First Enantioselective Total Synthesis of Both (+)- and (-)-Metachromin A

Markus Brüggemann,^[a] Christiane Holst,^{[a][‡]} and Dieter Hoppe*^[a]

Dedicated to Professor Günter Helmchen on the occasion of his 60th birthday

Keywords: Total synthesis / Natural products / Chiral 1,3-oxazolidines / Terpenoids / Quinones

The antineoplastic agent (–)-metachromin A (1) from Hippospongia metachromia has been synthesized in enantiomerically pure form in 13% overall yield. A general convergent synthetic strategy for different metachromins using a 2-alkyloxy-3-sulfonyl-1,3-oxazolidine as a chiral dithienium equivalent is presented.

Introduction

The purple-coloured Okinawan marine sponge *Hippospongia metachromia* is the source of a number of structurally related sesquiterpenoid quinones and phenols named metachromins $A-H^{[1]}$ (Figure 1). Due to their interesting biological profiles^[1] – exhibiting cytotoxicity against murine leukemia cells and human epidermoid carcinoma cells as well as remarkable coronary vasodilating activity – these compounds represent attractive synthetic targets in medicinal chemistry.

Figure 1. Structures of metachromins

With the exception of metachromin C, all metachromins contain the same chiral fragment R* as part of their biogenetically unusual carbon skeletons. Consequently, a retrosynthetic scission of the C-7–C-8 bond offers a general convergent synthetic strategy suitable for the preparation of seven different metachromins. As a first synthetic target, we chose (–)-metachromin A (1), which has previously been synthesized by Correia et al. as a racemic mixture.^[2a] More recently, an enantioenriched intermediate of this synthesis has also been prepared.^[2b] Our retrosynthetic disassembly is shown in Scheme 1. The two key intermediates **2** and **3** can be elaborated from silyl enol ether **4** and 1,2,4,5-tetramethoxybenzene (**5**), respectively.

Scheme 1. Retrosynthetic analysis of (-)-metachromin A (1)

Results and Discussion

To introduce the stereochemical information into the key intermediate **2**, an enantiomerically pure 2-alkyloxy-3-sulfonyl-1,3-oxazolidine **6** was used as a chiral dithienium equivalent. The well-known Lewis acid mediated reaction of chiral, non-racemic 2-alkyloxy-3-sulfonyl-1,3-oxazolidines^[3] with prochiral silyl enol ethers generally affords a 1:1 mixture of epimers when it is used for the construction of quaternary carbon centres.^[3e,3f] In order to obtain enhanced selectivities, prior conversion of the silyl enol ether **4**^[4] into a titanium enolate^[5] was essential (Scheme 2). Without further addition of a Lewis acid, this new method provided 79% of an easily separable mixture (dr = 81:19)

 [[]a] Organisch-Chemisches Institut, Westfälische Wilhelms-Universität,
 Corrensstrasse 40, 48149 Münster, Germany Fax: (internat.) + 49-251/833-9772
 E-mail: dhoppe@uni-muenster.de

^[‡] X-ray structure analysis.

of two epimers at the quaternary carbon centre favouring the desired diastereomer *cu*-7. Presumably, coordination of the oxazolidine **6** at the trichlorotitanium enolate and reaction via a cyclic transition state similar to that involved in corresponding aldol reactions^[5b-5d] is responsible for the increased selectivity. We plan to study this reaction in more detail in the future.

Scheme 2. Reagents and conditions: (a) **6**, $ZnCl_2$ ·Et₂O, CH_2Cl_2 , 0 °C, 15 min, 85%, dr = 45:55; (b) TiCl₄, CH_2Cl_2 , -78 °C, 15 min, room temp, 45 min, then **6**, -78 °C \rightarrow room temp, 15 h, 79%, dr = 81:19; (c) LDA, THF, -78 °C, \rightarrow nom temp, 15 h, 54%, dr = 27:73 (+35% *cu*-7); (d) KOtBu, 18-crown-6, THF, -40 °C \rightarrow room temp, 1 h, then MeI, -78 °C \rightarrow room temp, 15 h, 86%, dr = 96:4; (e) MePPh₃Br, KOtBu, toluene, reflux, 4 h, 93%, dr > 96:4; (f) H₂C(CH₂SH)₂, BF₃·Et₂O, CH₂Cl₂, 0 °C, 2 h, 93% **2** + 84% **10**; (g) H₂C(CH₂SH)₂, BF₃·Et₂O, CH₂Cl₂, 0 °C, 2 h, 82%; (h) MePPh₃Br, KOtBu, toluene, reflux, 4 h, 52%, dr = 81:19 (+18% **11**); LDA = lithium diisopropylamide, THF = tetra-hydrofuran, Ts = 4-toluenesulfonyl

After separation by flash column chromatography (FCC) on silica gel, the diastereoselective methylation of *cu*-7 with methyl iodide was efficiently achieved using potassium tertbutylate/18-crown-6 for deprotonation (86%, dr = 96:4); other bases, such as lithium diisopropylamide (LDA) in THF, gave lower yields and led preferentially to the undesired diastereomer *epi-8* (54%, dr = 27:73). By exposing the thermodynamically unfavoured diastereomerically pure epi-8 to the same conditions as used for the formation of 8 (KOtBu/18-crown-6/MeI, then epi-8, THF, $-78 \text{ °C} \rightarrow \text{room}$ temp., 15 h), it was shown that no epimerization occurred. This result suggests that it is the alkylation step which is responsible for the observed selectivity. Most probably, interaction between the alkylating agent and the quasi-axial methyl group^[6c] at C-2 favours the formation of $\mathbf{8}$ when a free enolate is employed (Figure 2). In this case, "equatorial" attack via a twist-boat-like transition state leads to the product.^[6] When LDA is used for deprotonation, the lithium presumably creates a steric demand at the enolate

oxygen by aggregation and complexation, forcing the methyl group into the axial position via a chair-like transition state.

Figure 2. Proposed transition states for the methylation of the enolate of cu-7

Olefination of the strongly sterically hindered ketone 8 under the conditions established by Fitjer^[7] furnished product 9 in 93% yield. Only traces of epi-9, formed by epimerization at C-3' under the basic conditions, were detected by NMR (dr > 96:4). This *epi-9* could not be removed from 9 by FCC, but was lost during the ensuing steps. The relative and absolute configuration of the intermediate 9 was elucidated by X-ray crystal structure analysis^[8] (Figure 3), which showed the desired *trans* arrangement of the two methyl groups at the cyclohexane moiety. Finally, thiolysis^[3d] with 1,3-propanedithiol resulted in the formation of 2 (93%). The chiral auxiliary, sulfonamide 10, was recovered in 84% yield. Interestingly, the last two steps could be performed in reverse order. Because of the steric hindrance at the cyclohexane ring in 8, selective thiolysis of the oxazolidine group was possible, leading to ketone 11 (82%); unfortunately, subsequent olefination afforded the product 2 in only 52% yield as a mixture of epimers (dr =80:20). Following the first route, the key intermediate 2 was synthesized in enantiomerically pure form from the silvl enol ether 4 in only four steps in 46% overall yield.

Figure 3. X-ray structure analysis of 9

The five steps required for the elaboration of the second fragment **3** from 1,2,4,5-tetramethoxybenzene (**5**)^[9] gave an overall yield of 47% (Scheme 3). *ortho*-Lithiation of **5** with *n*-butyllithium and subsequent reaction with oxirane produced the alcohol **12** in 80% yield. Only a Swern oxidation^[10] at -30 °C afforded the aldehyde **13** in a satisfactory yield of 79%. Other methods, such as pyridinium chlorochromate (PCC)^[11] or Dess-Martin periodinane (DMP) oxidation,^[12] gave lower yields (52% and 56%, respectively). The (*E*)-configured trisubstituted double bond moiety

could be introduced by either Hornerа Wadsworth-Emmons reaction^[13] with phosphonate 15 [92%, (E)/(Z) = 95:5] or a Wittig reaction^[14] with the commercially available ylide 16 [92%, (E)/(Z) = 98:2] furnishing the ester 14. An NOE of 3% between the signals of the methyl group at C-2 and the C-4 methylene group proved the (E) configuration of the double bond. Subsequent chemoselective reduction with diisobutylaluminium hydride^[15] (DIBAL-H) and bromination of the resulting alcohol 17 via the mesylate with lithium bromide led to the allyl bromide 3 in good yield (82% over two steps).

