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SUMMARY

A novel approach for asymptotic reduction of physi-

cal optics (PO) integration is proposed for two-dimensional

line source diffraction from a half-sheet. The field equiva-

lence principle provides alternative integration surfaces not

on the original half-sheet but on the geometrical shadow

(SB) and reflection (RB) boundaries, where analytical in-

tegration leads to the well-known Fresnel-type uniform PO

diffraction coefficient of UTD type. The superiority of the

uniform diffraction coefficient to those of other types is

explained in terms of the location of the integration surfaces

and is demonstrated numerically. © 2001 Scripta Technica,

Electron Comm Jpn Pt 2, 84(2): 54�62, 2001
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1. Introduction

Physical optics (PO) [1] is a high-frequency tech-

nique in which the total induced currents J are approxi-

mated in the sense of geometrical optics (GO). The PO

currents JPO thus defined are then integrated over the sur-

face to give finite fields everywhere, including geometrical

boundaries and caustics in focusing systems. PO has been

widely applied to the pattern analysis of reflector antennas.

In PO, the scattering fields are obtained by evaluating

the surface radiation integrals of JPO, which is performed

numerically in general. The asymptotic evaluation of these

surface integrals [2, 3] leads us to line integral repre-

sentations or closed-form expressions of fields, which

greatly contributes not only to reducing the computation

time but also to mechanism extraction of PO [4]. In general,

the asymptotic reductions of PO surface integrals such as

the geometrical theory of diffraction (GTD) become infi-

nite at geometrical boundaries and caustics. To eliminate

these difficulties, several uniform expressions have been

proposed. In Ufimtsev�s physical theory of diffraction

(PTD) [5�7], PO currents are improved by adding another

component called fringe wave currents JFW. Many works

about the evaluation of surface integrals for diffraction from

a half-sheet are developed in the spectral domain [8�11].

Efforts to achieve surface to line integral reduction

have included both an exact approach based on the Helm-

holtz�Huygheng principle [12�15] and asymptotic ap-

proaches such as the high-frequency approximation

[16�21]. The asymptotic and local expressions are quite

different from the exact and global ones and sometimes

have the advantage that the former is applicable to a much

wider class of scatterers based on local features of the

diffraction phenomena.

In two-dimensional (2D) problems of half-sheet dif-

fraction illuminated by a line source, the edge contribution

of the PO integral is asymptotically expressed in terms of

PO diffraction coefficients. PO diffraction coefficients of

the classical Keller type are nonuniform at geometrical

boundaries, such as shadow and reflection boundaries

(SB/RB) [16�18]. Two types of uniform expressions to

cope with these difficulties are available. The coefficients

of the first kind were derived by directly applying the

uniform asymptotic evaluation to integration on a half-sheet
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[3, 19, 22]. Those of the second kind have the symmetry

analogous to those based on uniform theory of diffraction

(UTD) [8, 10, 23�26] that have been proposed in the

spectral domain [8, 10]. Though numerical comparison

indicated that the second kind is superior to the first kind,

comparison of the two in terms of accuracy or applicability

is insufficient since the direct derivation of the second kind

in the spatial domain has not been accomplished. For a full

understanding of the accuracy and the applicability of the

PO diffraction coefficient of UTD type, its spatial domain

derivation is indispensable.

This paper presents the mathematical derivation of

the uniform PO diffraction coefficient in the spatial domain

for the first time. In our derivation based on the field

equivalence principle [27, 28], the original PO integration

surface on the half-sheet is transferred into two surfaces

coinciding with GO-SB and GO-RB, on which the integrals

can be evaluated analytically [29�31]. We obtain some

important results by analyzing the problem in the spatial

domain as follows:

x The diffraction coefficients are uniformly valid for

arbitrary combinations of the angular positions of

the source and the observer, provided that the

distance between the source and the edge is large.

x The distance between the source and the edge is

always larger than the parameter in the conven-

tional derivation on the original half-sheet, that

is, the distance between the source and the half-

sheet. Therefore, the superiority of the uniform

PO diffraction coefficient of UTD type is

clearly identified.

x The difference between the uniform PO diffrac-

tion coefficient of UTD type and the conventional

coefficient increases as the angular position of the

source moves to the infinite plane including the

half-sheet.

The above results are confirmed numerically.

