E—*Z*-Izomerization of 2-methylenethiazolidin-4-ones

Yu. Yu. Morzherin,^{a*} M. F. Kosterina,^a V. S. Berseneva,^a W. Dehaen,^b and V. A. Bakulev^a

^aThe Urals State Technical University, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation. Fax: +7 (343 2) 74 5483. E-mail: morjerine@htf.ustu.ru ^bDepartment of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee (Leuven), Belgium

The equilibrium concentrations of *E*- and *Z*-isomers of thiazolidin-4-ones containing exocyclic double bonds in positions 2 and 5 of the cycle were determined in DMSO- d_6 . The influence of the nature of the substituents on the equilibrium position was found. Electron-releasing substituents stabilize the *E*,*Z*-configuration and electron-withdrawing substituents stabilize the *Z*,*Z*-configuration. The association constants of *E*- and *Z*-2-ethoxycarbonyl-methylenethiazolidin-4-ones with the sodium cation were determined by ¹H NMR spectroscopy.

Key words: sulfur-containing heterocycles, nitrogen-containing heterocycles, exocyclic double bond, complex formation, E-Z-izomerization.

Thiazolidin-4-ones containing exocyclic trisubstituted double bonds attract attention due to their geometry. The presence of carbonyl groups in the neighbor position to the cyclic sulfur and nitrogen atoms assumes the use of these compounds as ligands for binding complexes of various metal ions. We have previously developed a convenient method for the synthesis of 5-methylene-thiazolidin-4-ones by the reaction of malonothioamides with dimethyl acetylenedicarboxylate (DMAD).¹ The exocyclic double bond in position 5 of the cycle was shown to have the Z-configuration. The compounds containing the exocyclic double bond in position 2 of the thiazolidinone cycle can be considered as cyclic enamines² and exhibit E-Z-isomerism.^{1,3}

The purpose of this work is to study isomerization about the exocyclic double bond of thiazolidines and their complex formation with the sodium cation.

Results and Discussion

We have found that the mutual transformations of compounds Z,Z-1a-s and E,Z-1a-s occur in various solvents (Scheme 1). The condensation of thioamides of malonic acid with dimethyl acetylenedicarboxylate almost always affords mixtures of isomers 1, whose composition depends on the nature of the solvent, namely, the fraction of the E,Z-isomer increases in chloroform, and that of the Z,Z-isomer increases in DMSO. Note that isomerization occurs only about the exocyclic bond in position 2 of the cycle. This fact is easily explained if the RCH=C-NH fragment in these compounds is considered as enaminic.

Scheme 1

$$\begin{split} \mathsf{R} = \mathsf{CN}\left(\mathbf{a}\right), \mathsf{CONMe}_{2}\left(\mathbf{b}\right), \mathsf{COOEt}\left(\mathbf{c}\right), \mathsf{CON}(\mathsf{CH}_{2}\mathsf{CH}_{2})_{2}\mathsf{O}\left(\mathbf{d}\right),\\ \mathsf{CON}(\mathsf{CH}_{2}\mathsf{CH}_{2})_{2}\mathsf{CH}_{2}\left(\mathbf{e}\right), \mathsf{CONHMe}\left(\mathbf{f}\right), \end{split}$$

$$CH_{2^{-}N} (\mathbf{g}), CONHC_{6}H_{11} - cyclo(\mathbf{h}),$$

 $\begin{array}{l} {\rm CONHCH}_2{\rm Ph} \left({\bf i} \right), {\rm CONHPh} \left({\bf j} \right), {\rm CONHC}_6{\rm H}_4{\rm OMe-4} \left({\bf k} \right), \\ {\rm CONHC}_6{\rm H}_4{\rm OMe-3} \left({\bf l} \right), {\rm CONHC}_6{\rm H}_5{\rm Me-4} \left({\bf m} \right), {\rm CONHC}_6{\rm H}_4{\rm Me-3} \left({\bf n} \right), \\ {\rm CONHC}_6{\rm H}_4{\rm F-4} \left({\bf o} \right), {\rm CONHC}_6{\rm H}_4{\rm F-2} \left({\bf p} \right), {\rm CONHC}_6{\rm H}_3{\rm Cl}_2{\rm -2,6} \left({\bf q} \right), \\ {\rm CONHC}_6{\rm H}_2{\rm Cl}_3{\rm -2,4,6} \left({\bf r} \right), {\rm CONHC}_6{\rm H}_4{\rm COOEt-4} \left({\bf s} \right). \end{array}$

Individual isomers Z,Z-1a-f,h,m,p-s and E,Z-1a-g,m,p-s were isolated by fractional crystallization from chloroform (isomers E,Z-1a,m,p, unlike Z,Z-1a,m,p, are poorly soluble in chloroform). Other compounds were used as mixtures of two isomers. The equilibrium concentration of both isomers, which remains unchanged in time within a measurement error characteristic of NMR spectroscopy, is established during 2–3 days in DMSO solutions of compounds 1a-s (Table 1). We failed to achieve the equilibrium concentration of the isomers in such solvents as acetone-d₆ and CDCl₃ even when solutions were stored for 10–15 days.