Scheme 3. Reagents and conditions: (a) *n*BuLi, LiCl, THF, 0 °C, 30 min, then ethylene oxide, -78 °C, 30 min, room temp., 3 h, 80%; (b) DMP, CH₂Cl₂, room temp., 2 h, 56%; (c) PCC, NaOAc, CH₂Cl₂, room temp., 5 h, 52%; (d) (COCl₂), DMSO, CH₂Cl₂, -60 °C $\rightarrow -30$ °C, 1 h, then NEt₃, room temp., 1 h, 79%; (e) (EtO)₂-P(O)CH(Me)COOEt (**15**), LiCl, DBU, MeCN, room temp., 1 h, 92%, (*E*)/(*Z*) = 95:5; (f) Ph₃P=C(Me)COOEt (**16**), CH₂Cl₂, reflux, 3 h, 92%, (*E*)/(*Z*) = 98:2; (g) DIBAL-H, CH₂Cl₂, -78 °C, 2.5 h, 92%; (h) CBr₄, PPh₃, CH₂Cl₂, 0 °C, 30 min, 83%; (i) MsCl, NEt₃, CH₂Cl₂, -40 °C, 1.5 h, then LiBr, THF, 0 °C, 2.5 h, 89%; DMP = Dess-Martin periodinane, PCC = pyridinium chlorochromate, DMSO = dimethyl sulfoxide, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, DIBAL-H = diisobutylaluminium hydride, Ms = methanesulfonyl

With the required building blocks in hand, their coupling could be accomplished by alkylation of the lithiated dithiane 2 with the bromide 3 (85%) (Scheme 4). Selective lithiation of the neopentylic dithiane^[16] moiety without concomitant deprotonation at the allylic position was achieved using tert-butyllithium/hexamethylphosphoric triamide (HMPTA) at low temperature.^[16e] As expected, the selective desulfuration of the product 18 caused some difficulties due to the dithiane ring being adjacent to a quaternary carbon centre and the presence of two reactive double bonds. The use of Raney nickel (W2,^[17] freshly prepared), even after its deactivation in boiling acetone,^[18] led to reduction and isomerization of the double bonds but not to complete desulfuration. Treatment with hydrazine^[19] resulted in complete decomposition of the compound. Birch conditions,^[20] at the temperature of boiling ammonia as well as at -50 °C, led to reduction of the electron-rich benzene ring, while at -78 °C a mixture of compounds with only one reductively cleaved C-S bond was detected. The same mixture was obtained when 18 was treated with tributylstannane/2,2'-azobisisobutyronitrile (AIBN) in benzene^[21] at 80 °C for 12 h (80%). Consequently, much more vigorous conditions of neat tributylstannane at 120 °C for 30 h (addition of AIBN every two hours) were required, under which the desired precursor **19** was obtained in excellent yield (95%). Unfortunately, the final oxidation with cerium(IV) ammonium nitrate (CAN)^[9] in acetonitrile/ water produced only 37% of (–)-metachromin A (**1**) along with 34% of the known^[1] methyl ether **20**. Isolation and separation of the two products was accomplished by FCC on RP-18 silica gel. All attempts to achieve a selective demethylation^[9,22] of **20** have hitherto met with failure.

Scheme 4. Reagents and conditions: (a) *t*BuLi, HMPTA, THF, -78 °C, 2.5 h, then **3**, -78 °C, 3 h, 85%; (b) Bu₃SnH, AIBN, 120 °C, 30 h, 95%; (c) CAN, MeCN/H₂O, 70:30, -7 °C, 1.5 h, room temp, 2 h, 37% **1** + 34% **20**; HMPTA = hexamethylphosphoric triamide, AIBN = 2,2'-azobisisobutyronitrile, CAN = cerium(IV) ammonium nitrate

An exact mass, a correct elemental analysis, and the melting point proved the correct molecular formula and high purity of the synthesized (–)-metachromin A (1). The spectroscopic data (¹H NMR, ¹³C NMR, IR) were identical in all respects to those provided by Prof. Correia.^[2] The specific optical rotation $[\alpha]_D^{27} = -17.6$ of the synthetic 1 was higher than the value reported^[1] for natural 1 ($[\alpha]_D^{27} = -11$). Starting from the 2-alkyloxy-1,3-oxazolidine *ent*-6, (+)-metachromin A (*ent*-1, $[\alpha]_D^{27} = +17.3$) was similarly synthesized.

Conclusion

A general convergent synthetic strategy for the stereocontrolled preparation of different metachromins is presented. As an example, (–)-metachromin A (1) has been synthesized in enantiomerically pure form in seven steps from the silyl enol ether 4 in 13% overall yield. The use of a 2-alkyloxy-3-sulfonyl-1,3-oxazolidine 6 as a chiral dithienium equivalent, which constitutes a new method for the stereoselective construction of quaternary carbon centres, allowed the efficient preparation of the common chiral part of seven of the metachromins.

Thus, the alkylation of chiral dithianes, in turn obtained from enantiomerically pure 3-sulfonyl-1,3-oxazolidines, and subsequent reduction (or hydrolysis) represents a valuable strategy for the enantioselective synthesis of natural products.

Experimental Section

General Remarks: All solvents were dried and purified prior to use: Et₂O and toluene were distilled from sodium benzophenone ketyl. THF was distilled from potassium benzophenone ketyl. CH₂Cl₂, NEt₃, and DMSO were distilled from CaH₂. MeCN was distilled from P₄O₁₀. All commercially available reagents were used without purification. LiCl and LiBr were dried for 15 h at 150 °C under reduced pressure. All reactions were performed under Ar in flamedried glassware and were monitored by thin-layer chromatography (TLC, silica gel 60 F254 or RP-18 F254s, Merck). - Flash column chromatography (FCC) was performed on Merck silica gel 60, 0.040-0.063 mm, or LiChroprep RP-18, 0.040-0.063 mm; PE = light petroleum ether, b.p. 36-46 °C. - NMR: Bruker ARX 300, AM 360 (NOE experiments), and AMX 400 (2D spectra); Varian Unity Plus 600 (2D spectra); for ¹H NMR, CDCl₃ as solvent ($\delta_{\rm H}$ = 7.24); for ¹³C NMR, CDCl₃ as solvent ($\delta_C = 77.0$). – IR: Nicolet 5DXC. Optical rotations: Perkin-Elmer polarimeter 341. - MS: Finnigan MAT 8200. - Elemental analysis: Heraeus CHN-O-Rapid. - Melting points: Gallenkamp MFB 595, uncorrected values. - GC: Hewlett-Packard 6890, HP1701.

(+)-(2R,4S)-4-Ethyl-2-ethyloxy-3-[(4-methylphenyl)sulfonyl]-1,3oxazolidine (6): To a solution of (S)-2-aminobutanol (5.00 g, 56.1 mmol) and NEt₃ (8.40 mL, 60.3 mmol) in CH₂Cl₂ (75 mL), a solution of pTsCl (11.0 g, 57.7 mmol) in CH₂Cl₂ (75 mL) was slowly added at 0 °C. After stirring at room temperature for 18 h, the reaction mixture was washed with aqueous 2 N HCl $(3 \times 150 \text{ mL})$, dried (Na₂SO₄), and concentrated in vacuo. The crude tosylate was dissolved in triethyl orthoformate (150 mL), three drops of MsOH were added, and the mixture was stirred for 3 h at room temperature. K_2CO_3 (1.00 g) was then added and the resulting suspension was stirred for 10 min. Filtration and removal of the triethyl orthoformate in vacuo gave the crude products 6 and *epi-6* as a viscous oil {16.2 g, 54.1 mmol, 96%, 6/*epi-6* = 85:15 [¹H NMR (2-H)]}. The epimeric mixture was dissolved in hexanes at 50 °C and the resulting solution was cooled to -30 °C for 4 h. Filtration gave diastereomerically pure 6 (13.5 g, 45.1 mmol, 80%, dr = 99:1) as colourless crystals. $-R_f = 0.43$ (SiO₂, Et₂O/PE, 1:1). - M.p. 57.9-58.7 °C (hexanes). - $[\alpha]_D^{20} = +15.9$ (c = 0.90, CH₂Cl₂); *ent-6*: $[\alpha]_{D}^{20} = -15.4$ (*c* = 1.00, CH₂Cl₂). $- {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (t, ${}^{3}J = 7.6$ Hz, 3 H, 2'-H₃), 1.22 (t, ${}^{3}J = 6.9 \text{ Hz}, 3 \text{ H}, 2''-\text{H}_{3}), 1.51-1.66 \text{ (m, 1 H, 1'-H}_{2}), 1.82-1.96$ (m, 1 H, 1'-H₂), 2.41 (s, 3 H, 4'''-CH₃), 3.53-3.72 (m, 3 H, 1''-H₂, 4-H), 3.74-3.89 (m, 2 H, 5-H₂), 6.02 (s, 1 H, 2-H), 7.26-7.30 (m, 2 H, 3^{'''}-H, 5^{'''}-H), 7.69–7.73 (m, 2 H, 2^{'''}-H, 6^{'''}-H). – ¹³C NMR (75 MHz, CDCl₃): $\delta = 9.8$ (q, C-2'), 14.9 (q, C-2''), 21.4 (q, 4'''-CH₃), 27.4 (t, C-1'), 59.4 (t, C-1''), 61.6 (d, C-4), 70.3 (t, C-5), 108.0 (d, C-2), 127.5 (d, C-2"", C-6""), 129.7 (d, C-3"", C-5""), 135.6 (s, C-4''), 144.3 (s, C-1'''). – IR (KBr): $\tilde{v} = 2980, 2900,$ 1560, 1360, 1170, 815 cm⁻¹. – EI-MS: m/z (%) = 299 (0.6) [M⁺], 254 (99), 196 (58), 155 (60), 91 (100). $- C_{14}H_{21}NO_4S$ (299.39): calcd. C 56.17, H 7.07, N 4.68; found C 56.24, H 7.08, N 4.92.

