ELSEVIER

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

The enhanced properties in photocatalytic wastewater treatment: Sulfanilamide (SAM) photodegradation and Cr^{6+} photoreduction on magnetic Ag/ZnFe₂O₄ nanoarchitectures

Tianyu Liu, Chongxi Wang, Wei Wang^{*}, Guojiang Yang, Zhiying Lu, Peng Xu, Xiaonan Sun, Jintao Zhang^{*}

School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China

ARTICLE INFO

Article history: Received 6 December 2020 Received in revised form 19 January 2021 Accepted 4 February 2021 Available online 6 February 2021

Keywords: ZnFe₂O₄ nanoparticles decorated Ag nanowires Schottky interface Visible-light photocatalysis SAM photodegradation Cr⁶⁺ photoreduction

ABSTRACT

Ag/ZnFe₂O₄ nanoarchitectures composed of ZnFe₂O₄ nanoparticles loading onto Ag nanowires were fabricated by hydrothermal method. The Ag/ZnFe₂O₄ nanocomposites possessed excellent performance in simulated photocatalytic wastewater treatment like sulfanilamide (SAM) photodegradation and Cr⁶⁺ photoreduction. The improvement of photoactivity could be ascribed to the successful formation of Schottky interface between ZnFe₂O₄ nanoparticles and Ag nanowires and the enhanced light absorption ability in visible light region with modified energy band structures, which make further efforts to the ameliorate separation and improved mobility of photo-induced charge carriers with enhanced performance in photocatalysis. The Ag/ZnFe₂O₄ nanocomposites exhibited outstanding photoactivity than single component and more importantly, the unique magnetic properties enabled the Ag/ZnFe₂O₄ photocatalysts to be recycled easily with the aid of external magnetic field, which make it possible for practical applications. © 2021 Elsevier B.V. All rights reserved.

1. Introduction

ZnFe₂O₄, as a magnetic semiconductor material, has been widely investigated due to the special magnetic behavior with excellent stability and photo response capability. Ascribe to the theoretical band position (E_{VB} = 0.38 eV, E_{CB} = -1.54 eV), a relatively more negative conduction band (CB) position makes it possible to realize the photocatalytic or photoelectrochemical water splitting to generate hydrogen on ZnFe₂O₄, which could be utilized to develop new energy resources and alleviate energy crisis [1–3]. However, the poor photocatalytic efficiency resulted by the short hole transport length limited the application without further modification. In recent years, many strategies have been made such as coupling with other semiconductors [4–7], noble metal loading [8,9] to conquer these limitations. These methods facilitated the generation, separation, and migration of photo-excited charge carriers after light irradiation accompanied with the improvement of photocatalytic performance. Among various strategies, noble metal was considered as a thriving way to broaden the light absorption, inhibit the recombination of

* Corresponding authors. E-mail addresses: wangwei2017@czu.cn (W. Wang), zhangjt@czu.cn (J. Zhang).

https://doi.org/10.1016/j.jallcom.2021.159085 0925-8388/© 2021 Elsevier B.V. All rights reserved. photo-excited carriers with prolonged lifetime when composing with other semiconductors to form Schottky barrier [10,11].

In the previous studies, noble metal nanoparticles were always loaded, reduced, or deposited onto the semiconductors by various methods. Zhang et al. prepared Ag activated ZnFe₂O₄ nanocomposites with Ag loading onto ZnFe₂O₄ hollow spheres with excellent acetone gas sensing properties [12]. Huerta-Aguilar et al. reduced HAuCl₄ onto ZnFe₂O₄ to form Au/ZnFe₂O₄ nanocomposites and applied it in the degradation of paracetamol [13]. Zhu et al. fabricated Ag/ferrite nanocomposites via wet impregnation method and exhibited good properties in 4-chlorophenol photodegradation [14]. These nanocomposites showed excellent separation efficiency during photocatalysis process. The loading of noble metal could effectively improve the light adsorption, and the Schottky barrier formed between metal and semiconductor can also promote the charge migration and separation, which was also conducive to the enhanced performance in photocatalysis [15]. According to our previous study, noble metal nanostructures with relatively larger size were also suitable for light adsorption according to the Mie's theory, and the obtained "reversed" nanostructures like Au/TiO₂ and Au/ZnO nanoarchitectures exhibited good properties in photocatalysis such as H₂-generation, dye degradation and methanol oxidation [16,17]. Based on the above analysis, we fabricate the magnetically separable Ag/ZnFe₂O₄ nanostructures through hydrothermal method with different amount of ZnFe₂O₄ loading and Ag nanowires acted as supporter in this study. The as-prepared Ag/ZnFe₂O₄ nanocomposites showed significantly enhanced photocatalytic activity in sulfanilamide (SAM) degradation and Cr⁶⁺ photoreduction. In addition, the Ag/ZnFe₂O₄ nanocomposites retained the magnetic separable properties, which was necessary for practical application. Furthermore, the possible mechanism of charge separation in Ag/ZnFe₂O₄ during photocatalysis process were also discussed. The Ag/ZnFe₂O₄ nanocomposites could be considered potentially for water purification due to the outstanding performance in simulated wastewater treatment process.

2. Experimental section

2.1. Preparation of Ag nanowires

Ag nanowires were prepared via a hydrothermal method according to the following steps: 0.5 g AgNO₃ and 1.0 g polyvinylpyrrolidone (PVP) were dissolved into 40 mL mixed solution containing 37 mL ethylene glycol (EG) and 3 mL glycerol. After 500 µL 0.5 mg/mL NaCl/EG solution was added into the mixture, the whole reaction system was transferred into the 50 mL Teflon-lined stainless-steel autoclave and reacted at 120 °C for 3 h. The gray mixture after the reaction was washed and centrifuged with absolute ethanol for several times. The Ag nanowires were obtained after drying at 60 °C overnight.

