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A practical Cu-catalyzed direct ortho-halogenation of anilines 5 

under aerobic conditions has been developed. The reaction 
shows typically excellent mono-substitution selectivity, high 
ortho-regiocontrol and large functional group tolerance.  

Oxidative coupling reactions under O2 are extremely attractive 

from academic and industrial standpoints.1-3 In this context, 10 

Cu has proven to be a versatile oxidant in coupling reactions, 

many of which can be rendered catalytic under aerobic 

conditions.4 In spite of this, Cu-catalyzed aerobic aryl C−H 

functionalization5 has only recently begun to draw attention. 

Most precedents deal with base-promoted reactions at acidic 15 

C−H bonds (pKa < 35; polyfluoroarenes or 1,2-azoles),6 whilst 

base-free activation of “inert” aryl C−H bonds has been 

seldom explored. In a pioneering work, Yu reported the Cu-

catalyzed o-functionalization of 2-arylpyridines.7 The aerobic 

Cu-catalyzed cyclization (hence intramolecular) of anilides 20 

has also been disclosed.8,9 Cu-catalysis allows new activation 

modes that could result in novel patterns of reactivity or 

selectivity. For instance, CuII has been proposed to induce 

SET oxidations10 involving cation-radical intermediates. 

Halogenated anilines are versatile precursors for heterocyclic 25 

frameworks that have been historically accessed through 

electrophilic halogenation or o-directed-lithiation. Pd- or Rh-

catalyzed C−H halogenation has recently provided useful 

alternative approaches.11 However, limitations still remain in 

terms of scope, mono-/disubstitution selectivity, and 30 

enviromental impact (expensive/toxic metals, stoichiometric 

oxidant, chlorinated solvents and/or strong acids). 

Cu-catalyzed/promoted o-halogenation strategies12 have been 

exclusively applied to arenes with a non-removable 2-pyridyl 

(or a related heteroaryl) directing group. Yu et al. reported 35 

the o-halogenation of 2-arylpyridines using X2CHCHX2 (X = 

Cl, Br) as halogen source.7 Chlorination of 2-arylpyridines 

with PhCOCl/Li2CO3
13 or LiCl14 was also reported. In all 

cases, controlling mono- vs disubstitution was problematic. 

Paucity of Cu-catalyzed o-C−H functionalization methods 40 

arises from challenges in the activation mechanism (different 

from typical cyclometalation) and lack of suitable removable 

directing groups.10b,15 Herein we disclose a Cu-catalyzed o-

halogenation of anilines that relies on a readily removable N-

sulfonyl directing group. This method uses convenient X+ 45 

source, N-halosuccinimides (NXS, X = Cl, Br)/industrially 

friendly solvent (CH3CN), operates under aerobic conditions, 

and displays high regio- and mono-halogenation selectivity.  

On the basis of our previous results on N-(2-pyridyl)sulfonyl-

directed C−H functionalization,16 we initially examined the 50 

prospective o-chlorination of N-(2-pyridyl)sulfonyl aniline (1) 

under Yu‘s conditions (20 mol% CuCl2 in Cl2CHCHCl2, O2 at 

130 °C).7 Gratifyingly, the o-chloroaniline 1-Cl was isolated 

as the only product (78% yield, Scheme 1). Both electron-rich 

and electron-deficient derivatives performed well (products 2-55 

Cl and 3-Cl, 94% and 89% yield, respectively). A striking 

feature of this reaction was that no di-o-chlorination occurred. 

 

Scheme 1 Initial Cu-catalyzed aerobic o-chlorination of anilines. 

Despite these encouraging results, the industrially disfavored 60 

solvent Cl2CHCHCl2 and heating at 130 °C for 24 h were 

important drawbacks. Therefore, it was deemed appropriate to 

develop a more efficient and environmentally benign protocol. 

After some investigation (see ESI), we were keen to find that 

selective o-chlorination of aniline 1 was cleanly achieved in 65 

the presence of 10 mol % CuCl2 using NCS (1.2 equiv), upon 

heating for 4 h at 100 °C in MeCN under O2 (Scheme 2).17 

The o-chloroaniline 1-Cl was obtained in 95% isolated yield 

with excellent regiocontrol (only traces of the p-Cl derivative 

were detected by GC) and complete mono-substitution 70 

selectivity. An attempt to lower the amount of CuCl2 to 5 mol 

% resulted in the competitive formation of the p-Cl aniline 

derivative 1-(p)-Cl (o/p = 3:1), likely via an electrophilic 

substitution pathway. Consistent with this result, product 1-
(p)-Cl was formed in 90% isolated yield in the absence of Cu-75 

catalyst, illustrating also the complementarity between the Cu-

catalyzed and uncatalyzed reactions (Scheme 2). 