(-)-(2*R*)-2-{(2*S*,4*S*)-4-Ethyl-3-[(4-methylphenyl)sulfonyl]-1,3-oxazolidin-2-yl}-2-methylcyclohexan-1-one (*cu*-7) and (-)-(2*S*)-2-{(2*S*,4*S*)-4-Ethyl-3-[(4-methylphenyl)sulfonyl]-1,3-oxazolidin-2-yl}-2-methylcyclohexan-1-one (*cl*-7): To a cold (-78 °C) solution of silyl enol ether 4^[4] (4.61 g, 25.0 mmol) in CH₂Cl₂ (200 mL), TiCl₄ (2.75 mL, 25.1 mmol) was added dropwise. After stirring for 15 min at -78 °C, the reaction mixture was allowed to warm to room temperature and stirred for a further 45 min. The deep-red solution was then cooled to -78 °C once more, whereupon a solution of 2alkyloxy-1,3-oxazolidine 6 (7.49 g, 25.0 mmol) in CH₂Cl₂ (50 mL)

was slowly added. The resulting mixture was allowed to warm to room temperature over a period of 15 h. The reaction was then stopped by the addition of 2 N HCl (250 mL) and the aqueous layer was extracted with CH_2Cl_2 (4 × 150 mL). The combined organic layers were stirred with K₂CO₃ (3.00 g) for 15 min, then the suspension was filtered and the solvent was removed in vacuo to leave the crude product {cu-7/cl-7, 81:19 [¹H NMR (2'-H)]}. Purification by FCC (1130 cm³ SiO₂, gradient Et₂O/PE, 1:5 \rightarrow Et₂O/PE, 1:4) yielded diastereomerically pure cu-7 (5.93 g, 16.2 mmol, 65%) as colourless crystals. $-R_f = 0.37$ (SiO₂, Et₂O/PE, 1:1). - M.p. 97.0-98.5 °C (Et₂O/PE, 1:4). $- [\alpha]_{D}^{20} = -24.8$ (c = 1.30, CH₂Cl₂); *ent-cu-7*: $[\alpha]_D^{20} = +25.6$ (c = 0.94, CH₂Cl₂). $- {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.84$ (t, ${}^{3}J = 7.4$ Hz, 3 H, 2''-H₃), 1.08 (s, 3 H, 2-CH₃), 1.42-1.57 (m, 2 H, 3-H₂, 1"-H₂), 1.61-1.79 (m, 3 H, 5-H₂, 4-H₂, 1''-H₂), 1.83-1.99 (m, 2 H, 5-H₂, 4-H₂), 2.28-2.53 (m, 3 H, 6-H₂, 3-H₂), 2.38 (s, 3 H, 4'''-CH₃), 3.05-3.11 (m, 1 H, 5'-H₂), 3.50-3.57 (m, 2 H, 4'-H, 5'-H₂), 5.36 (s, 1 H, 2'-H), 7.28-7.37 (m, 2 H, 3'''-H, 5'''-H), 7.68–7.77 (m, 2 H, 2'''-H, 6'''-H). – ¹³C NMR (75 MHz, CDCl₃): $\delta = 10.8$ (q, C-2^{''}), 20.7 (q, 2-CH₃), 21.0 (t, C-4), 21.6 (q, 4'''-CH₃), 25.9 (t, C-5), 27.4 (t, C-1''), 34.3 (t, C-3), 39.5 (t, C-6), 52.8 (s, C-2), 62.2 (d, C-4'), 69.4 (t, C-5'), 93.6 (d, C-2'), 128.2 (d, C-2''', C-6'''), 129.9 (d, C-3''', C-5'''), 134.4 (s, C-4'''), 144.2 (s, C-1'''), 212.1 (s, C-1). – IR (KBr): $\tilde{v} = 2900$ s, 2850 s, 1690 s, 1585 w, 1430 m, 1330 s, 1150 s, 1100 s, 975 s, 800 w, 650 s cm⁻¹. – EI-MS: m/z (%) = 364 (0.1) [M⁺ – H], 254 (100), 210 (43), 155 (64), 91 (76). $- C_{19}H_{27}NO_4S$ (365.50): calcd. C 62.44, H 7.45, N 3.83; found C 62.36, H 7.46, N 3.60. - cl-7 (1.32 g, 3.61 mmol, 14%, colourless crystals). $- R_{\rm f} = 0.32$ (SiO₂, Et₂O/PE, 1:1). – M.p. 136.5–137.5 °C (Et₂O/PE, 1:4). – $[\alpha]_{D}^{20} = -23.8$ (c =0.96, CH₂Cl₂); *ent-cl-7*: $[\alpha]_D^{20} = +22.2$ (*c* = 0.94, CH₂Cl₂). $- {}^{1}H$ NMR (300 MHz, CDCl₃): $\delta = 0.78$ (t, ${}^{3}J = 7.6$ Hz, 3 H, 2''-H₃), 1.21 (s, 3 H, 2-CH₃), 1.36-1.63 and 1.65-1.93 (2 m, 3 H and 4 H, 5-H₂, 4-H₂, 3-H₂, 1''-H₂), 2.05-2.16 (m, 1 H, 3-H₂), 2.41 (s, 3 H, 4""-CH₃), 2.42-2.53 (m, 1 H, 6-H₂), 2.59-2.71 (m, 1 H, 6-H₂), 3.23-3.31 (m, 1 H, 5'-H₂), 3.55-3.66 (m, 2 H, 4'-H, 5'-H₂), 5.69 (s, 1 H, 2'-H), 7.28-7.36 (m, 2 H, 3'''-H, 5'''-H), 7.70-7.79 (m, 2 H, 2'''-H, 6'''-H). $- {}^{13}$ C NMR (75 MHz, CDCl₃): $\delta = 10.8$ (q, C-2''), 20.1 (q, 2-CH₃), 20.8 (t, C-4), 21.6 (q, 4'''-CH₃), 26.7 (t, C-5), 27.0 (t, C-1''), 34.7 (t, C-3), 39.6 (t, C-6), 53.6 (s, C-2), 62.1 (d, C-4'), 70.1 (t, C-5'), 94.3 (d, C-2'), 128.5 (d, C-2''', C-6'''), 129.9 (d, C-3''', C-5'''), 134.9 (s, C-4'''), 144.3 (s, C-1'''), 212.8 (s, C-1). - IR (KBr): $\tilde{v} = 2920$ s, 2850 s, 1680 s, 1585 w, 1440 m, 1330 s, 1150 s, 970 s, 800 w, 655 s cm⁻¹. – EI-MS: m/z (%) = 364 (0.1) $[M^+ - H]$, 254 (92), 210 (19), 155 (55), 91 (100). - $C_{19}H_{27}NO_4S$ (365.50): calcd. C 62.44, H 7.45, N 3.83; found C 62.35, H 7.41, N 3.77.