2.2. Preparation of $Ag/ZnFe_2O_4$ nanoarchitectures

Ag/ZnFe₂O₄ nanoarchitectures with ZnFe₂O₄ nanoparticles decorated Ag nanowires were fabricated as described below: 1 mmol Zn(CH₃COO)₂·2H₂O, 2 mmol FeCl₂ and certain amount of Ag nanowires were dispersed in 30 mL deionized water with continuous stirring for 2 h. After 1 mL ethylenediamine was added into the solution, the whole mixture was stirred for another 1 h and transferred into 50 mL Teflon-lined stainless-steel autoclave and reacted at 160 °C for 6 h. The Ag/ZnFe₂O₄ nanocomposites were obtained after the products washed, centrifuged, and dried at 60 °C. Pure ZnFe₂O₄ nanoparticles were synthesized under identical conditions except for the addition of Ag nanowires. For simplicity, we denote Ag/ZnFe₂O₄ samples with 5%, 10%, 15%, 20% and 25% Ag content as AgZFO5, AgZFO10, AgZFO15, AgZFO20 and AgZFO25. The pure ZnFe₂O₄ sample was denoted as ZFO.

2.3. Characterizations

X-ray diffraction patterns (XRD) was acquired to investigate the crystal structure of Ag/ZnFe₂O₄ samples on D8 Bruker advanced X-ray diffractometer. Scanning electron microscope (SEM, Hitachi S-4800) and Transmission electron microscope (TEM, JEOL, JEM-2100) were employed to observe the microstructure and morphology of the samples. X-ray photoelectron spectrum (XPS) was carried out on Thermo Fischer ESCALAB 250Xi X-ray photoelectron spectrometer under an Al K_{α} radiation (*hv* = 1486.6 eV). UV–Vis diffuse reflectance spectra were achieved from Shimadzu UV-2500 spectrophotometer with BaSO₄ as reference. The magnetism properties of pure ZnFe₂O₄ and Ag/ZnFe₂O₄ nanocomposites were analyzed on VSM-7407 vibrating sample magnetometer (Lake Shore, USA). The electron spin resonance (ESR) signals of spin-trapped O2⁻ radicals were acquired from Bruker model ESR JES-FA300 spectrometer. The electrochemical measurements were investigated by CHI-760E electrochemical workstation with 0.5 M Na₂SO₄ solution as electrolyte. The as-prepared samples were regarded as working electrode. Ag/AgCl and platinum were selected as reference electrode and counter electrode, respectively. The PL spectra and time-resolved photoluminescence (TRPL) spectra of samples were recorded on an FL3-TCSPC fluorescence spectrophotometer and time-resolved fluorescence spectrum (Edinburgh FLS9800) with an excitation wavelength of 280 nm, respectively.

2.4. Photocatalytic wastewater treatment: SAM degradation and Cr^{6+} reduction

The catalytic activity through Ag/ZnFe₂O₄ nanocomposites was conducted by SAM photodegradation and Cr⁶⁺ reduction. Typically, 20 mg sample was dispersed in 50 mL 20 mg/L SAM or Cr⁶⁺ aqueous solution. The pH of Cr⁶⁺ solution was adjusted to 2 with H₂SO₄ (1 M). Before light irradiation, the adsorption-desorption equilibrium was established after the mixture was stirred in dark for 1 h. Then a 300 W Xe lamp with 400 nm cut-off was used to illuminate the photodegradation system. About 4 mL solution was withdrawn at a given time interval and then centrifuged to separate solid catalyst for further analysis. The photocatalytic activity was estimated according to the maximum absorption wavelength ($\lambda_{max} = 258$ nm) of SAM [18] and the colored Cr(VI)-diphenylcarbazide method ($\lambda_{max} = 540$ nm) [19] monitored on UV–Vis spectrometer (UV-1201).

3. Results and discussion

3.1. XRD analysis

The crystallographic structure of as-obtained Ag/ZnFe₂O₄ nanocomposites were studied by XRD (Fig. 1). Pure ZnFe₂O₄ exhibited diffraction peaks at 31.8°, 35.5°, 42.7°, 47.5°, 56.6°, 62.8° and 68.1°, which confirmed the cubic structure of ZnFe₂O₄ (JCPDS No. 22-1012). After ZnFe₂O₄ sample were loaded onto Ag nanorods, the diffraction peaks of ZnFe₂O₄ remained the same except for four additional peaks positioned at 38°, 44°, 66° and 77° corresponding to the metallic Ag (JCPDS No. 65-2871). The purity of Ag/ZnFe₂O₄ nanocomposites were evident because no other peaks were observed apart from the above-mentioned peaks. As is known to all, Ag element could react with Fe³⁺ to generate Ag⁺ ions, but in our fabrication process, ZnFe₂O₄ was obtained from zinc acetate {Zn(CH₃COO)₂:2H₂O} and ferrous chloride (FeCl₂), which could prevent the formation of Ag⁺ ions and destroy the structure of Ag nanowires. Moreover, the existence of metallic Ag also suggested the stability of Ag during the preparation procedure and the feasible route to prepare Ag/ZnFe₂O₄ nanocomposites.

3.2. Morphological analysis

The Ag/ZnFe₂O₄ nanocomposites with ZnFe₂O₄ loading onto Ag nanowires were fabricated through continuous hydrothermal strategies and the morphology of obtained Ag/ZnFe₂O₄ samples were viewed by SEM and TEM. From Fig. 2A we could find that uniform

Fig. 1. XRD patterns of as-obtained samples.