2. Physical Optics and PO Diffraction

Coefficients

We consider the 2D problem of cylindrical wave

diffraction by the half-infinite conducting sheet C0 shown

in Fig. 1. In the PO approach, the induced currents (PO

currents) on the surface of the sheet are given by

I   2n̂ u Hi, M   0 and hence, the total field is

where Z is the angular frequency, P is the permeability,

Ei�P� is the incident field from the line source I0 at the

observation point P, n̂ is the unit vector normal to the

half-sheet C0, and G is the 2D Green�s function with wave

number k for the far field:

Hi is the magnetic field incident on C0 and is given as

follows with the amplitude of the line current I0 assumed

to be unity:

where H1
�2� is the first-order Hankel function of the second

kind, and I^ is the unit vector in the direction of I. If the

distance dmin between the current and the half-sheet satisfies

the relation

Equation (3) can be approximated as

By substituting Eqs. (2) and (5) into Eq. (1), we get the PO

integral to be evaluated asymptotically,

where K denotes the intrinsic impedance of free space and

ẑ is the unit vector pointing into the positive direction along

Fig. 1. The scattering problem of cylindrical waves by

the half-sheet C0.

(1)

(2)

(3)

(4)

(5)

(6)
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the z-axis. Direct application of asymptotic theory [2] to the

integral leads us to the diffracted wave

where Ez
i  is the z-component of the incident electric field at

the edge of half-sheet and D is the PO conventional diffrac-

tion coefficient, expressed as

This coefficient diverges at GO-SB(I = Ii + S) and GO-

RB(I = Ii � S), as the GTD diffraction coefficient of Keller

does. On the other hand, the use of the uniform asymptotic

method [22, 23] gives a slightly different uniform diffrac-

tion coefficient:

This coefficient gives finite fields even at GO-SB and

GO-RB [19, 22]. F�x� is the modified Fresnel function

We denote the numerical integration in Eq. (6) by POap-

prox.inc. It is noted that in the uniform asymptotic manner

[3, 19, 22] we must evaluate the integration over the ex-

tended range ��f, f�. In this case we have the condition

kdmin
f  !! 1 instead of Eq. (4), dmin

f  being the distance from

the source to the infinite plane containing the half-sheet C0.

This condition means that the accuracy of Eq. (9) degrades

when Ii o 0° and 180°. It proves that the diffraction coef-

ficient of UTD type presented in this paper maintains high

accuracy for such locations.

3. Transformation of Integration Plane by

Field Equivalence Principle [30, 31, 33�36]

We first decompose the PO currents on the half-sheet

into two parts <1> and <2>, as shown in Fig. 2. The location

of the source as well as the definition n̂ in <2> is then

changed to that of the image in Fig. 3, where Hic and Eic
denote the incident fields from this rotated current Io

g ; these

fields are related to the original incidence as

n̂c u Hic   n̂ u Hi and Eic   Ei. Now the surface currents on

the two surfaces consist of the special combination of

{I   n̂ u Hi and M   Ei u n̂} and {I   n̂c u Hic and

M   Eic u n̂c} for <1> and <2>, respectively, which appear

in the field equivalence principle [27�29, 35]. After the

decomposition in Fig. 2, we can rewrite the PO field in Eq.

(1) as

Note that the original field in Eq. (1) remains unchanged

through these manipulations into Eq. (11).

In order to change the integration plane to the above

decomposed problem, we define the closed curves

C { C0 � C1 � Cf for <1>, which consist of a half-line C0

on the half-sheet, C1 on GO-SB, and the circular arc Cf with

(7)

(8)

(9)

(10)

Fig. 2. The decomposition of PO currents.

Fig. 3. Closed curves for the field equivalence principle.

(11)
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infinite radius as in Fig. 3. The closed curve C divides the

whole space into subspaces V and V
BB

. In a similar way,

Cc { C0 � C1
g � Cf

g , Vc, and V
BB
c are defined for <2>. Note

that n̂ u Hi and n̂c u Hic vanish on C1 and C1
g, respectively.

Now the relation between integrals on C0 and C1 is derived

based on the field equivalence principle so that the PO

integration on the half-sheet C0 may be transformed into

integrations on GO-SB (C1) and GO-RB �C1
g�. In terms of

geometrical optics, there are three kinds of position of

observer P; in the shadow region (P � V), the reflection

region (P � Vc), and the rest �P � V
BB

 � V
BB
c�.

Applying the field equivalence principle to the closed

curves C and Cc, we obtain the relation between integrals

as follows, under the conditions that n̂ u Hi   0 on C and

n̂c u Hic   0 on Cc:

where n̂ � Ei   0 on C. In a similar way, we have

From Eqs. (12) and (13), the PO total field in Eq. (11) is

expressed in terms of integrals on C1 and C1
g  instead of that

on C0 as

where �Eic�P� is the incident field from the image source,

that is, the reflection field at P. Thus, the last term in this

equation indicates the geometrical optics contribution in the

reflective region; we finally reach the following formula for

the original diffracted field from the half-sheet.