(+)-(2R,6R)-2-{(2S,4S)-4-Ethyl-3-[(4-methylphenyl)sulfonyl]-1,3oxazolidin-2-yl}-2,6-dimethylcyclohexan-1-one (8) and (-)-(2R,6S)-2-{(2S,4S)-4-Ethyl-3-[(4-methylphenyl)sulfonyl]-1,3-oxazolidin-2yl}-2,6-dimethylcyclohexan-1-one (epi-8): A solution of 18-crown-6 (6.39 g, 24.2 mmol) and KOtBu (2.71 g, 24.1 mmol) in THF (80 mL) was cooled until the onset of cloudiness (ca. -40 °C). The ketone cu-7 (5.90 g, 16.1 mmol) in THF (40 mL) was then added at such a rate that the mixture did not solidify during the course of the addition. The orange solution thus obtained was stirred at room temperature for 1 h. It was then cooled to -78 °C, whereupon MeI (10.1 mL, 162 mmol) was added. After allowing the mixture to warm to room temperature over a period of 15 h, satd. aqueous NH₄Cl (150 mL) was added and vigorous stirring was maintained. The aqueous layer was subsequently extracted with Et_2O (5 × 150 mL). The combined organic layers were dried with Na₂SO₄ and the solvents were removed in vacuo. The crude product {8/epi-8, 96:4 [1H NMR (2'H)]} was subjected to FCC (1130 cm³ SiO₂, gradient Et₂O/PE, 1:5 \rightarrow Et₂O/PE, 1:3). The diastereomerically pure product 8 (5.10 g, 13.4 mmol, 83%) was obtained as a resinous colourless oil. $-R_f = 0.38$ (SiO₂, Et₂O/PE, 1:1). $- [\alpha]_D^{20} =$ +35.5 (c = 2.90, CH₂Cl₂); *ent-8*: $[\alpha]_D^{20} = -35.1$ (c = 0.73, CH₂Cl₂). $- {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.84$ (t, ${}^{3}J = 7.5$ Hz, 3 H, 2''-H₃), 1.00 (d, ${}^{3}J = 6.4$ Hz, 3 H, 6-CH₃), 1.07 (s, 3 H, 2-CH₃), 1.35-1.40 (m, 2 H, 5-H₂, 3-H₂), 1.50-1.56 (m, 1 H, 1"-H₂), 1.68-1.74 (m, 2 H, 4-H₂, 1''-H₂), 2.03-2.09 (m, 2 H, 5-H₂, 4-H₂), 2.58-2.66 (m, 2 H, 6-H, 3-H₂), 2.43 (s, 3 H, 4""-CH₃), 3.07 (dd, ${}^{2}J = 8.6$ Hz, ${}^{3}J = 6.1$ Hz, 1 H, 5'-H₂), 3.53 (dd, ${}^{2}J = 8.6$ Hz, ${}^{3}J =$ 2.6 Hz, 1 H, 5'-H₂), 3.54-3.60 (m, 1 H, 4'-H), 5.46 (s, 1 H, 2'-H), 7.31-7.38 (m, 2 H, 3'''-H, 5'''-H), 7.71-7.78 (m, 2 H, 2'''-H, 6'''-H). $- {}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 10.8$ (q, C-2''), 15.0 (q, $6-CH_3$), 19.3 (q, 2-CH₃), 20.9 (t, C-4), 21.6 (q, 4'''-CH₃), 26.9 (t, C-1''), 35.8 (t, C-5), 36.6 (t, C-3), 43.1 (d, C-6), 53.6 (s, C-2), 62.5 (d, C-4'), 69.7 (t, C-5'), 93.3 (d, C-2'), 128.2 (d, C-2''', C-6'''), 130.0 (d, C-3''', C-5'''), 134.1 (s, C-4'''), 144.4 (s, C-1'''), 213.1 (s, C-1). – IR (film): $\tilde{v} = 2920$ m, 2850 m, 1700 s, 1590 w, 1450 m, 1340 s, 1160 s, 1120 m, 1080 m, 1000 m, 855 w, 820 m, 700 m, 660 s cm⁻¹. – EI-MS: m/z (%) = 254 (100), 224 (14), 173 (5), 155 (45), 91 (65). - C₂₀H₂₉NO₄S (379.52): calcd. C 63.30, H 7.70, N 3.69; found C 63.45, H 7.92, N 3.88. - epi-8 (205 mg, 0.54 mmol, 3.3%, colourless solid). $- R_f = 0.48$ (SiO₂, Et₂O/PE, 1:1). - M.p.71.8-72.6 °C (Et₂O/PE, 1:3). $- [\alpha]_{D}^{20} = -78.6$ (c = 0.74, CH₂Cl₂); *ent-epi-8*: $[\alpha]_{D}^{20} = +74.5$ (*c* = 0.96, CH₂Cl₂). - ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.90 \text{ (t, } {}^{3}J = 7.4 \text{ Hz}, 3 \text{ H}, 2'' \text{-H}_3), 1.08 \text{ (d,}$ ${}^{3}J = 6.5 \text{ Hz}, 3 \text{ H}, 6\text{-CH}_{3}, 1.18 \text{ (s, 3 H, 2-CH}_{3}, 1.46-1.61 \text{ (m, 2)}$ H, 5-H₂, 1''-H₂), 1.68-1.87 (m, 4 H, 4-H₂, 3-H₂, 1''-H₂), 1.91-2.01 (m, 1 H, 5-H₂), 2.29-2.39 (m, 1 H, 3-H₂), 2.44-2.59 (m, 1 H, 6-H), 2.40 (s, 3 H, 4'''-CH₃), 3.09-3.15 (m, 1 H, 5'-H₂), 3.50-3.59 (m, 2 H, 4'-H, 5'-H₂), 5.39 (s, 1 H, 2'-H), 7.30-7.37 (m, 2 H, 3^{'''}-H, 5^{'''}-H), 7.70–7.80 (m, 2 H, 2^{'''}-H, 6^{'''}-H). – ¹³C NMR (75 MHz, CDCl₃): $\delta = 10.7$ (q, C-2^{''}), 15.2 (q, 6-CH₃), 20.9 (t, C-4), 21.2 (q, 2-CH₃), 21.5 (q, 4'''-CH₃), 27.9 (t, C-1''), 33.6 (t, C-5), 34.4 (t, C-3), 41.5 (d, C-6), 52.2 (s, C-2), 62.0 (d, C-4'), 69.2 (t, C-5'), 94.4 (d, C-2'), 128.3 (d, C-2''', C-6'''), 129.8 (d, C-3''', C-5'''), 134.5 (s, C-4'''), 143.9 (s, C-1'''), 214.4 (s, C-1). - IR (KBr): $\tilde{v} = 2920$ m, 2850 m, 1690 s, 1590 w, 1450 m, 1340 s, 1160 s, 1090 m, 1080 m, 1000 m, 820 m, 660 s. - EI-MS: m/z (%) = 254 (100), 224 (60), 173 (5), 155 (48), 125 (9), 91 (71). $- C_{20}H_{29}NO_4S$ (379.52): calcd. C 63.30, H 7.70, N 3.69; found C 63.57, H 7.47, N 3.66.