Fig. 2. SEM images of Ag nanowires (A); AgZFO5 (B); AgZFO10 (C); AgZFO15 (D); AgZFO20 (E) and AgZFO25 (F).

Ag nanowires accompanied with clean surface were prepared via hydrothermal method. After Ag nanowires were composed with ZnFe₂O₄, the small nanoparticles were clearly observed and anchored on the surface of Ag nanowires with high dispersion as indicated in Fig. 2B–F. With the increase of Ag content, it can be seen clearly on the SEM pictures that the amounts of nanoparticles attached to the Ag nanowires were also decreased, indicating the feasibility of the experimental procedure. In addition, when the loading amount of ZnFe₂O₄ particles exceeded the optimal amount, the exceeded ZnFe₂O₄ particles will also agglomerate itself rather than forming a composite to generate Ag/ZnFe₂O₄ interface (Fig. 2B and C). It can be seen from the photocatalytic experiments that the photocatalytic performance of the Ag/ZnFe₂O₄ composite decreases when the optimal amount of $ZnFe_2O_4$ particles is exceeded. This may be discussed in the following photocatalytic experiment sections. Otherwise, the HRTEM of AgZFO15 sample depicted in Fig. S1C revealed the successful construction of interfacial attachment between Ag nanowires and ZnFe₂O₄. The lattice spacing distance between the adjacent lattice fringes was 0.254 nm, which belonged to the (331) crystalline planes of ZnFe₂O₄ (JCPDS No. 65-3111). Meanwhile, the HRTEM analysis could also suggested the fabrication of Ag/ZnFe₂O₄ nanocomposites instead of physical mixture. Moreover, the intimate hybrid structure of Ag/ZnFe₂O₄ was conducive to the charge separation during the photocatalytic procedure, thus improving the photocatalytic efficiency.

3.3. XPS analysis

The surface elemental composition of Ag/ZnFe₂O₄ nanocomposites were employed by XPS technique as shown in Fig. 3. The full scan of pure ZnFe₂O₄ and Ag/ZnFe₂O₄ were similarity except for some cases. Simultaneously, the fine scan of Zn 2*p*, Fe 2*p*, O 1 *s* and Ag 3*d* were recorded to confirm the chemical states of different elements. In fine scan of Zn 2*p*, two obvious peaks centered at binding energies of 1020.9 eV and 1044.0 eV could be identified to Zn 2*p*_{3/2} and Zn 2*p*_{1/2}, respectively, indicating the existence of Zn²⁺ in Ag/ZnFe₂O₄ nanocomposites [20–22]. Four bands shown in Fig. 3(c) located at 710.6, 724.7, 718.8 and 732.8 eV, which could be indexed to Fe 2*p*_{3/2}, Fe 2*p*_{1/2} and their satellite peaks, indicating the presence of Fe³⁺ oxidation state in Ag/ZnFe₂O₄ samples [23,24]. For O 1*s* fine spectrum, the divided peaks situated at 530.8 and 529.5 eV could ascribed to the absorbed oxygen and lattice oxygen of Fe–O and Zn–O bonds, respectively [25,26]. It should be noted that the binding energy of O 1s was slightly shifted to higher values compared to that of pure $ZnFe_2O_4$ (530.9 and 529.7 eV for 5% Ag/ZnFe_2O_4, respectively) which could attribute to the interactions between Ag and $ZnFe_2O_4$. Moreover, the existence of Ag⁰ species in Ag/ZnFe₂O₄ nanocomposites was proved according to the Ag 3*d* fine spectra (Fig. S2). The photoelectron peaks situated at 374.2 eV and 368.2 eV were observed to be the evidence of metallic Ag with no other oxidation state of Ag due to the slitting energy of Ag 3*d* doublet was 6.0 eV [27–29], also represented the stability of Ag during the fabrication process of Ag/ZnFe₂O₄ nanocomposites.

3.4. UV-Vis analysis

UV-Vis measurement was conducted to analyze the optical properties of Ag/ZnFe₂O₄ nanocomposites. Due to the smaller band gap energy ($E_g = 2.00 \text{ eV}$) measured by Kubelka-Munk formalism, pure ZnFe₂O₄ exhibited a certain absorption capacity in the whole spectral region (200-800 nm). As depicted in Fig. 4A, Ag nanowire exhibited relative lower light absorption ability from 200 nm to 800 nm than that of ZnFe₂O₄. So, after Ag and ZnFe₂O₄ were combined, the absorption spectrum of Ag/ZnFe₂O₄ could shift due to the change of the ratio of the two components, which would further affect the band gap energy [30]. Despite all this, the obtained Ag/ZnFe₂O₄ nanoarchitectures showed enhanced light absorption ability in visible light region (400-600 nm). The band gap energy of different samples was also calculated and listed in Table 1. The UV-Vis analysis suggested that the Ag/ZnFe₂O₄ nanocomposites displayed better performance in light absorption ability, which could contribute to the efficient use of solar energy and benefit to the improvement of photocatalytic performance.