Published in Russian in *Izvestiya Akademii Nauk. Seriya Khimicheskaya*, No. 7, pp. 1194–1198, July, 2002. 1066-5285/02/5107-1292 \$27.00 © 2002 Plenum Publishing Corporation

Com-	Content of is	somers (%)	Equilibrium constant
pound	E,Z	Z,Z	E,Z/Z,Z
1a	26	74	0.351
1b	>99	<1	
1c	81	19	4.26
1d	80	20	4.00
1e	75	25	3.00
1f	55	45	1.22
1g	61	39	1.56
1h	6	94	0.064
1I	49	51	0.960
1j	86	14	6.14
1k	92	8	3.34
11	37	63	0.587
1m	88	12	7.33
1n	82	18	4.55
10	42	58	0.538
1p	10	90	0.111
1q	0	100	0
1r	2	98	0.020
1s	1	99	0.010

Table 1. Ratio of E,Z- to Z,Z-isomers of compound 1 in DMSO-d₆ solutions

Scheme 2

The data obtained show that the introduction of electron-withdrawing substituents into the aryl residue $(R^1 = NHAr)$ stabilizes the Z,Z-isomers of compound 1. For example, Z,Z-isomers predominate for compounds **1p**,**s** containing fluorine and the ethoxycarbonyl group in the ortho- and para-positions of the arvl substituent, respectively. This can be explained by the stabilizing S...O interaction^{1,4} (Scheme 2). An increase in the stability of the E,Z-isomer of compound 1 can be explained by the stabilizing effect of the hydrogen bond, whose formation is favored by the electron-releasing substituents in the carbamoyl groups. The steric factor substantially affects the ratio of Z,Z- and E,Z-isomers. For example, for compounds containing the cyclohexyl, 2,6-dichlorophenyl, 2-fluorophenyl, and 2,4,6-trichlorophenyl substituents in the carboxamoyl fragment, the equilibrium is almost completely shifted toward Z,Z-isomer 1h,q,p,r.

Unlike compounds 1, in thiazolidines $2\mathbf{a} - \mathbf{e}$ containing only one C=C bond the equilibrium is shifted toward the *E*-isomer. The content of the *Z*-isomer is at most

Table 2. Ratio of *E*- to *Z*-isomers of compound **2** in DMSO- d_6 solutions

Com-	Content of	isomers (%)	Equilibrium constant
pound	E	Ζ	Z/E
2a	90	10	9.00
2b	85	15	5.67
2c	60	40	1.50
2d	93	7	13.3
2e	98	2	49

5–15% (Table 2), except for *ortho*-substituted anilide **2c**. Note that the reduction⁵ of compounds **1** always produces only the *E*-isomer of **2**. This is related, most likely, to a higher thermodynamic stability of the *E*-isomer.

Based on the position of the carboxyl substituents in compounds 1 and 2, we can assume that the latter can be used as ligands for various cations. We obtained the ¹H NMR spectra of compounds Z,Z-1c and E,Z-1c in acetone-d₆ in the presence of NaI in different concentrations. The E,Z-isomer of 2c exhibits the shift of the signal from the methine proton at the double bond in position 2 of the cycle by 0.2–0.8 ppm, whereas the position of the signal from the methine proton at the exocyclic double bond in position 5 remains virtually unchanged (Fig. 1). The intensity of signals from the

Fig. 1. Dependence of chemical shifts of methine protons in compound E,Z-1c on the concentration of NaI in acetone-d₆: *I*, for the proton at the exocyclic bond in position 5 of the cycle; and 2, for the proton at the exocyclic bond in position 2 of the cycle.

NH protons also decreases strongly. For the Z,Z-isomer of **1c** the addition of NaI does not result in any substan-

tial changes in the NMR spectra. We can conclude that the effects observed in the case of the E,Z-isomer of **1c**