Thus, the integral over the original semi-infinite sheet C0

for the PO total field in Eq. (1) is now transformed into

integrals over two semi-infinite lines on shadow boundaries

C1 and C1
g  for the PO diffracted field. The above transfor-

mation is exact and its significance is that the minimum

distance between the surface C1 (and C1
g ) and the source I0

(and I0
g ) is d and is always larger than dmin. This loosens the

restriction in Eq. (4) and enhances the accuracy of asymp-

totic reduction of integrals.

4. Uniform PO Diffraction Coefficient

We focus on evaluation of the integral ³C1
 �Ei u

n̂� u �G dl in the far field region, referring to Fig. 4. Let the

incident electric field at Q on C1 be 

where d and l are defined in Fig. 4. The following loose

condition is assumed:

which is satisfied more easily than condition in Eq. (4).

Furthermore, since the integrals in Eq. (15) contain only the

diffracted component, an important contribution to the in-

tegral comes from small l near the edge. Thus, the distance

U from Q to the observer and that U0 from the edge of the

sheet to the observer are related by

(12)

(13)

(14)

(15)

Fig. 4. The coordinate system for evaluating the

integral on C1.

(16) 

(17)

(18)
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It follows that

Then the integral for C1 become

where U0 /U | 1 is used implicitly. The integral in Eq. (20)

is identical to the definition of the modified Fresnel function

F�x� in Eq. (10). We then get 

The integral on C1
g  can be obtained by simply replacing Ii

with 2S � Ii in Eq. (21), taking account of the direction of

n̂c, as

We finally obtain the uniform PO diffraction coefficient of

UTD type DU�d, I, Ii� as

This gives finite fields even at GO-SB and GO-RB, and is

similar to the uniform expression in UTD [24].

5. Numerical Discussion

The superiority of the derivation is now demon-

strated numerically. The necessary conditions for the

new and conventional derivation in approximating the

PO surface integration are (17) and (4), respectively. We

compare various expressions for PO diffraction coeffi-

cients with the original PO integration (1) with exact

incidence (3). They are �Uniform� defined by this paper

in Eq. (23), �Uniform (Direct)� in Eq. (9), �POap-

prox.inc.� in Eq. (1) with approximation (5), and

�Nonuniform� in Eq. (8). We predict the general accu-

racy of various expressions as in Table 1. The key pa-

rameters used in the comparison are illustrated in Fig. 1.

First, the half-sheet problems are discussed for decreas-

ing values of d with Ii = 45° in Figs. 5(a), 5(b), and 5(c).

Figures 6(a) and 6(b), 7(a), and 7(b) compare the total

field for d   1O, 3O, and 0.2O, respectively. From these

figures, uniform expression (23) der ived for  the alterna-

tive sur faces on GO-SB is the most accur ate and gives

results almost identical to PO for  small values of d down

to 0.2O. On the other  hand, the unifor m expression �Uni-

form(Direct)� der ived for  the or iginal half-sheet suffer s

from er ror  in Fig. 5(b) for  Ii = 45° and d = 1O (dmin |
0.7O). �POapprox.inc.� has large errors, while �Nonuni-

form� has singular ities at GO-SB and GO-RB. Thus, the

prediction in Table 1 is confirmed.

6. Conclusion

A new derivation for the uniform diffraction coeffi-

cient for the half-sheet is provided, based on the field

equivalence principle. The PO integral on the original half-

sheet is transformed into semi-infinite integrals on the

geometrical shadow boundaries, expressed by using the

(19) 

(20)

(21)

Table 1. Prediction of accuracy (!, high accuracy; u,

low accuracy) for various integral evaluations for

different source angles 

(22)

(23)
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Fresnel function. The coefficient is valid when the distance

between the source and the edge of the half-sheet is larger

than about 0.2 wavelength. The superiority of the uniform

diffraction coefficient to other types is explained for the first

time in terms of the location of the integration surfaces and

is demonstrated numerically.

Fig. 6. Degradation of conventional uniform diffraction

coefficients for small distance dmin | 0.2O. (a) Ii = 5°, d =

1O; (b) Ii = 175°, d = 1O.

Fig. 5. Accuracy of diffraction coefficients as functions

of distance d to the edge of the half-sheet (Ii = 45°).
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