3.5. Photocatalytic wastewater treatment

As an antibiotic which was usually used for human and veterinary science and difficult to be disposed of, sulfanilamide (SAM) was chemically stable due to the aromatic ring with heteroatoms, amino group, and sulfonic group [31,32]. So, in this study, SAM was first opted as a simulated pollutant to measure the photoactivity of Ag/ZnFe₂O₄ nanocomposites, which was photo-stable under visible light illumination on account of the negligible change in UV–Vis absorbance (< 5%). A comparison of different photocatalysts for SAM

Fig. 3. XPS spectra of ZFO and AgZFO15 samples: (A) full scan; (B) Zn 2p; (C) Fe 2p and (D) O 1s.

photodegradation was presented in Fig. 5A. Pristine $ZnFe_2O_4$ nanoparticles exhibited lower performance during SAM photodegradation process, indicating the suppressed carrier separation rate and efficiency. However, after coupling with Ag nanowires, the Ag/ZnFe_2O_4 nanocomposites showed enhanced photoactivity during SAM photocatalytic degradation, especially for AgZFO15 sample, which could increase the degradation efficiency from 48.4% to 98.4% in 2 h. The photocatalytic degradation kinetics of SAM followed firstorder reaction, and the corresponding reaction rate constants (k) with different sacrificial agents were calculated and listed in Fig. 5B. As we mentioned above, Ag could trap electrons due to the Schottky barriers formed in the Ag/ZnFe₂O₄ interfaces and the photo-excited electrons on ZnFe₂O₄ surface could transferred to Ag, which accelerate the charge separation on ZnFe₂O₄ and help the carriers to participate in photocatalytic reactions [33–35]. Besides, the effective Ag/ZnFe₂O₄ interface was also affected by excessive loadings, the

Fig. 4. UV-Vis spectrum of as-fabricated Ag/ZnFe₂O₄ samples (A) and the Kubelka-Munk transformed function of different samples (B).

Table 1

Band gap energy of as-prepared $Ag/ZnFe_2O_4$ samples.	
Sample	Band gap energy (eV)
ZFO	2.00
AgZFO5	2.01
AgZFO10	2.01
AgZFO15	2.02
AgZFO20	2.02
AgZFO25	2.03

charge separation efficiency could decrease due to the photo-excited electrons had the tendency to recombine with holes on agglomerated ZnFe₂O₄ nanoparticles rather than transferring to Ag due to the excess amount of ZnFe₂O₄ onto Ag nanowires. Therefore, the optimal amount of Ag in Ag/ZnFe₂O₄ was necessary to obtain the best photocatalytic performance. To further confirm the photoactivity of as-fabricated Ag/ZnFe₂O₄ nanoarchitecture, Cr⁶⁺ photoreduction reaction was also conducted according to the colored Cr(VI)-diphenylcarbazide (DPC) method. From Fig. S4A we could find the concentration of Cr⁶⁺ ions were decreased dramatically after light illumination according to the peaks centered at around 540 nm. The poor efficiency of ZnFe₂O₄ for Cr⁶⁺ photoreduction was also improved after combining with Ag nanowires. The reaction rate constant (k) of Ag/ZnFe₂O₄ sample in Cr⁶⁺ photoreduction were 0.0095, 0.0132, 0.0146, 0.0119 and 0.0081 min⁻¹, which was 3.96, 5.5, 6.08, 4.96, and 3.38 times higher than that of pure $ZnFe_2O_4$ (0.0024 min⁻¹) (Fig. 6A and B). As is known to all, Ag could exhibit the surface plasmonic resonance (SPR) effect due to its intrinsic property. Based

on the traditionally SPR effect theory, the electrons could transfer from noble metal (Ag) to semiconductors ($ZnFe_2O_4$). However, electrons would transfer from lower work function one (ZnFe₂O₄, $\Phi_{\rm s}$ = ~2.07 eV) to the higher one (Ag, $\Phi_{\rm m}$ = 4.26 eV). The band gap energy of ZnFe₂O₄ was estimated as 2.00 eV according to the UV-Vis analysis and shown in Table 1. When the above two materials (Ag and $ZnFe_2O_4$) form a composite and illuminated by visible light, the photogenerated electrons will transfer from the conduction band (CB) of $ZnFe_2O_4$ to Ag due to the Schottky barriers in order to achieve Fermi level equilibration when ZnFe₂O₄ and Ag get into contact [13,36–38]. Therefore, the surface plasmon resonance (SPR) effect of nano Ag in this composite system is very weak to realize the transfer of photogenerated electrons from Ag to ZnFe₂O₄ due to the existence of Schottky barrier formed between ZnFe₂O₄ and Ag [39], and the proposed schematic illustration of electron-hole transfer during the photocatalysis process on Ag/ZnFe₂O₄ system under the visible light irradiation was illustrate in Fig. 7. Therefore, the as-fabricated Ag/ZnFe₂O₄ nanocomposites could be primarily considered as an effective catalyst for wastewater treatment due to the excellent performance in SAM photodegradation and Cr⁶⁺ photoreduction.

During the photodegradation process, the photo-excited charge carriers could generate and separated to react with the adsorbed H_2O or O_2 to form active species contributing to the catalysis progress. The active species during photocatalysis process was investigated by capturing experiment with the addition of sacrificial agent. In this study, TEOA, t-BuOH and BQ were selected to realize h^+ , OH and O_2^- quenching, respectively [40,41]. Because of the addition of quenching agents, the photocatalytic activity of AgZFO15

Fig. 5. Photocatalytic SAM degradation performance (A, B) over different samples and photocatalytic performance with different sacrificial agent on AgZFO15 (C, D).

Fig. 6. Photocatalytic Cr⁶⁺ reduction performance (A, B) over different samples and photocatalytic performance with different sacrificial agent on AgZFO15 (C, D).