Com- pound	δ (<i>J</i> /Hz)
<i>Z,Z</i> -1f <i>Z,Z</i> -1g	10.23 (t, 1 H, NH); 6.52 (s, 1 H, CH=C(5)); 5.87 (s, 1 H, CH=C(2)); 3.77 (s, 3 H, OMe); 2.51 (d+s, 3 H, NMe) 12.16 (br.s, 1 H, NH); 7.80–7.90 (m, 4 H, ArH); 6.52 (s, 1 H, CH=C(5)); 5.46 (t, 1 H, CH=C(5), $J = 7.6$); A = 28 (d - 2 H, CH, J = 7.6); 3.73 (s, 3 H, OMe)
<i>Z,Z</i> -1h	$12.18 (s, 1 H, NH); 7.99 (d, 1 H, NH, J = 7.6); 6.48 (s, 1 H, CH=C(5)); 5.87 (s, 1 H, CH=C(2)); 3.76 (s, 3 H, OMe); 3.40-3.50 (m, 1 H, NCH); 1.00-2.00 (m, 10 H, C_{cH,o})$
<i>Z,Z</i> -1i	12.16 (br.s, 1 H, NH); 8.62 (t, 1 H, NH, J = 6.2); 7.20-7.36 (m, 5 H, Ph); 6.50 (s, 1 H, CH=C(5)); 5.94 (s, 1 H, CH=C(2)); 4.36 (d, 2 H, CH, J = 6.2); 3.77 (s, 3 H, OMe)
Z,Z-1j	12.29 (s, 1 H, NH); 10.05 (s, 1 H, NH); 7.60 (d, 2 H, ArH, $J = 7.4$); 7.25 (dd, 2 H, ArH, $J = 7.4$, $J = 8.0$); 7.00 (t, 1 H, ArH, $I = 8.0$); 6.54 (s, 1 H, CH=C(5)); 6.06 (s, 1 H, CH=C(2)); 3.80 (s, 3 H, OMe)
<i>Z</i> , <i>Z</i> -1k	12.36 (br.s, 1 H, NH); 10.05 (s, 1 H, NH); 7.53 (d, 2 H, ArH, $J = 9.2$); 6.97 (d, 2 H, ArH, $J = 9.2$); 6.54 (s, 1 H, CH=C(5)); 6.05 (s, 1 H, CH=C(2)); 3.78 (s, 3 H, OMe); 3.73 (s, 3 H, OMe)
Z,Z-11	12.4 (br.s, 1 H, NH); 10.15 (s, 1 H, NH); 7.10–7.36 (m, 3 H, ArH); 6.30–6.33 (m, 1 H, ArH); 6.56 (s, 1 H, CH=C(5)); 6.07 (s, 1 H, CH=C(2)); 3.75 (s, 3 H, OMe); 3.74 (s, 3 H, OMe)
Z,Z-1m	11.6 (br.s, 1 H, NH); 10.09 (s, 1 H, NH); 7.48 (d, 2 H, ArH, $J = 8.2$); 7.10 (d, 2 H, ArH, $J = 8.2$); 6.54 (s, 1 H, CH=C(2)); 6.06 (s, 1 H, CH=C(2)); 3.78 (s, 3 H, OMe); 2.25 (s, 3 H, Me)
<i>Z,Z</i> -1n	12.40 (s, 1 H, NH); 10.10 (s, 1 H, NH); 7.51 (s, 1 H, ArH); 7.38 (d, 1 H, ArH, $J = 7.9$); 7.18 (dd, 1 H, ArH, $J = 7.9$, $J = 7.5$); 6.86 (d, 1 H, ArH, $J = 7.5$); 6.55 (s, 1 H, CH=C(5)); 6.08 (s, 1 H, CH=C(2)); 3.79 (s, 1 H, OMe); 2.28 (s, 3 H, Me)
<i>Z</i> , <i>Z</i> -10	12.8 (s, 1 H, NH); 10.1 (s, 1 H, NH); 7.62–7.69 (m, 2 H, ArH); 7.08–7.19 (m, 2 H, ArH); 6.56 (s, 1 H, CH=C(5)); 6.06 (s, 1 H, CH=C(2)); 3.79 (s, 3 H, OMe)
<i>Z,Z</i> -1p	12.44 (s, 1 H, NH); 10.00 (s, 1 H, NH); 7.95 -8.10 (m, 1 H, ArH); 7.10 -7.30 (m, 3 H, ArH); 6.56 (s, 1 H, CH=C(2)); 3.0 (s, 1 H, CH=C(2)); 3.8 (s, 3 H, OMe)
<i>Z,Z</i> -1r	12.70 (s, 1 H, NH); 9.70 (s, 1 H, NH); 8.52 (s, 1 H, ArH); 7.62 (s, 1 H, ArH); 6.55 (s, 1 H, CH=C(5)); 6.32 (s, 1 H, CH=C(2)); 3.81 (s, 3 H, OMe)
<i>Z,Z</i> -1s	12.48 (s, 1 H, NH); 10.50 (s, 1 H, NH); 7.90 (d, 9.2, 2 H, ArH); 7.75 (d, 9.2, 2 H, ArH); 6.58 (s, 1 H, CH=C(5)); 6.10 (s, 1 H, CH=C(2)): 4.28 (a, 2 H, OMe, L=7.1): 3.79 (s, 3 H, OMe): 1.31 (t, 3 H, Me, L=7.1)
<i>E.Z</i> -1f	9.65 (t, 1 H, NH): 6.85 (s, 1 H, CH=C(5)): 5.46 (s, 1 H, CH=C(2)): 3.78 (s, 3 H, OMe): 2.53 (d+s, 3 H, NMe)
<i>E</i> , <i>Z</i> -1g	11.88 (br.s, 1 H, NH); 7.80–7.90 (m, 4 H, ArH); 6.53 (s, 1 H, CH=C(5)); 5.00 (t, 1 H, CH=C(5), $J = 7.3$); 4.50 (d, 2 H, CH, $J = 7.3$); 3.72 (s, 3 H, OMe)
<i>E</i> , <i>Z</i> -1h	$12.10 (s, 1 H, NH); 8.02 (d, 7.5, 1 H, NH); 6.72 (s, 1 H, CH=C(5)); 5.45 (s, 1 H, CH=C(2)); 3.77 (s, 3 H, OMe); 3.40 = 3.50 (m, 1 H, NCH); 1.00 = 2.00 (m, 10 H, C_{cH,c})$
<i>E,Z</i> -1i	12.6 (br.s, 1 H, NH); 8.65 (1, 1 H, NH, $J = 6.2$); 7.20–7.36 (m, 5 H, Ph); 6.77 (s, 1 H, CH=C(5)); 5.73 (s, 1 H, CH=C(2)); 5