 

Scheme 2 Cu-catalyzed vs uncatalyzed aerobic NCS-o-chlorination 

of 1. Conditions: O2 (1 atm), MeCN, 100 ºC, 4 h. 80 

A screening of protecting groups revealed that the NH-

(SO2Py)- group was uniquely effective for the formation of 1-
Cl (Table 1). The NH-Ts aniline 4 led to the p-Cl product with 

very high selectivity (entry 2), suggesting that the lack of the 
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“directing” 2-Py unit caused the background electrophilic 

chlorination to dominate. The more activated acetanilide (5) 

led mainly to the 2,4-dichlorination product (entry 3), while 

the unprotected aniline resulted in very low o/p- and mono/di-

selectivities (entry 4). Notably, the coordinating NH-CO(2-5 

Py)-group (substrate 6) provided the p-Cl regioisomer as the 

major product (entry 5), emphasizing the cooperative 

directing role of both SO2 and 2-Py moieties in 1. Finally, N-

alkylation did not fit for this reaction, as the N-(Me)(SO2Py)-

aniline 7 provided only traces of the o-Cl product (entry 6). 10 

Table 1 Optimization of the N-directing/protecting group 
 

 

Entry PG / R (substrate) o-Cla p-Cla di-Cla 

1 SO2(2-Py) / H (1) 79 (95)b <5 − 

2 Ts / H (4) 6 90 −4 

3 Ac / H (5) 10 − 60 

4 H / H 34 29 15 

5 C(O)(2-Py) / H (6) 12 69 18 

6 SO2(2-Py) / Me (7) 10 87 − 

Conditions: aniline (0.20 mmol), NCS (0.24 mmol), CuCl2 (10 mol %), 
MeCN (0.2 M), 100 °C, 4 h, O2 (1 atm). a GC yields (n-hexadecane as 

internal standard). b Isolated yield. 15 

Examination of the scope revealed that a wide variety of p- 

and m-substituted anilines underwent o-chlorination in good 

yields (52−89%, Scheme 3). Selective mono-chlorination and 

o-selectivity with regard to the amino group was observed in 

p-substituted derivatives, regardless of the electron-rich (2-, 20 

8- and 23-Cl) and electron-deficient [3- and (9-16)-Cl] nature 

of the substitution. The regioselectivity in m-substituted 

substrates proved to be sensitive to both electronic and steric 

issues. For example, chlorination of the m-F-derivative 

occurred with complete regiocontrol at the more acidic o-C−H 25 

flanked by the C−F bond [17-Cl; also (20-22)-Cl], whereas a 

bulky m-(i-Pr) group directed the chlorination to the less 

hindered o-position (18-Cl). A m-CF3 group, however, was 

not effective in controlling the regioselectivity (19-Cl). 
Substrates bearing strong electron-withdrawing groups (NO2, 30 

CN, COMe, CF3, CO2Me) were equally effective than those 

with electron-donating groups (OMe, Me), which stands in 

contrast to most of Pd-catalyzed examples that are especially 

suited for electron-rich substrates.11 Even a base-sensitive 

COMe group (13) was suitable. N,N-Dichloro-5,5-35 

dimethylhydantoin (DCDMH) served as alternative reagent, as 

demonstrated for the p-toluidine derivative (8-Cl). The 

complete o-selectivity was particularly noteworthy in the p-

OMe-aniline derivative, with two o-directing (electron 

releasing) groups (2-Cl). This selectivity in p-methoxyanilides 40 

typically requires o-lithiation strategies.18 

We next studied the bromination using NBS/CuBr2 under 

identical conditions. Interestingly, both p- and m-substituted 

anilines with either electron-donating or withdrawing groups 

were suitable substrates (Scheme 3). Anilines with m-45 

substitution provided synthetically useful yields, particularly 

those with bulky or electron withdrawing substituents19 [(17-
19)-Br, 52-64%], although the o-regiocontrol proved to be 

less efficient than in the chlorination reaction. In fact, the 

CuBr2-catalyzed NBS-bromination of the parent aniline 1 50 

provided a 1:1 mixture of o- and p-substitution (in the absence 

of Cu only p-bromination was observed; see ESI). 