Fig. 7. Schematic illustration of electron-hole transfer during the photocatalysis process on Ag/ZnFe₂O₄ system under the visible light irradiation (E_v : energy in vacuum; Φ_m : work function of Ag; Φ_s : work function of ZnFe₂O₄; F_m : Fermi level of Ag; F_s : Fermi level of ZnFe₂O₄; F_m : Fermi level of equilibrium position; VB: valance band of ZnFe₂O₄; CB: conduction band of ZnFe₂O₄).

sample exhibited a decreasing trend. We could clearly find that the degradation performance of SAM evidently reduced from 98.4% to 11.6% due to the addition of BQ, which suggested the importance of $\cdot O_2^-$ during SAM photodegradation. Comparatively, the lower effect

of \cdot OH and h⁺ were also evidenced by the photodegradation efficiency were reduced to 34.0% and 67.9% in the presence of t-BuOH and TEOA (Fig. 5C and D). It should be noted that, the active species during Cr⁶⁺ photoreduction was also-O₂⁻ due to the degrade efficiency was decreased from 82.7% to 23.6%, which also suggested the importance of \cdot O₂⁻ during Cr⁶⁺ photoreduction process (Fig. 6C and D). Moreover, the high-intensity of DMPO- \cdot O₂⁻ signals obtained from ESR spectra exhibited in Fig. S5 could also demonstrate the generation of \cdot O₂⁻ during the photocatalytic process, indicating the successful formation of Ag/ZnFe₂O₄ anoarchitectures and effective Schottky barriers in Ag/ZnFe₂O₄ system.

The reusability and stability were all crucial factors in practical use during photocatalysis process [42,43]. The cycling test of SAM photodegradation and Cr⁶⁺ photoreduction with AgZFO15 sample were displayed in Fig. S3 and Fig. S4B. The photocatalytic performance exhibited no obvious decrease after 3 cycles with photocatalytic efficiency from 98.4% to 95.2% for SAM photodegradation and 82.7-80.1% for Cr⁶⁺ reduction, respectively, which could indicate the stability and the possibility during a longer operation time. Besides, pure ZnFe₂O₄ sample exhibited a magnetic saturation (Ms) value of 70.26 emu/g. Because of the content of Ag nanowires existed in AgZFO15 nanocomposites was as high as 15%, the Ms value of AgZFO15 nanocomposites was decreased to 58.65 emu/g. The hysteresis loop of AgZFO15 sample illustrated in Fig. S6 also proved that the AgZFO15 sample could be separated magnetically. Thus, it was convinced that the Ag/ZnFe₂O₄ nanocomposites could be a separable and effective photocatalyst for contaminants treatment based on the results of photocatalytic reaction.

Fig. 8. Photocurrent response under visible light irradiation (A) and EIS plots of different Ag/ZnFe₂O₄ samples (B).

Fig. 9. PL (A) and TRPL (B) spectra of ZFO and AgZFO15 samples.

3.6. Photoelectrochemical properties

The photoelectrochemical measurements were performed to gain deep understanding into the separation and migration of photoexcited carriers during photocatalysis [44-46]. Fig. 8A displayed the transient on-off photocurrent response of ZnFe₂O₄ and Ag/ZnFe₂O₄ nanocomposites after deposited onto FTO electrodes. Bulk ZnFe₂O₄ was responsive to visible light illumination with average photocurrent density of 0.11 μ A cm⁻². Obviously, affected by the formation of Schottky barriers between Ag/ZnFe₂O₄ interface, the AgZFO serious samples exhibited good sensitivity to the visible light irradiation, suggesting the effective charge generation and separation after being a composite. The AgZFO15 sample exhibited average photocurrent density of 2.45 times higher compared to that of pure $ZnFe_2O_4$ (0.27 $\mu A \text{ cm}^{-2}$). This result was also corresponding to the SAM photodegradation and Cr⁶⁺ photoreduction experiment, indicating the enhanced mobility and longer lifetime of photoinduced charge carriers were accountable for the improvement of photoactivity. Moreover, the conclusion of photocurrent tests could also contribute to the existence of the interface between two components.

To explore the interfacial charge transfer of $Ag/ZnFe_2O_4$ samples, the electrochemical impedance spectroscopy (EIS) study was also carried out and depicted in Fig. 8B [47,48]. The results indicated that compared to pure $ZnFe_2O_4$, the $Ag/ZnFe_2O_4$ nanocomposites exhibited a smaller semicircle in the Nyquist plots, representing the lower resistance of $Ag/ZnFe_2O_4$ samples and photo-excited carriers could be separated effectively and speedy transferred during the photocatalysis process. Overall, the existence of metallic Ag could promote the charge separation and transformation and made it possible for $Ag/ZnFe_2O_4$ nanocomposites to achieve a higher rate of photocatalysis.

3.6.1. PL and TRPL analysis

Solid-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra were conducted to further evaluate the lifetime of photo-induced charge carriers. From Fig. 9A we could find that AgZFO15 exhibited lower PL emission peak compared to the ZFO sample, indicating the improved separation of photo-excited charge carriers. Furthermore, TRPL decay curve of ZFO and AgZFO15 sample were also collected. As shown in Fig. 9B, the fluorescence lifetime of AgZFO15 was longer than that of ZFO sample, which could also reveal the higher separation ability of photogenerated electron-hole pairs on Ag/ZnFe₂O₄ nanoarchitectures.

3.7. Possible mechanism

According to the former analysis, the possible mechanism during photocatalytic progress was illustrated in Fig. 10. Under the light irradiation, $ZnFe_2O_4$ could adsorb photo irradiation to generate charge carriers. Due to the Schottky barriers between $ZnFe_2O_4$ and Ag, the photo-induced electrons could migrate from CB of $ZnFe_2O_4$ to

Fig. 10. Schematic illustrations of charge transfer-separation for waste water treatment during photocatalysis process on Ag/ZnFe₂O₄ nanoarchitecture under visible light irradiation.

Ag, which could contribute to the separation of charge carriers, facilitate the prolonged lifetime to take part in the photocatalytic procedures. The holes and electrons could react with adsorbed H₂O and O₂ to form active species such as·OH and·O₂⁻, which will further take part in photocatalytic process and both displayed decisive roles.