E,Z-1j	11.79 (s, 1 H, NH); 9.51 (s, 1 H, NH); 7.58 (d, 2 H, ArH, J = 7.6); 7.28 (dd, 2 H, ArH, J = 7.6, J = 7.9); 7.09 (t, 1 H, ArH, J = 7.0); 6.4 (s, 1 H, CH=C(2)); 2.77 (s, 2 H, OMs)
<i>E</i> , <i>Z</i> -1k	12.33 (br.s, 1 H, NH); 9.85 (s, 1 H, NH); 7.52 (d, 2 H, ArH, $J = 9.2$); 6.87 (d, 2 H, ArH, $J = 9.2$); 6.69 (s, 1 H, CH=C(5)); 5.85 (s, 1 H, CH=C(2)); 3.77 (s, 3 H, OMe)
<i>E</i> , <i>Z</i> -11	11.9 (br.s, 1 H, NH); 10.15 (s, 1 H, NH); 7.10–7.36 (m, 3 H, ArH); 6.70 (s, 1 H, CH=C(5)); 6.30–6.35 (m, 1 H, ArH); 5.70 (s, 1 H, CH=C(2)); 3.70 (s, 2 H, OMs); 3.78 (s, 3 H, OMs); 3.78 (s, 2 H, OMs); 3.78 (s, 3 H, CH=C(5)); $6.30-6.35$ (m, 1 H, ArH); 6.70 (s, 1 H, CH=C(5)); $6.30-6.35$ (m, 1 H, ArH); 6.70 (s, 1 H, CH=C(5)); $6.30-6.35$ (m, 1 H, ArH); 6.70 (s, 1 H, CH=C(5)); $6.30-6.35$ (m, 1 H, ArH); 6.70 (s, 2 H, OMs); 3.78 (s, 2 H, OMs
<i>E</i> , <i>Z</i> -1m	$\begin{array}{l} \text{ArH}_{3}, \text{5.76} (\text{s}, 1 \text{ H}, \text{CH}^{-1}\text{C}(2)); \text{5.77} (\text{s}, 5 \text{ H}, \text{OMC}); \text{5.78} (\text{s}, 5 \text{ H}, \text{OMC}) \\ \text{12.38} (\text{br.s}, 1 \text{ H}, \text{NH}); \text{10.08} (\text{s}, 1 \text{ H}, \text{NH}); \text{7.50} (\text{d}, 8.2, 2 \text{ H}, \text{ArH}); \text{7.11} (\text{d}, 8.2, 2 \text{ H}, \text{ArH}); \text{6.70} (\text{s}, 1 \text{ H}, \text{CH}^{-1}\text{C}(2)); \text{5.79} (\text{c}, 1 \text{ H}, \text{CH}^{-1}\text{C}(2)); \text{5.79} (\text{c}, 2 \text{ H}, \text{ArH}); \text{7.10} (\text{d}, 8.2, 2 \text{ H}, \text{ArH}); \text{6.70} (\text{s}, 1 \text{ H}, \text{CH}^{-1}\text{C}(2)); \text{5.79} (\text{c}, 2 \text{ H}, \text{ArH}); \text{7.11} (\text{d}, 8.2, 2 \text{ H}, \text{ArH}); \text{6.70} (\text{s}, 1 \text{ H}, \text{CH}^{-1}\text{C}(2)); \text{5.79} (\text{c}, 2 \text{ H}, \text{ArH}); \text{7.11} (\text{d}, 8.2, 2 \text{ H}, \text{ArH}); \text{6.70} (\text{s}, 1 \text{ H}, \text{CH}^{-1}\text{C}(2)); \text{5.79} (\text{c}, 2 \text{ H}, \text{ArH}); \text{7.11} (\text{d}, 8.2, 2 \text{ H}, \text{ArH}); \text{6.70} (\text{s}, 1 \text{ H}, \text{CH}^{-1}\text{C}(2)); \text{6.70} (\text{s}, 1 \text{ H}, \text{C}(2)); \text{6.70} (\text{s}, 1 \text{ H}, \text{C}(2));$
<i>E</i> , <i>Z</i> -1n	12.00 (s, 1 H, NH); 10.05 (s, 1 H, NH); 7.51 (s, 1 H, ArH); 7.37 (d, 1 H, ArH, J = 7.9); 7.17 (dd, 1 H, ArH, J = 7.9); 6.85 (d, 1 H, ArH, J = 7.5); 6.85 (s, 1 H, CH=C(5)); 5.68 (s, 1 H, CH=C(2)); 3.77 (s, 3 H, OMe); 2.29 (s, 3 H, Me)
<i>E</i> , <i>Z</i> -10	12.68 (s, 1 H, NH); 10.21 (s, 1 H, NH); 7.62–7.69 (m, 2 H, ArH); 7.08–7.19 (m, 2 H, ArH); 6.71 (s, 1 H, CH=C(5)); 5.70 (s, 1 H, CH=C(2)); 3.78 (s, 3 H, OMe)
<i>E</i> , <i>Z</i> -1p	12.48 (s, 1 H, NH); 10.00 (s, 1 H, NH); 7.95-8.10 (m, 1 H, ArH); 7.10-7.30 (m, 3 H, ArH); 6.76 (s, 1 H, CH=C(5)); 5.80 (s, 1 H, CH=C(2)); 3.79 (s, 3 H, OMe)
<i>E</i> , <i>Z</i> -1r	12.57 (s, 1 H, NH); 9.74 (s, 1 H, NH); 8.52 (s, 1 H, ArH); 7.62 (s, 1 H, ArH); 6.78 (s, 1 H, CH=C(5)); 5.82 (s, 1 H, CH=C(2)); 3.81 (s, 3 H, OMe)
<i>E</i> , <i>Z</i> -1s	12.00 (s, 1 H, NH); 10.46 (s, 1 H, NH); 7.91 (d, 2 H, ArH, $J = 9.2$); 7.74 (d, 2 H, ArH, $J = 9.2$); 6.85 (s, 1 H, CH=C(5)); 5.95 (s, 1 H, CH=C(2)); 4.27 (q, 2 H, OCH ₂ , $J = 7.1$); 3.77 (s, 3 H, OMe); 1.25 (t, 3 H, Me, $J = 7.1$)