(-)-(2S,4S)-2-[(1S,3R)-1,3-Dimethyl-2-methylenecyclohexyl]-4ethyl-3-[(4-methylphenyl)sulfonyl]-1,3-oxazolidine (9): A mixture of MePPh₃Br (7.15 g, 20.0 mmol) and KOtBu (2.22 g, 19.8 mmol) in toluene (80 mL) was refluxed for 1 h. Most of the solvent was then distilled off and a solution of ketone 8 (5.00 g, 13.2 mmol) in toluene (50 mL) was slowly added to the boiling mixture. Again, most of the toluene was removed and the concentrated mixture was refluxed for 4 h. After cooling to room temperature, brine (150 mL) was added and the aqueous layer was extracted with CH₂Cl₂ $(4 \times 150 \text{ mL})$. The combined organic layers were dried (MgSO₄) and the solvent was evaporated. The crude product $\{9/epi-9, > 96:4\}$ $[^{1}H NMR (2-H)]$ was purified by FCC (1130 cm³ SiO₂, Et₂O/PE, 1:5) to give 9 together with traces of epi-9 (4.65 g, 12.3 mmol, 93%, dr > 96:4) as colourless crystals. $-R_{\rm f} = 0.55$ (SiO₂, Et₂O/PE, 1:1). - M.p. 174.9-175.5 °C (Et₂O/PE, 1:5). - $[\alpha]_{D}^{20} = -44.7$ (c = 0.68, CH₂Cl₂); *ent-*9: $[\alpha]_D^{20} = +44.1$ (*c* = 1.00, CH₂Cl₂). - ¹H NMR $(300 \text{ MHz, CDCl}_3)$: $\delta = 0.85 \text{ (t, } {}^{3}J = 7.6 \text{ Hz}, 3 \text{ H}, 2'' \text{-H}_3), 1.02 \text{ (d,}$ ${}^{3}J = 6.7$ Hz, 3 H, 3'-CH₃), 1.08 (s, 3 H, 1'-CH₃), 1.46-1.61 and 1.61–1.88 (2 m, 2 H and 6 H, 3'-H, 4'-H₂, 5'-H₂, 6'-H₂, 1''-H₂), 2.25-2.42 (m, 1 H, 6'-H₂), 2.43 (s, 3 H, 4'''-CH₃), 3.25-3.31 (m, 1 H, 5-H₂), 3.56-3.68 (m, 2 H, 4-H, 5-H₂), 4.81 (s, 1 H, 2'-CH₂), 4.94 (s, 1 H, 2'-CH₂), 5.41 (s, 1 H, 2-H), 7.28–7.38 (m, 2 H, 3'''-H, 5'''-H), 7.70–7.80 (m, 2 H, 2'''-H, 6'''-H). – ¹³C NMR (75 MHz, CDCl₃): δ = 10.9 (q, C-2''), 18.0 (q, 3'-CH₃), 19.4 (q, 1'-CH₃), 21.3 (t, C-5'), 21.5 (q, 4'''-CH₃), 27.3 (t, C-1''), 34.1 (d, C-3'), 37.0 and 37.2 (2 t, C-4', C-6'), 46.2 (s, C-1'), 62.1 (d, C-4), 70.5 (t, C-5), 97.8 (d, C-2), 105.3 (t, 2'-CH₂), 128.5 (d, C-2''', C-6'''), 129.8 (d, C-3''', C-5'''), 134.7 (s, C-4'''), 144.0 (s, C-1'''), 157.0 (s, C-2'). – IR (KBr): \tilde{v} = 2950 s, 2910 s, 2860 s, 1650 m, 1590 m, 1330 s, 1160 s, 1100 s, 970 s, 890 s, 810 m, 660 s cm⁻¹. – EI-MS: *m/z* (%) = 254 (100), 173 (5), 155 (53), 123 (4), 91 (75). – C₂₁H₃₁NO₃S (377.55): calcd. C 66.81, H 8.28, N 3.71; found C 66.80, H 8.25, N 3.93.

X-ray Structure Analysis of 9:^[8] Data were collected on an Enraf–Nonius CAD4 diffractometer. $C_{21}H_{31}NO_3S$, crystal size $0.35 \times 0.25 \times 0.20$ mm, $M_r = 377.53$ gmol⁻¹, orthorhombic, space group $P2_12_12_1$ (No. 19), a = 11.534(1), b = 12.404(1), c = 14.629(1) Å, V = 2092.9(3) Å³, Z = 4, $\rho_{calcd.} = 1.198$ g cm⁻³, $\lambda = 1.54178$ Å, T = 223 K, $\mu = 1.522$ mm⁻¹, empirical absorption correction based on ψ scan data ($0.618 \le C \le 0.751$), $\omega/2\theta$ scans, total no. of reflections collected (+h, -k, -l) 2418, [$\sin\Theta/\lambda$]_{max} = 0.62 Å⁻¹, 2418 independent reflections and 2279 observed reflections [$I \ge 2\sigma(I)$], 240 refined parameters, R = 0.040, $R_w^2 = 0.114$, max. residual electron density $\rho = 0.33$ (-0.33) eÅ⁻³, Flack parameter -0.01(2).

(+)-(2*S*,6*R*)-2-(1,3-Dithian-2-yl)-2,6-dimethylcyclohexan-1-one (11): To a solution of oxazolidine 8 (975 mg, 2.57 mmol) and 1,3-propanedithiol (0.52 mL, 5.2 mmol) in CH₂Cl₂ (50 mL), BF₃·Et₂O (0.64 mL, 5.1 mmol) was added dropwise at 0 °C. After 2 h at this temperature, satd. aqueous NaHCO₃ (50 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were dried (Na₂SO₄) and the solvent was removed in vacuo. FCC (440 cm³ SiO₂, gradient Et₂O/PE, 1:10 \rightarrow Et₂O/PE, 1:3) gave 11 (518 mg, 2.12 mmol, 82%) as a colourless solid. $-R_{\rm f} = 0.43$ (SiO₂, Et₂O/PE, 1:1). $- [\alpha]_{\rm D}^{20} = +160$ (c = 1.18, CH₂Cl₂). - ¹H NMR (300 MHz, CDCl₃): $\delta = 0.99$ (d, ³J = 6.2 Hz, 3 H, 6-CH₃), 1.13 (s, 3 H, 2-CH₃), 1.24-1.35 (m, 2 H, 3-H₂, 5-H₂), 1.55-1.64 (m, 1 H, 4-H₂), 1.72-1.94 (m, 2 H, 4-H₂, 5'-H₂), 2.00-2.13 (m, 2 H, 5-H₂, 5'-H₂), 2.37 (dq, ${}^{2}J = 14.1$ Hz, ${}^{3}J =$ 3.3 Hz, 1 H, 3-H₂), 2.61-2.75 (m, 1 H, 6-H), 2.84-2.95 (m, 4 H, 4'-H₂, 6'-H₂), 4.63 (s, 1 H, 2'-H). - ¹³C NMR (75 MHz, CDCl₃): $\delta = 15.0$ (q, 6-CH₃), 19.2 (q, 2-CH₃), 20.6 (t, C-4), 26.4 (t, C-5'), 31.5 and 31.6 (2 t, C-4', C-6'), 36.6 (t, C-5), 38.1 (t, C-3), 41.6 (d, C-6), 53.8 (s, C-2), 54.9 (d, C-2'), 213.1 (s, C-1). – IR (KBr): $\tilde{v} =$ 2940 s, 1709 s, 1450 m, 1420 m, 1380 m, 1280 m cm⁻¹. – EI-MS: m/z (%) = 244 (27) [M⁺], 121 (25), 119 (100), 106 (13). -C12H20OS2 (244.42): calcd. C 58.97, H 8.25; found C 59.01, H 8.44.

(-)-2-[(1*S*,3*R*)-1,3-Dimethyl-2-methylenecyclohexyl]-1,3-dithiane (2). - Method A: To a stirred solution of oxazolidine 9 (4.11 g, 10.9 mmol) and 1,3-propanedithiol (2.21 mL, 22.0 mmol) in CH₂Cl₂ (200 mL), BF₃·Et₂O (2.75 mL, 21.7 mmol) was added dropwise at 0 °C. After stirring for 2 h, satd. aqueous NaHCO₃ (50 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (4 × 100 mL). The combined organic layers were dried with Na₂SO₄ and the solvents were removed in vacuo. Purification of the crude product by FCC (780 cm³ SiO₂, gradient PE \rightarrow Et₂O/ PE, 1:10 \rightarrow Et₂O) yielded 2 (2.46 g, 10.1 mmol, 93%) as a volatile oil and amino alcohol 10 (2.22 g, 9.12 mmol, 84%) as a white solid. - Method B: A mixture of MePPh₃Br (785 mg, 2.20 mmol) and KOtBu (245 mg, 2.18 mmol) in toluene (20 mL) was refluxed for 1 h. Most of the solvent was then distilled off and a solution of ketone 11 (355 mg, 1.45 mmol) in toluene (10 mL) was slowly added to the boiling mixture. Again, most of the toluene was distilled off and the concentrated mixture was refluxed for 4 h. After cooling to room temperature, brine (30 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were dried (MgSO₄) and the solvent was evaporated. The crude product [¹H NMR (2-H): 2/epi-2, 81:19] was purified by FCC (250 cm³ SiO₂, gradient Et₂O/PE, 1:10 \rightarrow Et₂O/PE, 1:5) to give a mixture of **2** and *epi-2* (183 mg, 0.75 mmol, 52%, *dr* = 80:20) as a volatile colourless liquid, along with diastereomerically pure 11 (65 mg, 0.26 mmol, 18%). $- R_f = 0.64$ (SiO₂, Et₂O/PE, 1:1). - $[\alpha]_{D}^{20} = -3.1$ (c = 0.80, CH₂Cl₂); ent-2: $[\alpha]_{D}^{20} = +1.75$ (c = 1.10, CH₂Cl₂). - ¹H NMR (300 MHz, CDCl₃): $\delta = 1.06$ (d, ³J = 6.7 Hz, 3 H, 3'-CH₃), 1.05-1.20 (m, 1 H, 4'-H₂), 1.23 (s, 3 H, 1'-CH₃), 1.49-1.74 (m, 4 H, 4'-H₂, 5'-H₂, 6'-H₂), 1.75-1.90 (m, 2 H, 5-H₂, 6'-H₂), 2.02-2.10 (m, 1 H, 5-H₂), 2.30-2.43 (m, 1 H, 3'-H), 2.84–2.92 (m, 4 H, 4-H₂, 6-H₂), 4.32 (s, 1 H, 2-H), 4.92 (d, ${}^{2}J =$ 1.4 Hz, 1 H, 2'-CH₂), 5.11 (s, 1 H, 2'-CH₂). - ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.7 (q, 3'-CH_3), 20.8 (t, C-5'), 24.3 (q, 1'-CH_3), 26.4$ (t, C-5), 31.8 and 32.0 (2 t, C-4, C-6), 34.9 (d, C-3'), 35.9 (t, C-4'), 37.4 (t, C-6'), 44.9 (s, C-1'), 60.4 (d, C-2), 108.5 (t, 2'-CH₂), 154.3 (s, C-2'). – IR (film): $\tilde{v} = 3080$ w, 2900 s, 1620 m, 1440 m, 1410 m, 1270 m, 1180 w, 1050 w, 900 s, 770 m cm⁻¹. – EI-MS: m/z(%) = 242 (8) [M⁺], 121 (9), 119 (100), 106 (3). - C₁₃H₂₂S₂ (242.44): calcd. C 64.40, H 9.15; found C 64.83, H 9.28.