4. Conclusions

Herein, we reported the fabrication of Ag/ZnFe₂O₄ nanocomposites with ZnFe₂O₄ nanoparticles decorated onto Ag nanowires. The as-synthesis Ag/ZnFe2O4 nanocomposites showed enhanced properties in simulated wastewater treatment process like SAM photodegradation and Cr⁶⁺ photoreduction. The best performance was reflected in AgZFO15, with a SAM photodegradation rate constant of 0.0330 min⁻¹ and a Cr⁶⁺ photoreduction rate constant of 0.0146 min⁻¹. The enhanced separation efficiency of photo-induced carriers caused by Schottky interface generated between Ag and ZnFe₂O₄ and the appropriate content of two components were responsible for the enhanced photoactivity. This work offered a new strategy into the energy conversion of magnetic nanocomposites and unusual fabrication procedures to prepare composite nanostructures containing noble metals. Likewise, the Ag/ZnFe₂O₄ nanocomposites could be utilized in wastewater treatment and energy fields due to the high photoactivity, high stability and magnetic separable properties.

CRediT authorship contribution statement

Tianyu Liu: Methodology, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing. Chongxi Wang: Experimental, Validation. Wei Wang: Formal analysis, Funding acquisition. Guojiang Yang: Validation. Zhiying Lu: Validation. Peng Xu: Formal analysis. Xiaonan Sun: Formal analysis. Jintao Zhang: Resources, Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was financially sponsored by National Natural Science Foundation of China (Grant no. 52071283), Natural Science Foundation of Jiangsu Province (BK20170661), National Science Foundation of Changzhou Institute of Technology (No. E3-6701-18-075) and 2019 Support Program for Young Scholars of Changzhou Institute of Technology (No. A3-3008-19-008).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jallcom.2021.159085.

References

- [1] A. Behera, D. Kandi, S. Mansingh, S. Martha, K. Parida, Facile synthesis of ZnFe₂O₄@RGO nanocomposites towards photocatalytic ciprofloxacin degradation and H₂ energy production, J. Colloid Interface Sci. 556 (2019) 667–679.
- [2] J.Y. Long, W.Z. Wang, S.Y. Fu, L.M. Liu, Hierarchical architectures of wrinkle-like ZnFe₂O₄ nanosheet-enwrapped ZnO nanotube arrays for remarkably photoelectrochemical water splitting to produce hydrogen, J. Colloid Interface Sci. 536 (2019) 408–413.
- [3] X.D. Zhu, N. Guijarro, Y.P. Liu, P. Schouwink, R.A. Wells, F.L. Formal, S. Sun, C. Gao, K. Sivula, Spinel structural disorder influences solar-water-splitting performance of ZnFe₂O₄ nanorod photoanodes, Adv. Mater. 30 (2018) 1801612.
- [4] M.X. Chen, Y.Z. Dai, J. Guo, H.T. Yang, D.N. Liu, Y.L. Zhai, Solvothermal synthesis of biochar@ZnFe₂O₄/BiOBr Z-scheme heterojunction for efficient phohocatalytic ciprofloxacin degradation under visible light, Appl. Surf. Sci. 493 (2019) 1361–1367.
- [5] Y. Li, Y.Z. Li, Y.D. Yin, D.H. Xia, H.R. Ding, C. Ding, J. Wu, Y.H. Yan, Y. Liu, N. Chen, P.K. Wong, A.H. Lu, Facile synthesis of highly efficient ZnO/ZnFe₂O₄ photocatalyst using earth-abundant sphalerite and its visible light photocatalytic activity, Appl. Catal. B-Environ. 226 (2018) 324–336.