Table 3. ¹H NMR spectra of compounds *Z*,*Z*-1f-s and *E*,*Z*-1f-s

are caused by the coordination of the sodium cation to the ester group at the exocyclic bond in position 2 of the cycle and to the nitrogen atom of the cycle. No coordination involves the ester group at the double exocyclic bond in position 5 of the cycle, as well as the ester group in position 2 of the cycle for the Z,Z-isomer, and to the sulfur atom. We calculated the association constant ($105\pm12 \text{ L} \text{ mol}^{-1}$) from the chemical shift of the methine proton in the ¹H NMR spectrum at different concentrations of NaI using the method proposed previously.⁶ The E-isomer of **2** exhibits the downfield shift of the signals from the methine proton depending on the concentration of NaI, while no shift of the signal from the methine proton is observed for the Z-isomer of **1a**. The association constant of the E-isomer of **1a** is $112\pm8 \text{ L} \text{ mol}^{-1}$.

Thus, it was shown that isomerization in solutions of 2,5-dimethylenethiazolidin-4-ones in $DMSO-d_6$, $CDCl_3$, and acetone- d_6 occurs only about the double exocyclic

bond in position 2 of the heterocycle. The influence of substituents on the position of equilibrium was found, and electron-donating substituents were shown to stabilize the E,Z-isomer. It was revealed that the E,Z-isomer of **1c** and the *E*-isomer of **2a** form complexes with NaI in acetone, whereas Z,Z-1c and Z-2a cannot form complexes.

Experimental

NMR spectra were recorded on Bruker 250 (250 MHz for ¹H) and Bruker DRX-500 (500 MHz for ¹H and 125 MHz for ¹³C) instruments using HMDS as internal standard. IR spectra were recorded on an IR-75 spectrometer in KBr pellets. The reaction course and purity of compounds were monitored by TLC on the Silufol UV-254 plates in chloroform or ethyl acetate—hexane (1:1) and chloroform—ethanol (9:1) systems. Corrections for melting points were not introduced. Solvents were purified and dried using standard procedures.