2-(2,3,5,6-Tetramethoxyphenyl)ethan-1-ol (12): A solution of 1,2,4,5-tetramethoxybenzene^[9] (5) (1.98 g, 10.0 mmol) and LiCl (1.27 g, 30.0 mmol) in THF (100 mL) was cooled to 0 °C, whereupon a 1.6 м solution of *n*BuLi in hexane (6.90 mL, 11.0 mmol) was added dropwise. After stirring at room temperature for 30 min, the reaction mixture was cooled to -78 °C and transferred by means of a cannula into a solution of ethylene oxide (ca. 5 g, 114 mmol) in THF (30 mL). The resulting mixture was stirred at -78 °C for 30 min and thereafter at room temperature for a further 3 h. 2 N aqueous HCl (50 mL) was then added at 0 °C and the heterogeneous mixture was stirred for 30 min. The aqueous layer was subsequently extracted with Et_2O (4 × 150 mL), the combined organic layers were dried (MgSO₄), and the solvents were evaporated in vacuo. FCC (850 cm³ SiO₂, gradient Et₂O/PE, 2:1 \rightarrow Et₂O) provided alcohol 12 (1.94 g, 8.00 mmol, 80%) as a waxy solid. - $R_{\rm f} = 0.23$ (SiO₂, Et₂O). $- {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 2.04$ (s, 1 H, 1-OH), 2.94 (t, ${}^{3}J = 6.6$ Hz, 2 H, 2-H₂), 3.76 (s, 6 H, 2'-OCH₃, 6'-OCH₃), 3.77 (t, ${}^{3}J = 6.6$ Hz, 2 H, 1-H₂), 3.83 (s, 6 H, 3'-OCH₃, 5'-OCH₃), 6.44 (s, 1 H, 4'-H). - ¹³C NMR (75 MHz, CDCl₃): $\delta = 28.0$ (t, C-2), 56.3 (q, 3'-OCH₃, 5'-OCH₃), 60.9 (q, 2'-OCH₃, 6'-OCH₃), 63.4 (t, C-1), 97.9 (d, C-4'), 126.9 (s, C-1'), 141.3 (s, C-2', C-6'), 149.0 (s, C-3', C-5'). – IR (film): $\tilde{\nu}$ = 3400 s, 2920 s, 1590 m, 1480 s, 1360 s, 1230 s, 1080 s, 850 w cm⁻¹. – EI-MS: m/z (%) = 242 (100) [M⁺], 227 (45), 211 (9), 195 (37), 181 (35), 166 (11), 153 (60), 139 (18), 125 (16). $-C_{12}H_{18}O_5$ (242.27): calcd. C 59.49, H 7.48; found C 59.57, H 7.38.

2-(2,3,5,6-Tetramethoxyphenyl)ethanal (13): To a cooled (-60 °C) solution of $(\text{COCl})_2$ (2.00 mL, 22.9 mmol) in CH_2Cl_2 (100 mL), a solution of DMSO (3.24 mL, 45.7 mmol) in CH_2Cl_2 (20 mL) was added dropwise and the resulting mixture was stirred for 15 min. Then, a solution of alcohol **12** (2.76 g, 11.4 mmol) in CH_2Cl_2 (30 mL) was slowly added. The reaction mixture was allowed to warm to -30 °C over a period of 1 h, NEt₃ (12.7 mL, 91.1 mmol) was added, and the resulting solution was stirred for 1 h at room temperature. 2 N aqueous HCl (100 mL) was then added and the aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were dried (Na₂SO₄) and the solvents were evaporated. The crude product was purified by FCC (850 cm³ SiO₂, gradient Et₂O/PE, 1:2 \rightarrow Et₂O/PE, 1:1) to furnish aldehyde **13**

(E)-2-Methyl-4-(2,3,5,6-tetramethoxyphenyl)-2-butenoate Ethvl (14): Ylide 16 (2.55 g, 7.03 mmol) was treated with a solution of aldehyde 13 (1.30 g, 5.41 mmol) in CH₂Cl₂ (70 mL) and the resulting mixture was refluxed for 3 h. Satd. brine (100 mL) was then added, the aqueous layer was extracted with CH_2Cl_2 (3 \times 100 mL), and the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. FCC (440 cm³ SiO₂, gradient Et₂O/PE, 1:3 \rightarrow Et_2O/PE , 1:2) furnished ester 14 [1.61 g, 4.96 mmol, 92%, (E)/(Z) =98:2 (GC)] as a colourless solid. $-R_{\rm f} = 0.32$ (SiO₂, Et₂O/PE, 1:1). - M.p. 54.7-55.3 °C (Et₂O/PE, 1:2). - ¹H NMR (300 MHz, CDCl₃): $\delta = 1.22$ (t, ${}^{3}J = 7.2$ Hz, 3 H, 2^{''}-H₃), 1.99 (d, ${}^{4}J = 1.2$ Hz, 3 H, 2-CH₃), 3.52 (dd, ${}^{3}J = 7.2$ Hz, J = 0.9 Hz, 2 H, 4-H₂), 3.74 (s, 6 H, 2'-OCH₃, 6'-OCH₃), 3.82 (s, 6 H, 3'-OCH₃, 5'-OCH₃), 4.22 $(q, {}^{3}J = 7.2 \text{ Hz}, 2 \text{ H}, 1''-\text{H}_{2}), 6.44 (s, 1 \text{ H}, 4'-\text{H}), 6.74 (m, 1 \text{ H}, 3-$ H). $- {}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 12.4$ (q, C-2''), 14.2 (q, 2-CH₃), 24.3 (t, C-4), 56.3 (q, 3'-OCH₃, 5'-OCH₃), 60.3 (t, C-1''), 60.8 (q, 2'-OCH₃, 6'-OCH₃), 97.8 (d, C-4'), 127.2 and 127.4 (2 s, C-2, C-1'), 140.6 (d, C-3), 141.17 (s, C-2', C-6'), 148.9 (s, C-3', C-5'), 168.2 (s, C-1). – IR (KBr): $\tilde{v} = 2910$ s, 1695 s, 1630 w, 1590 w, 1480 s, 1340 m, 1230 s, 1050 s, 960 w, 800 w cm⁻¹. – EI-MS: m/z (%) = 323 (100) [M⁺ - H], 308 (5), 292 (4), 278 (12), 247 (11), 235 (59), 220 (18). - C₁₇H₂₄O₆ (324.38): calcd. C 62.95, H 7.46; found C 63.01, H 7.68.