- [6] F.J. Sun, Q.H. Zeng, W. Tian, Y.M. Zhu, W. Jiang, Magnetic MFe₂O₄-Ag₂O (M = Zn, Co, & Ni) composite photocatalysts and their application for dye wastewater treatment, J. Environ. Chem. Eng. 7 (2019) 103011.
- [7] N.K. Veldurthi, N.K.R. Wswar, S.A. Singh, G. Madras, Heterojunction ZnWO₄/ ZnFe₂O₄ composites with concerted effects and integrated properties for enhanced photocatalytic hydrogen evolution, Catal. Sci. Technol. 8 (2018) 1083–1093.
- [8] O. Sacco, V. Vaiano, D. Sannino, R.A. Picca, N. Cioffi, Ag modified ZnS for photocatalytic water pollutants degradation: influence of metal loading and preparation method, J. Colloid Interface Sci. 537 (2019) 671–681.
- [9] V. Vaiano, C.A. Jaramillo-Paez, M. Matarangolo, J.A. Navio, M.D. Hidalgo, UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au), Mater. Res. Bull. 112 (2019) (2019) 251–260.
- [10] A. Furube, L.C. Du, K. Hara, R. Katoh, M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO₂ nanoparticles, J. Am. Chem. Soc. 129 (2007) 14852–14853.
- [11] N. Shin-ichi, I. Aimi, T. Hiroaki, Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium (IV) dioxide and surfactant, J. Am. Chem. Soc. 132 (2010) 6292–6293.
- [12] C. Zhang, Q.D. Wu, B.B. Zheng, J.J. You, Y.F. Luo, Synthesis and acetone gas sensing properties of Ag activated hollow sphere structured ZnFe₂O₄, Ceram. Int. 44 (2018) 20700–20707.
- [13] C.A. Huerta-Aguilar, A.A. Ramírez-Alejandre, P. Thangarasu, J.A. Arenas-Alatorre, I.A. Reyes-Dominguez, M.L. Corea, Crystal phase induced band gap energy enhancing the photo-catalytic properties of Zn-Fe₂O₄/Au NPs: experimental and theoretical studies, Catal. Sci. Technol. 9 (2019) 3066–3080.
- [14] Z.R. Zhu, F.Y. Liu, H.B. Zhang, J.F. Zhang, L. Han, Photocatalytic degradation of 4-chlorophenol over Ag/MFe₂O₄ (M = Co, Zn, Cu, and Ni) prepared by a modified chemical co-precipitation method: a comparative study, RSC Adv. 5 (2015) 55499–55512.
- [15] L.M. Liu, W.Z. Wang, J.Y. Long, S.Y. Fu, Y.J. Liang, J.L. Fu, Three-dimensional plasmonic photoanode of Au nanoparticles/ZnFe₂O₄ nanosheets coated onto ZnO nanotube arrays for photoelectrochemical production of hydrogen, Sol. Energy Mater. Sol. Cells 195 (2019) 330–338.
- [16] T.Y. Liu, W. Chen, T. Huang, G.R. Duan, X.J. Yang, X.H. Liu, Titania-on-gold nanoarchitectures for visible-light-driven hydrogen evolution from water splitting, J. Mater. Sci. 51 (2016) 6987–6997.
- [17] T.Y. Liu, W. Chen, Y.X. Hua, X.H. Liu, Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible light, Appl. Surf. Sci. 392 (2017) 616–623.
- [18] R.X. Wang, J.H. Tang, X.Y. Zhang, D. Wang, X. Wang, S. Xue, Z.H. Zhang, D.D. Dionysiou, Construction of novel Z-scheme Ag/ZnFe₂O₄/Ag/BiTa_{1-x}V_xO₄ system with enhanced electron transfer capacity for visible light photocatalytic degradation of sulfanilamede, J. Hazard. Mater. 375 (2019) 161–173.
- [19] X.D. Du, X.H. Yi, P. Wang, W.W. Zheng, J.G. Deng, C.C. Wang, Robust photocatalytic reduction of Cr(VI) on UiO-66-NH₂(Zr/Hf) metal-organic framework membrane under sunlight irradiation, Chem. Eur. J. 356 (2019) 393–399.
- [20] Y. Qu, D. Zhang, X. Wang, H.L. Qiu, T. Zhang, M. Zhang, G. Tian, H.J. Yue, S.H. Feng, G. Chen, Porous ZnFe₂O₄ nanospheres as anode materials for Li-ion battery with high performance, J. Alloy. Compd. 721 (2017) 697–704.
- [21] P.S. Yoo, D.A. Reddy, Y.F. Jia, S.E. Bae, S. Huh, C.L. Li, Magnetic core-shell ZnFe₂O₄/ ZnS nanocomposites for photocatalytic application under visible light, J. Colloid Interface Sci. 486 (2017) 136–143.
- [22] P.F. Tan, A.Q. Zhu, L.L. Qiao, W.X. Zeng, Y.J. Ma, H.G. Dong, J.P. Xie, J. Pan, Constructing a direct Z-scheme photocatalytic system based on 2D/2D WO₃/ Znln₂S₄ nanocomposite for efficient hydrogen evolution under visible light, Inorg. Chem. Front. 6 (2019) 929–939.
- [23] C.W. Li, A.C. Zhang, L.X. Zhang, J. Song, S. Su, Z.J. Sun, J. Xiang, Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe₂O₄ composites for Hg⁰ removal under fluorescent light irradiation, Appl. Surf. Sci. 433 (2018) 914–926.
- [24] Z.Y. Lu, Z.H. Yu, J.B. Dong, M.S. Song, Y. Liu, X.L. Liu, Z.F. Ma, H. Su, Y.S. Yan, P.W. Huo, Facile microwave synthesis of a Z-scheme imprinted ZnFe₂O₄/Ag/ PEDOT with the specific recognition ability towards photocatalytic activity and selectivity for tetracycline, Chem. Eng. J. 337 (2018) 228–241.
- [25] P. Dai, M.Z. Wu, T.T. Jiang, H.B. Hu, X.X. Yu, Z.M. Bai, Silver-loaded ZnO/ZnFe₂O₄ mesoporous hollow spheres with enhanced photocatalytic activity for 2, 4-dichlophenol degradation under visible light irradiation, Mater. Res. Bull. 107 (2018) 339–346.
- [26] Y.S. Fu, P. Xiong, H.Q. Chen, X.Q. Sun, X. Wang, Magnetically separable ZnFe₂O₄graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res. 50 (2011) 7210–7218.
- [27] F. Cao, Y.N. Wang, J.M. Wang, X. Yang, Y. Chen, X.C. Xv, J. Zhou, S. Li, G.W. Qin, ZnO/ZnFe₂O₄/Ag hollow nanofibers with multicomponent heterojunctions for

highly efficient photocatalytic water pollutants removal, Ceram. Int. 45 (2019) 23522-23527.