Table 4. Physicochemical data for compounds *E*,*Z*-1f-s and *E*-2c-e

Com- pound	Yield (%)	M.p./°C	<u>Found</u> Calcula	(%)	Molecular formula	IR v(C=O)/cm ⁻¹
			Ν	S		
1f	45	285—287	$\frac{10.23}{10.42}$	<u>8.12</u> 7.95	$C_9H_{10}N_2O_4S$	1705, 1685
1g	28	205-206	<u>8.56</u>	<u>6.02</u>	$C_{16}H_{12}N_2O_5S$	1710, 1690
			8.31	6.34		
1h	44	213-215	<u>9.12</u>	7.00	$C_{14}H_{18}N_2O_4S$	1705, 1685
			8.91	6.80		
1i	55	140—141	8.75	<u>6.53</u>	$C_{15}H_{14}N_2O_4S$	1705, 1695
			8.76	6.69		
1j	47	195—196	<u>9.12</u>	$\frac{7.02}{6.02}$	$C_{14}H_{12}N_2O_4S$	1710, 1680
11	(2)	240 242	9.03	6.89		1710 1605
IK	62	240—242	8.65	6.50	$C_{15}H_{14}N_2O_5S$	1/10, 1685
11	42	240 252	8.48	6.47	CUNOS	1705 1(05
11	42	249—232	<u>8.33</u> 8.48	<u>0.48</u> 6.47	$C_{15}\pi_{14}\pi_{2}O_{5}S$	1703, 1083
1m	55	245_248	9.40	6.88	C. H. N.O.S	1710 1690
1111	55	245 240	<u>9.02</u> 8.76	<u>6.69</u>	0151114112045	1710, 1090
1n	60	222-225	8.77	6.45	C15H14N2O4S	1710, 1680
	00		8.76	6.69	01311141 (2040	1,10,1000
10	56	200-204	8.99	6.53	C ₁₄ H ₁₁ FN ₂ O ₄ S	1705, 1685
			8.69	6.63	17 11 2 7	,
1p	57	239-242	<u>8.78</u>	<u>6.78</u>	C ₁₄ H ₁₁ FN ₂ O ₄ S	1705, 1690
-			8.69	6.63		
1r	62	268-269	7.58	<u>5.55</u>	C14H9Cl3N2O4S	1710, 1695
			7.39	5.64		
1s	58	254-255	7.45	<u>5.77</u>	$C_{17}H_{16}N_2O_6S$	1710, 1700, 1680
			7.40	5.65		
2c	47	170	<u>8.55</u>	<u>6.27</u>	$C_{15}H_{16}N_2O_5S$	1700, 1680
			8.45	6.44		
2d	49	185	<u>8.95</u>	<u>6.67</u>	$C_{12}H_{16}N_2O_5S$	1700, 1690
		4 - 0	9.11	6.95	a W N a c	
2e	52	178	<u>9.45</u>	<u>6.77</u>	$C_{13}H_{18}N_2O_4S$	1700, 1680
			9.14	6.98		

Tabl	e 5.	1 H I	NMR	spectra	(DMSO	-d ₆) for	compounds	SZ^{-1}	2c-e	and	E-2	с-е
------	------	-------	-----	---------	-------	-----------------------	-----------	-----------	------	-----	-----	-----

Com- pound	δ (<i>J</i> /Hz)
Z-2c	11.20 (s, 1 H, NH); 8.77 (s, 1 H, NH); 8.00–8.08 (m, 1 H, ArH); 6.83–7.00 (m, 3 H, ArH); 5.65 (s, 1 H, CH=); 4.27 (dd, 1 H, CH, <i>J</i> = 4.8, <i>J</i> = 7.9); 3.84 (s, 3 H, OMe); 3.67 (s, 3 H, OMe); 3.11 (dd, 1 H, CH, <i>J</i> = 4.8, <i>J</i> = 17.8); 2.84 (dd, 1 H, CH, <i>J</i> = 7.9, <i>J</i> = 17.8)
Z-2d	11.58 (s, 1 H, NH); 5.62 (s, 1 H, CH=); 4.124 (dd, 1 H, CH, $J = 4.6$, $J = 7.6$); 3.65 (s, 3 H, OMe); 3.40–3.60 (m, 8 H, 4 CH ₂); 3.12 (dd, 1 H, CH, $J = 4.6$, $J = 17.2$); 2.86 (dd, 1 H, CH, $J = 7.6$, $J = 17.2$)
Z-2e	11.00 (s, 1 H, NH); 5.68 (s, 1 H, CH=); 4.09 (dd, 1 H, CH, $J = 4.6$, $J = 7.7$); 3.66 (s, 3 H, OMe); 3.40–3.60 (m, 4 H, 2 NCH ₂); 3.00 (dd, 1 H, CH, $J = 4.6$, $J = 17.5$); 2.72 (dd, 1 H, CH, $J = 7.7$, $J = 17.5$); 1.40–1.70 (m, 6 H, 3 CH ₂)
E-2c	11.42 (s, 1 H, NH); 8.87 (s, 1 H, NH); 8.00–8.08 (m, 1 H, ArH); 6.83–7.00 (m, 3 H, ArH); 5.97 (s, 1 H, CH=); 4.04 (dd, 1 H, CH, $J = 4.7$, $J = 7.9$); 3.84 (s, 3 H, OMe); 3.67 (c, 3 H, OMe); 3.08 (dd, 1 H, CH, $J = 4.7$, $J = 17.8$); 2.85 (dd, 1 H, CH, $J = 7.9$, $J = 17.8$)
<i>E</i> -2d	11.29 (s, 1 H, NH); 5.84 (s, 1 H, CH=); 4.04 (dd, 1 H, CH, $J = 4.6$, $J = 7.6$); 3.66 (s, 3 H, OMe); 3.40–3.60 (m, 8 H, 4 CH ₂); 3.08 (dd, 1 H, CH, $J = 4.6$, $J = 17.2$); 2.85 (dd, 1 H, CH, $J = 7.6$, $J = 17.2$)
<i>E</i> -2e	11.18 (s, 1 H, NH); 5.88 (s, 1 H, CH=); 4.01 (dd, 1 H, CH, $J = 4.8$, $J = 7.7$); 3.66 (s, 3 H, OMe); 3.40–3.60 (m, 4 H, 2 NCH ₂); 2.98 (dd, 1 H, CH, $J = 4.8$, $J = 17.5$); 2.75 (dd, 1 H, CH, $J = 7.7$, $J = 17.5$); 1.40–1.70 (m, 6 H, 3 CH ₂)