(E)-2-Methyl-4-(2,3,5,6-tetramethoxyphenyl)-2-buten-1-ol (17): A 1.0 M solution of DIBAL-H in CH₂Cl₂ (28.4 mL, 28.4 mmol) was added dropwise to a solution of ester 14 (1.84 g, 5.67 mmol) in CH₂Cl₂ (50 mL) at -78 °C. After stirring for 2.5 h at this temperature, the reaction mixture was hydrolyzed by the addition of H₂O (15 mL) and allowed to warm to room temperature. 2 N aqueous HCl (100 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (3 × 150 mL). The combined organic layers were dried (Na₂SO₄) and the solvent was evaporated in vacuo. Purification of the crude product by FCC (500 cm³ SiO₂, Et₂O/PE, 3:1) yielded alcohol 17 (1.47 g, 5.21 mmol, 92%) as a colourless oil. $-R_{\rm f} =$ 0.29 (SiO₂, Et₂O). - ¹H NMR (300 MHz, CDCl₃): $\delta = 1.34$ (s, 1 H, 1-OH), 1.82 (d, ${}^{4}J = 0.3$ Hz, 3 H, 2-CH₃), 3.39 (d, ${}^{3}J = 7.2$ Hz, 2 H, 4-H₂), 3.74 (s, 6 H, 2'-OCH₃, 6'-OCH₃), 3.82 (s, 6 H, 3'-OCH₃, 5'-OCH₃), 3.95 (s, 2 H, 1-H₂), 5.45 (td, ${}^{3}J = 7.2$ Hz, ${}^{4}J =$ 0.3 Hz, 1 H, 3-H), 6.41 (s, 1 H, 4'-H). - ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.7$ (q, 2-CH₃), 23.3 (t, C-4), 56.3 (q, 3'-OCH₃, 5'-OCH₃), 60.8 (q, 2'-OCH₃, 6'-OCH₃), 68.9 (t, C-1), 97.3 (d, C-4'), 125.0 (d, C-3), 129.1 (s, C-1'), 134.6 (s, C-2), 141.0 (s, C-2', C-6'), 148.9 (s, C-3', C-5'). – IR (film): $\tilde{v} = 3400$ s, 2910 s, 1590 m, 1450 s, 1340 m, 1230 s, 1050 s, 830 w cm⁻¹. – EI-MS: m/z (%) = 282 (100) [M⁺], 249 (8), 233 (16), 209 (12), 202 (20), 181 (11), 178 (16). - C₁₅H₂₂O₅ (282.34): calcd. C 63.81, H 7.85; found C 63.71, H 7.92

3-[(*E*)-**4-Bromo-3-methyl-2-butenyl]-1,2,4,5-tetramethoxybenzene** (3): To a solution of alcohol **17** (1.00 g, 3.54 mmol) in CH₂Cl₂ at -40 °C, NEt₃ (0.78 mL, 5.6 mmol) followed by MsCl (0.36 mL, 4.7 mmol) were added. After stirring for 1.5 h, a solution of LiBr (1.23 g, 14.2 mmol) in THF (25 mL) was added and the resulting mixture was stirred for 2.5 h at 0 °C. It was then poured into PE (250 mL) and extracted with H_2O (4 × 200 mL). Drying (Na₂SO₄) of the organic layer and evaporation of the solvents afforded an adequately pure crude product (1.20 g, 3.48 mmol, 98%). FCC (310 cm^3 SiO₂, Et₂O/PE, 1:2) provided the bromide 3 (1.09 g, 3.16 mmol, 89%) as a colourless oil. $-R_{\rm f} = 0.40$ (SiO₂, Et₂O/PE, 1:1). – ¹H NMR (300 MHz, CDCl₃): δ = 1.90 (d, ⁴J = 0.3 Hz, 3 H, 3'-CH₃), 3.38 (d, ${}^{3}J = 7.2$ Hz, 2 H, 1'-H₂), 3.73 (s, 6 H, 2-OCH₃, 4-OCH₃), 3.82 (s, 6 H, 1-OCH₃, 5-OCH₃), 3.93 (s, 2 H, 4'-H₂), 5.63 (td, ${}^{3}J = 7.2$ Hz, ${}^{4}J = 0.3$ Hz, 1 H, 2'-H), 6.42 (s, 1 H, 6-H). $- {}^{13}$ C NMR (75 MHz, CDCl₃): $\delta = 14.7$ (q, 3'-CH₃), 24.0 (t, C-1'), 41.8 (t, C-4'), 56.3 (q, 1-OCH₃, 5-OCH₃), 60.8 (q, 2-OCH₃, 4-OCH₃), 97.5 (d, C-6), 128.1 (s, C-3), 130.0 (d, C-2'), 131.4 (s, C-3'), 141.0 (s, C-2, C-4), 148.9 (s, C-1, C-5). – IR (film): $\tilde{v} =$ 2905 s, 1580 m, 1450 s, 1345 m, 1200 s, 1050 s, 1000 w, 830 w cm⁻¹. - EI-MS: m/z (%) = 344/346 (100/98) [M⁺], 265 (69), 250 (32), 234 (56), 219 (20), 203 (20), 191 (20), 187 (18). $-C_{15}H_{21}O_4Br$ (345.24): calcd. C 52.19, H 6.13; found C 52.24, H 6.30.

(+)-2-[(1S,3R)-1,3-Dimethyl-2-methylenecyclohexyl]-2-[(E)-2methyl-4-(2,3,5,6-tetramethoxyphenyl)-2-butenyl]-1,3-dithiane (18): A 1.7 M solution of tBuLi in pentane (1.23 mL, 2.09 mmol) was slowly added to a solution of dithiane 2 (485 mg, 2.00 mmol) in THF (40 mL) and HMPTA (1.04 mL, 5.98 mmol) at -78 °C. The yellow mixture thus obtained was stirred for 2.5 h and then a solution of bromide 3 (691 mg, 2.00 mmol) in THF (8 mL) was added dropwise. After stirring for a further 3 h at -78 °C, MeOH/H₂O (1:1, 10 mL) was added and the reaction mixture was allowed to warm to room temperature. The mixture was passed through a pad of silica gel eluting with Et₂O/PE, 1:1, so as to remove HMPTA, the solvents were evaporated, and the residue was subjected to FCC $(500 \text{ cm}^3 \text{ SiO}_2, \text{ Et}_2\text{O}/\text{PE}, 1:10)$. The dithiane **18** (864 mg, 1.70 mmol, 85%) was obtained as a resinous colourless oil. $-R_{\rm f} =$ 0.40 (SiO₂, Et₂O/PE, 1:1). $- [\alpha]_D^{20} = +31.1$ (c = 0.63, CH₂Cl₂); ent-18: $[\alpha]_{D}^{20} = -28.8$ (c = 0.86, CH₂Cl₂). $- {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 0.83 - 1.04$, 1.55 - 1.80, 1.80 - 1.98, and 2.05 - 2.15 (4 m, 1 H, 5 H, 1 H, and 1 H, 4"-H₂, 5"-H₂, 6"-H₂, 5-H₂), 0.96 $(d, {}^{3}J = 6.4 \text{ Hz}, 3 \text{ H}, 3''-\text{CH}_{3}), 1.34 (s, 3 \text{ H}, 1''-\text{CH}_{3}), 2.14 (s, 3 \text{ H}, 1)$ 2'-CH₃), 2.16-2.31 (m, 1 H, 3''-H), 2.46-2.61, 2.61-2.85, and 2.85 -3.05 (3 m, 1 H, 3 H, and 2 H, 4-H₂, 6-H₂, 1'-H₂), 3.39 (d, ${}^{3}J = 6.9$ Hz, 2 H, 4'-H₂), 3.76 (s, 6 H, 2'''-OCH₃, 6'''-OCH₃), 3.81 (s, 6 H, 3'''-OCH₃, 5'''-OCH₃), 4.94 (d, ${}^{2}J = 1.4$ Hz, 1 H, 2''-CH₂), 5.53-5.62 (m, 2 H, 2"-CH₂, 3'-H), 6.41 (s, 1 H, 4""-H). -¹³C NMR (75 MHz, CDCl₃): δ = 19.3 (q, 2'-CH₃), 19.9 (q, 3''-CH₃), 20.4 (q, 1"-CH₃), 22.3, 22.7, 27.2, and 27.9 (4 t, C-4, C-5, C-6, C-5''), 24.0 (t, C-4'), 34.0 and 36.9 (2 t, C-4'', C-6''), 34.8 (d, C-3''), 47.5 (t, C-1'), 54.3 (s, C-1''), 56.4 (q, 3'''-OCH₃, 5'''-OCH₃), 60.8 (q, 2'''-OCH₃, 6'''-OCH₃), 66.7 (s, C-2), 97.6 (d, C- $4^{\prime\prime\prime}),\ 108.7$ (t, $2^{\prime\prime}\text{-}CH_2),\ 129.6$ and 131.7 (2 s, C-2', C-1'''), 129.9 (d, C-3'), 141.4 (s, C-2''', C-6'''), 148.9 (s, C-3''', C-5'''), 153.4 (s, C-2''). – IR (film): $\tilde{v} = 2980$ s, 1580 w, 1450 m, 1335 w, 1210 m, 1045 m cm⁻¹. – EI-MS: m/z (%) = 506 (14) [M⁺], 383 (45), 241 (49), 211 (50), 196 (37), 181 (21), 153 (20), 133 (23), 125 (27), 123 (31), 119 (43). - HRMS (C₂₈H₄₂O₄S₂): calcd. 506.2524; found 506.2526. - C₂₈H₄₂O₄S₂ (506.78): calcd. C 66.36, H 8.35; found C 66.96, H 8.29.