- [28] L.Q. Jing, Y.G. Xu, C.C. Qin, J. Liu, S.Q. Huang, M.Q. He, H. Xu, H.M. Li, Visible-lightdriven ZnFe₂O₄/Ag/Ag₃VO₄ photocatalysts with enhanced photocatalytic activity under visible light irradiation, Mater. Res. Bull. 95 (2017) 607–615.
- [29] Y.Y. Lan, Z.F. Liu, G. Liu, Z.G. Guo, M.N. Ruan, H. Rong, X.F. Li, 1D ZnFe₂O₄ nanorods coupled with plasmonic Ag, Ag₂S nanoparticles and Co-Pi cocatalysts for efficient photoelectrochemical water splitting, Int. J. Hydrog. Energy 44 (2019) 19841–19854.
- [30] T.S. Wu, K.X. Wang, G.D. Li, S.Y. Sun, J. Sun, J.S. Chen, Montmorillonite-supported Ag/TiO₂ nanoparticles: an efficient visible-light bacteria photodegradation material, ACS Appl. Mater. Interfaces 2 (2010) 544–550.
- [31] W.Y. Zhu, J.C. Liu, S.Y. Yu, Y. Zhou, X.L. Yan, Ag loaded WO₃ nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation, J. Hazard. Mater. 318 (2016) 407–416.
- [32] G.W. Wang, S.Y. Li, X. Ma, J. Qiao, G.S. Li, H.B. Zhang, J. Wang, Y.T. Song, A novel Z-scheme sonocatalyst system, Er³⁺: Y₃Al₅O₁₂@Ni(Fe_{0.05}Ga_{0.95})₂O₄-Au-BiVO₄, and application in sonocatalytic degradation of sulfanilamide, Ultrason. Sonochem. 45 (2018) 150–156.
- [33] J. Cao, B.D. Luo, H.L. Lin, B.Y. Xu, S.F. Che, Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag₃PO₄ hybrids for degradation of methyl orange, J. Hazard. Mater. 217 (2012) 107–115.
- [34] N. Khadgi, A.R. Upreti, Photocatalytic degradation of Microcystin-LR by visible light active and magnetic, ZnFe₂O₄-Ag/rGO nanocomposite and toxicity assessment of the intermediates, Chemosphere 221 (2019) 441–451.
- [35] A.H. Mady, M.L. Baynosa, D.T.J.J. Shim, Facile microwave-assisted green synthesis of Ag-ZnFe₂O₄@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation, Appl. Catal. B-Environ. 203 (2017) 416–427.
- [36] D.J. Singh, M. Gupta, R. Gupta, Density-functional description of spinel ZnFe₂O₄, Phys. Rev. B 63 (2001) 205102.
- [37] J. Takaobushi, M. Ishikawa, S. Ueda, E. Ikenaga, J.J. Kim, M. Kobata, Y. Takeda, Y. Saitoh, M. Yabashi, Y. Nishino, D. Miwa, K. Tamasaku, T. Ishikawa, I. Satoh, H. Tanaka, K. Kobayshi, T. Kawai, Electronic structures of Fe_{3-x}MxO₄(M=Mn,Zn) spinel oxide thin films investigated by x-ray photoemission spectroscopy and x-ray magnetic circular dichroism, Phys. Rev. B 76 (2007) (2007) 205108.
- [38] S.H. Wei, S.B. Zhang, First-principles study of cation distribution in eighteen closed-shell A^{II}B₂^{III}O₄ and A^{IV}B₂^{II}O₄ spinel oxides, Phys. Rev. B 63 (2001) 045112.
- [39] L.L. Ma, J.X. Jiang, C.L. Tan, Z.H. Wang, S.H. Li, Calculation and experimental research of electronic structure and magnetic properties of Mn-Zn spinel-ferrite, J. Chin. Ceram. Soc. 38 (2010) 1577–1581.
- [40] T.Y. Liu, G.J. Yang, W. Wang, C.X. Wang, M. Wang, X.N. Sun, P. Xu, J.T. Zhang, Preparation of C₃N₅ nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H₂-evolution from water splitting, Environ. Res. 188 (2020) 109741.
- [41] W.L. Shi, F. Guo, S.L. Yuan, In situ synthesis of Z-scheme Ag₃PO₄/CuBi₂O₄ photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation, Appl. Catal. B-Environ. 209 (2017) 720–728.
- [43] Y.J. Ma, J. Jiang, A.Q. Zhu, P.F. Tan, Y. Bian, W.X. Zeng, H. Cui, J. Pan, Enhanced visible-light photocatalytic degradation by Mn₃O₄/CeO₂ heterojunction: a Z-scheme system photocatalyst, Inorg. Chem. Front. 5 (2018) 2579–2586.
- [44] X.L. Hu, Y.W. Yong, Y. Xu, X.K. Hong, Y.Q. Weng, X.H. Wang, X.X. Yao, Enhanced photocatalytic nitrogen fixation of Agl modified g-C₃N₄ with nitrogen vacancy synthesized by an in-situ decomposition-thermal polymerization method, Appl. Surf. Sci. 531 (2020) 147348.
- [45] Y.J. Ma, P.F. Ou, Z.Y. Wang, A.Q. Zhu, L.L. Lu, Y.H. Zhang, W.X. Zeng, J. Song, J. Pan, Interface engineering in CeO₂ (111) facets decorated with CdSe quantum dots for photocatalytic hydrogen evolution, J. Colloid Interface Sci. 579 (2020) 707–713.
- [46] Y.J. Ma, Y. Bian, Y. Liu, A.Q. Zhu, H. Wu, H. Cui, D.W. Chu, J. Pan, Construction of Z-scheme system for enhanced photocatalytic H₂ evolution based on CdS quantum dots/CeO₂ nanorods heterojunction, ACS Sustain. Chem. Eng. 6 (2018) 2552–2562.
- [47] Q.Q. Liu, Y.G. Xu, J. Wang, M. Xie, W. Wei, L.Y. Huang, H. Xu, Y.H. Song, H.M. Li, Fabrication of Ag/AgCl/ZnFe₂O₄ composites with enhanced photocatalytic activity for pollutant degradation and E. coli disinfection, Colloid Surf. A 553 (2018) 114–124.
- [48] W.X. Zeng, Y. Bian, S. Cao, Y.J. Ma, Y. Liu, A.Q. Zhu, P.F. Tan, J. Pan, Phase transformation synthesis of strontium tantalum oxynitride-based heterojunction for improved visible light-driven hydrogen evolution, ACS Appl. Mater. Interfaces 10 (2018) 21328–21334.