The thioacetamides $RCH_2-C(S)NH_2$ (3a-c) were synthesized by a previously described procedure.⁷ Compounds 1a-s were synthesized from dimethyl acetylenedicarboxylate and corresponding substituted thioacetamides 3a-s according to a described procedure.¹ Compounds 2a,b were synthesized by the reduction of corresponding thiazolidinones 1 with Zn(AcOH) as described in Ref. 5. Compounds 2c-d were prepared similarly. The physicochemical characteristics of the compounds are presented in Tables 3-6.

Preparation of thioacetamides 3d—s (general procedure). A suspension of the corresponding acetonitrile RCH₂CN (0.1 mol) and triethylamine (1.4 mL, 0.01 mol) in ethanol (100 mL) saturated with H₂S (5.1 g, 0.15 mol) was placed in an autoclave and heated for 1.5 h at 70 °C. The reaction mixture

Table 6. Physicochemical data for thioacetamides Z,Z-3d-s

Com- Yield pound (%)		M.p. /°C	Found Calculated (%)		Molecular formula	MS, <i>m/z</i>	
			Ν	S		$(I_{\rm rel}(\%))$	
3d	85	120	15.28	<u>16.65</u>	$C_7H_{12}N_2O_2S$	188 (52)	
			14.88	17.03			
3e	73	140	<u>15.23</u>	<u>16.89</u>	C ₈ H ₁₄ N ₂ OS	186 (17)	
			15.04	17.21	0 11 2		
3f	92	105	21.00	24.62	C ₄ H ₈ N ₂ OS	132 (35)	
			21.19	24.26	1 0 2		
3g	68	158	11.68	14.03	C ₁₁ H ₁₀ N ₂ O ₂ S	234 (8)	
0			11.96	13.69	11 10 2 2		
3h	71	98—	14.19	15.42	C ₉ H ₁₆ N ₂ OS	200 (53)	
		100	13.99	16.01	y 10 2	. ,	
3i	93	110	13.05	14.98	C ₁₀ H ₁₂ N ₂ OS	208 (65)	
			13.45	15.39	10 12 2		
3i	96	106	14.02	16.08	CoH10N2OS	194 (56)	
	-		14.42	16.51	<i>J</i> 10 2		
3k	87	128	12.12	13.95	C10H12N2O2S	224 (18)	
-			12.49	14.30	10 12 2 2	()	

Com- pound	Yield (%)	M.p. /°C	<u>Found</u> Calcula	(%) ted	Molecular formula	MS, m/z
			Ν	S		$(I_{\rm rel} (\%))$
31	89	142	<u>12.59</u>	14.12	C ₁₀ H ₁₂ N ₂ O ₂ S	224 (26)
			12.49	14.30		
3m	76	106—	12.89	<u>14.92</u>	$C_{10}H_{12}N_{2}OS$	208 (12)
		108	13.45	15.39	10 12 2	
3n	86	114	<u>13.69</u>	<u>15.65</u>	C ₁₀ H ₁₂ N ₂ OS	208 (53)
			13.45	15.39	10 12 2	
30	53	125	_	<u>14.92</u>	C ₉ H ₉ FN ₂ OS	212 (56)
	(0	lecomp	.)	15.11	, , <u>-</u>	
3р	48	112	_	<u>14.74</u>	C ₉ H ₉ FN ₂ OS	212 (32)
	(0	lecomp	.)	15.11	, , <u>-</u>	
3q	75	89	10.69	12.25	C ₉ H ₈ Cl ₂ N ₂ OS	264 (32),
_			10.65	12.18	, , , , , , , , , , , , , , , , , , , ,	262 (55)
3r	68	86	<u>9.63</u>	<u>10.54</u>	C ₉ H ₇ Cl ₃ N ₂ OS	298 (22),
			9.41	10.77	, , , , , ,	296 (23)
3s	55	108	<u>10.86</u>	<u>11.86</u>	C ₁₂ H ₁₄ N ₂ O ₃ S	266 (8)
			10.52	12.04		5 <i>P</i>

