4 to 9=1 v=v) afforded pure 5 as a yellow oil.
Yield: 612 mg (55%). Rf: 0.3 (diethyl ether=petroleum ether 85=5 v=v).
Mass spectrum: m=z (ESI), [MþH]þcalcd. 369.18; found 369.10.
1H NMR (CDCl3; d in ppm): 1.45 (9H, s, CH3Boc), 2.52–2.78 (4H, m,
CH2S and CH2N), 3.37 (2H, dd, NCH2CO), 3.72 (3H, s, OCH3), 3.73
(2H, s, CH2Ph), 3.8 (1H, bs, Ca), 7.25–7.34 (5H, m, Ph).13C NMR
(CDCl3; d in ppm): 28.88 (CH3Boc), 34.66 (SCH2), 37.26 (PhCH2),
50.21 (CH2NH), 51.27 (CH2C ¼ O), 51.86 (OCH3), 52.27 (Ca), 79.97
(CBoc), 127.5, 129.0, 129.5, 138.7 (Ph), 156.0 (NHC ¼ O).

N-Tert-butyloxycarbonyl-1-(benzylthiomethyl)-N0-methoxycarbonylmethyl-

N0-[(thymin-1-yl)acetyl]-ethylendiamine (6)

To a solution of 5 (1.33 mmol, 490 mg) in dry DMF (10.0 mL), thymin-
1-ylacetic acid (1.93 mmol, 355 mg), and 4-(dimethylamino)pyridine
(DMAP) (0.13 mmol, 15.9 mg) were added, and the mixture was stirred
until most of the acid dissolved. Next, N-(3-dimethylaminoproply)-N0-
ethylcarbodimide hydrochloride (EDC) (2.93 mmol, 561 mg) was added
and the mixture was stirred overnight. The solution was concentrated in
vacuo, and the residue was partitioned between ethyl acetate and satu-
rated aqueous NaHCO3. The aqueous layer was back-extracted with
ethyl acetate, and the combined organics were washed with brine and
dried (Na2SO4). The organic layer was then concentrated on a rotary
evaporator and dried under vacuum.

Purification by flash chromatography (ethyl acetate=petroleum
ether 95=5 v=v) gave 6 (670 mg, 94%) as a white solid. Rf: 0.55 (diethyl
ether=petroleum ether 7=3 v=v). [a]20

D ¼�7.4 (c ¼ 0.02 in CHCl3).
Mass spectrum: m=z (ESI), [MþH]þcalcd. 535.21; found 535.29. 1H
NMR (CDCl3; d in ppm): two rotamers; major product 1.41 (9H, s,
CH3Boc), 1.66 (1H, s, NH), 1.91 (3H, s, CH3Thy), 2.48–2.78 (4H, m,
CH2S and CH2N), 3.43–3.46 (2H, dd, NCH2CO), 3.72 (3H, s,
OCH3), 3.76 (2H, s, N1ThyCH2CO), 3.8 (2H, s, CH2Ph), 4.12–4.16
(1H, m, Ca), 6.98 (1H, s, H6), 7.25–7.32 (5H, m, Ph), 8.35 (1H, s,
NHThy). 13C NMR (CDCl3; d in ppm): two rotamers; major product
12.81 (CH3Thy), 28.81 (CH3Boc), 37.41 (SCH2), 41.61 (PhCH2), 48.00
(CH2COOMe), 49.42 (Ca), 51.08 (CH2N1Thy), 52.83 (COOMe),
53.40 (Ca CH2N), 111.1 (C5Thy), 127.9, 129.2, 129.4, 138.5 (Ph),
151.3 (C(2) ¼ OThy), 164.3 (C(4) ¼ OThy), 169.9 (COOMe).

2504 S. Pensato et al.
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N-Tert-butyloxycarbonyl-1-(benzylthiomethyl)-N0-carboxymethyl-N0-
[(thymin-1-yl)acetyl]-ethylendiamine (7)

Compound 6 (46. 8 mmol, 25. 0 mg) was dissolved in dioxane (500 mL)
and 2 M NaOH (117 mL) was added. After stirring for 20 min, the reac-
tion was complete as shown by TLC. The mixture was acidified by adding
1 N HCl to pH 2–3. The aqueous phase was extracted with ethyl acetate.
The combined organic phases were dried with Na2SO4, and the solvent
was evaporated under reduced pressure. Purification of an analytical
sample (9.7 mg) by reverse-phase HPLC afforded 7 (8.2 mg, 87%) as a
white powder. Rf: 0.70 (ethyl acetate=methanol=formic acid 85=10=5
v=v=v). Mass spectrum: m=z (ESI), [MþH]þcalcd. 521.21; found
521.27. 1H NMR (CDCl3; d in ppm): two rotamers; major product
1.42 (9H, s, CH3Boc), 1.88 (3H, s, CH3Thy), 2.48–2.68 (4H, m, CH2S
and CH2N), 3.48–4.58 (1H, m, Ca), 3.71 (2H, s, NCH2CO), 3.75 (4H, s,
CH2Ph and N1ThyCH2CO), 6.97 (1H, s, H6Thy), 7.23–7.32 (5H, m, Ph),
10.1 (1H, s, COOH). 13C NMR (DMSO; d in ppm): two rotamers; major
product 15.85 (CH3Thy), 32.22 (CH3Boc), 37.98 (SCH2), 38.70 (PhCH2),
51.97, 52.43, 54.98, 81.98 (CBoc), 111.9 (C5Thy), 130.6, 132.2, 132.8,
142.6 (Ph), 146.1, 155.0, 159.3, 168.4 (COOH).
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