NHSO2Py NHSO2Py

OMe

X

Br

X

NHSO2Py

Me

X

NHSO2Py

I

X

2-Cl, 89% 8-Cl, 78% (81%)c

8-Br, 71% (69%)c
9-Cl, 58%

9-Br, 57%

10-Cl, 61%

10-Br, 85%

NHSO2Py

H

R

NXS (1.2 equiv)

CuX2 (10 mol %), O2 (1 atm)

MeCN, 100 ºC, 4-8 h

NHSO2Py

X

R

(X = Cl, Br)

NHSO2Py

NHSO2Py

Cl

X

CN

X

NHSO2Py

F

X

NHSO2Py

NO2

X

11-Cl, 76%

11-Br, 45%

12-Cl, 80%

12-Br, 79%

16-Cl, 86%

16-Br, 73%

15-Cl, 82%

15-Br, 74%

NHSO2Py

X

NHSO2Py

Cl

NHSO2Py

X

17-Cl, 78%

17-Br, 64%d

18-Cl, 52%e
19-Cl, 58% (as 1:1 mix-
ture both o-regioisomers)F i-Pr F3C

NHSO2Py

Cl

20-Cl, 58%

Cl

I

NHSO2Py

Cl

21-Cl, 60%

Cl

Br

NHSO2Py

X

22-Cl, 64%

22-Br, 60%f

Cl

Cl

2-Br, 88%b

50-89% yielda

NHSO2Py

COMe

X

13-Cl, 73%

13-Br, 85%

NHSO2Py

CO2Me

X

NHSO2Py

CF3

X

3-Cl, 80%

3-Br, 83%

14-Cl, 86%

14-Br, 86%

NHSO2Py

23-Cl, 74%

23-Br, 80%

O

O

X

18-Br, 52%e

p-substituted anilines

m-substituted anilines

m,p-disubstituted anilines

19-Br, 59%

 

Scheme 3 Scope of the Cu-catalyzed o-halogenation. a Isolated yields. b 

DMF, 150 ºC (20 mol% of CuBr2). 
c Using hydantoin derivatives (0.6 55 

equiv). d The other o-regiosiomer was detected (10% by GC). e Minor 

unidentified halogenated products were detected. f The other o-

regiosiomer was detected (14% by GC). 

While p- and m-substitution were well tolerated, o-substituted 

anilines were not applicable, as evidenced in the chlorination 60 

of 12-Cl (Scheme 4). To circumvent this problem we found 

inspiration in Gevorgian’s Si-tethered 2-pyrimidyl (2-PyrSi) 

directing group, which enabled Pd-catalyzed double o-C−H 

oxygenation in cases where the 2-PySi group failed.20 Indeed, 

a critical reactivity improvement was found in the chlorination 65 

of N-(2-Pyr)SO2-aniline 26-Cl, providing the o-chlorinated 

product 26-Cl2 in 78% yield, yet requiring higher CuCl2 

loading (30 mol %) and longer time (16 h).21 The 2-PyrSO2 

group also allowed the access to the anilines 27-Cl and 28-Cl.  

 70 

Scheme 4 Chlorination of o-substituted NH-(2-PyrSO2)-anilines. 
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Notably, smooth di-o-chlorination was observed in anilines 

with the two o-positions unsubstituted (Scheme 5).21 

 

Scheme 5 Di-o-chlorination. 

The lack of NCS-chlorination of 1 in the presence of radical 5 

scavengers such as TEMPO or Galvinoxyl (1.0 equiv) 

suggested that a SET pathway might operate.22 Finally, both 

Py- and Pyr-based directing groups could be removed under 

mild conditions to generate the free NH2-anilines (31 and 32, 

Scheme 6). The versatility of the halogenated products as 10 

building blocks was illustrated in the conversion of the 

derivative 3-Br into the functionalized indoles 33 and 34.23 

 

Scheme 6 Deprotection and synthetic applications. 

In summary, a highly regioselective N-SO2Py-directed Cu-15 

catalyzed o-C−H monohalogenation of anilines leading to o-

Cl and o-Br aniline derivatives has been developed. The 

directing 2-pyridylsulfonyl and 2-pyrimidylsulfonyl groups 

can be easily cleaved in the final products.  
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