was cooled, and the precipitate of thioamide RCH_2CSNH_2 (**3d**-s) was filtered off. The product was recrystallized from ethanol.

Preparation of 2,5-dimethylenethiazolidin-4-ones (1a–s) (general procedure). Dimethyl acetylenedicarboxylate (0.4 mL, 3.17 mmol) was added to a suspension of the corresponding thioacetamide 3 (3 mmol) in 30 mL of ethanol (40 mL of chloroform or 2 mL of DMSO) at ~20 °C. The reaction mixture was stirred for 2 h and cooled. The precipitate was filtered off, and the product was recrystallized from ethanol.

Preparation of 5-methylenethiazolidin-4-ones (2a–e) (general procedure). Zinc dust (1 g) was added to a suspension of compound 1 (0.5 g) in glacial acetic acid (4 mL). The mixture was stirred for 24 h at 30-35 °C, 100 mL of water were added,

and the resulting mixture was stirred for 30 min. The precipitate was filtered off and recrystallized from ethanol.

Methyl *E*,*Z*-(2-[2-(1,3-dioxo-1,3-dihydroisoindol-2-yl)ethylidene]-4-oxothiazol-5-ylidene)acetate (*E*,*Z*-1g). ¹³C NMR (DMSO-d₆), δ : 167.3 (CON); 166.3 (<u>C</u>OOMe); 164.2 (C(3)); 144.1 (C(2)); 134.5, 123.1, 131.6 (Ar); 135.1 (C(5)); 110.7 (<u>CH</u>=C(5)); 99.6 (<u>CH</u>=C(2)); 52.1 (OCH₃), 34.7 (CH₂).

Methyl *Z*,*Z*-{2-[2-(1,3-dioxo-1,3-dihydroisoindol-2-yl)ethylidene]-4-oxothiazolidin-5-ylidene}acetate (*Z*,*Z*-1g). ¹³C NMR (DMSO-d₆), δ : 167.2 (CON); 166.4 (<u>C</u>OOMe); 165.3 (C(3)); 144.1 (C(2)); 134.4, 123.0, 131.7 (Ar); 132.4 (C(5)); 110.5 (<u>CH</u>=C(5)); 100.3 (<u>CH</u>=C(2)); 52.1 (OCH₃); 34.3 (CH₂).

Determination of association constant. To determine association constants, we used ¹H NMR spectroscopy in a solution of acetone-d₆ at 298 K at constant concentrations of compounds **1c** and **2a** (3 mmol L⁻¹) and varied concentrations of NaI (0.8, 1.8, 4.5, 7.5, 11.8, and 21.7 mmol L⁻¹). The chemical shift of the signal from the methine proton of the exocyclic double bond in position 2 was used for measurements. The association constant was calculated from the nonlinear regression as described in Ref. 6.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 01-03-96431-r2001Ural).

References

- V. S. Berseneva, A. V. Tkachev, Yu. Yu. Morzherin, W. Dehaen, I. Luyten, S. Toppet, and V. A. Bakulev, *J. Chem. Soc.*, *Perkin Trans.* 1, 1998, 2133.
- 2. J. A. M. Guard and P. J. Steel, Heterocycles, 1994, 37, 1711.
- 3. R. Markovic and M. Baranac, J. Serb. Chem. Soc., 1998, 63(3), 165.
- 4. B. D'hooge and W. Dehaen, Bull. Soc. Chim. Belg., 1997, 106, 729.
- Yu. Yu. Morzherin, M. F. Kosterina, A. S. Bezborodov, V. S. Berseneva, I. Luyten, W. Dehaen, and V. A. Bakulev, *Khim. Geterotsikl. Soed.*, 2000, 119 [*Khim. Geterocycl. Soed.*, 2000 (Engl. Transl.)].
- 6. J. A. A. De Boer, D. N. Reinhoudt, S. Harkema, G. J. van Hummel, and F. de Jong, *J. Am. Chem. Soc.*, 1982, 104, 4073.
- V. A. Bakulev, A. T. Lebedev, E. F. Dankova, V. S. Mokrushin, and V. S. Petrosyan, *Tetrahedron*, 1989, 45, 7329.

Received July 20, 2001; in revised form December 5, 2001