(-)-3-{(*E*)-5-[(1R,3R)-1,3-Dimethyl-2-methylenecyclohexyl]-3methyl-2-pentenyl}-1,2,4,5-tetramethoxybenzene (19): Dithiane 18 (740 mg, 1.46 mmol) was dissolved in Bu₃SnH (5.80 mL, 21.6 mmol) and the resulting solution was heated to 120 °C for 30 h. Initially, and then at intervals of 2 h, 1 mg portions of solid AIBN were added. The crude reaction mixture was subsequently subjected to FCC (500 cm³ SiO₂, Et₂O/PE, 1:9) to yield 19 (560 mg, 1.39 mmol, 95%) as a resinous colourless oil. $-R_{\rm f} = 0.47$ (SiO₂, Et₂O/PE, 1:1). $- [\alpha]_{D}^{20} = -15.2 (c = 0.79, CH_{2}Cl_{2}); ent-19: [\alpha]_{D}^{20} =$ +15.2 (c = 0.86, CH₂Cl₂) . – ¹H NMR (300 MHz, CDCl₃): $\delta =$ 0.81-1.00, 1.10-1.30, 1.40-1.75, and 1.75-1.80 (4 m, 1 H, 1 H, 5 H, and 1 H, 4''-H₂, 5''-H₂, 6''-H₂, 5'-H₂), 0.99 (s, 3 H, 1''-CH₃), 1.00 (d, ${}^{3}J = 6.4$ Hz, 3 H, 3''-CH₃), 1.79 (s, 3 H, 3'-CH₃), 1.93-2.00 (m, 2 H, 4'-H₂), 2.26-2.34 (m, 1 H, 3''-H), 3.37 (d, ${}^{3}J = 6.4$ Hz, 2 H, 1'-H₂), 3.74 (s, 6 H, 2-OCH₃, 4-OCH₃), 3.82 (s, 6 H, 1-OCH₃, 5-OCH₃), 4.65 (s, 1 H, 2"-CH₂), 4.67 (s, 1 H, 2"-CH₂), 5.13–5.23 (m, 1 H, 2'-H), 6.41 (s, 1 H, 6-H). – ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3): \delta = 16.3 \text{ (q, 3'-CH}_3), 19.6 \text{ (q, 3''-CH}_3), 21.8 \text{ (t,})$ C-5''), 23.7 (t, C-1'), 24.7 (q, 1''-CH₃), 34.0 (d, C-3''), 39.2 (s, C-1"), 34.0, 37.2, 38.7, and 40.1 (4 t, C-4', C-5', C-4", C-6"), 56.4 (q, 1-OCH₃, 5-OCH₃), 60.8 (q, 2-OCH₃, 4-OCH₃), 97.4 (d, C-6), 103.4 (t, 2"-CH₂), 122.9 (d, C-2"), 130.2 (s, C-3), 135.8 (s, C-3"), 141.3 (s, C-2, C-4), 149.0 (s, C-1, C-5), 159.8 (s, C-2''). - IR (film): $\tilde{v} = 2930$ s, 2850 s, 1639 w, 1604 m, 1487 s, 1467 s, 1425 s, 1343 m, 1246 s, 1095 s, 1088 s, 1019 m, 978 w, 895 w cm⁻¹. – EI-MS: m/z $(\%) = 402 (100) [M^+], 278 (59), 263 (24), 247 (29), 233 (37), 211$ (70), 196 (66), 191 (33), 181 (35), 171 (34), 123 (33), 109 (57), 95 (66). - HRMS ($C_{25}H_{38}O_4$): calcd. 402.2770; found 402.2780.

(-)-Metachromin A (1): To a solution of compound 19 (474 mg, 1.17 mmol) in MeCN (10 mL), a solution of CAN (1.61 g, 2.94 mmol) in MeCN/H2O (7:3, 10 mL) was added over a period of 1.5 h (syringe pump) at -7 °C. The resulting reaction mixture was stirred at room temperature for 2 h. The organic layer was then washed with H_2O (2 × 20 mL) and the aqueous layers were extracted with Et₂O (3×20 mL). The combined organic phases were dried (Na₂SO₄) and the solvents were removed in vacuo. FCC (80 cm³ RP-18, gradient MeCN/H₂O, 2:1 \rightarrow MeCN/H₂O, 3:1) afforded metachromin A (1, 154 mg, 0.43 mmol, 37%) and the methyl ether 20 (162 mg, 0.40 mmol, 34%) as orange oils. Both compounds were crystallized from Et₂O/PE to give orange needles. $- R_{\rm f} =$ 0.43 (RP-18, MeCN/H₂O, 9:1). - M.p. 80.7-81.2 °C (Et₂O) (ref.^[1] 80-82 °C). $- [\alpha]_{D}^{27} = -17.6$ (c = 0.94, CHCl₃) {ref.^[1] [α]_{D}^{27} = $-11.0 (c = 1.00, \text{CHCl}_3)$; *ent-*1: $[\alpha]_D^{27} = +17.3 (c = 0.55, \text{CHCl}_3)$. $- {}^{1}$ H NMR (400 MHz, CDCl₃): $\delta = 0.87 - 1.02$, 1.13 - 1.22, 1.41-1.65, and 1.65-1.75 (4 m, 1 H, 1 H, 5 H, and 1 H, 1-H₂, 2-H₂, 3-H₂, 7-H₂), 0.98 (s, 3 H, 14-H₃), 0.99 (d, ${}^{3}J = 6.4$ Hz, 3 H, 12-H₃), 1.73 (s, 3 H, 15-H₃), 1.91-1.96 (m, 2 H, 8-H₂), 2.27-2.32 (m, 1 H, 4-H), 3.13 (d, ${}^{3}J = 7.2$ Hz, 2 H, 11-H₂), 3.82 (s, 3 H, 22-H₃), 4.65 (s, 1 H, 13-H₂), 4.67 (s, 1 H, 13-H₂), 5.13 (td, ${}^{3}J = 7.2$ Hz, ${}^{4}J = 1.0$ Hz, 1 H, 10-H), 5.81 (s, 1 H, 19-H), 7.26 (s, 1 H, OH). -¹³C NMR (100 MHz, CDCl₃):^[23] δ = 16.3 (q, C-15), 19.6 (q, C-12), 21.8 (t, C-11), 24.7 (q, C-14), 34.0 (d, C-4), 39.2 (s, C-6), 21.8, 34.0, 37.2, 38.7, and 40.0 (5 t, C-1, C-2, C-3, C-7, C-8), 56.7 (q, C-22), 102.2 (d, C-19), 103.3 (t, C-13), 118.3 (s, C-9), 118.8 (d, C-10), 138.3 (s, C-16), 151.2, 159.2, and 161.1 (3 s, C-5, C-17, C-20), 181.4 and 183.0 (2 s, C-18, C-21). – IR (film): $\tilde{v} = 3346$ s, 2920 s, 2856 s, 1649 s, 1607 s, 1450 w, 1387 m, 1308 m, 1230 m, 1202 m, 1039 w cm⁻¹. – EI-MS: m/z (%) = 358 (16) [M⁺], 234 (13), 219 (40), 207 (38), 189 (68), 180 (48), 170 (54), 168 (81), 133 (22), 123 (31), 119 (33), 109 (100), 95 (69). - HRMS (C₂₂H₃₀O₄): calcd. 358.2144; found 358.2149. - C₂₂H₃₀O₄ (358.48): calcd. C 73.71, H 8.44; found C 73.45, H 8.71.

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. MB wishes to thank Mrs. Ute Janz and Mrs. Karin Gottschalk for technical assistance and the Graduiertenkolleg "Hochreaktive Mehrfachbindungssysteme" for a fellow-

FULL PAPER

ship. We thank Prof. C. R. D. Correia (Universidade Federal de Rio de Janeiro, Brazil) for kindly providing spectra of racemic metachromin A.

- ^[1] ^[1a] M. Ishibashi, Y. Ohizumi, J. Cheng, H. Nakamura, Y. Hirata, T. Sasaki, J. Kobayashi, J. Org. Chem. **1988**, 53, 2855–2858. – ^[1b] J. Kobayashi, T. Murayama, Y. Ohizumi, T. Ohta, S. Nozoe, T. Sasaki, J. Nat. Prod. **1989**, 52, 1173–1176. – $^{[1c]}$ J. Kobayashi, K. Naitoh, T. Sasaki, H. Shigemori, J. Org. Chem. 1992, 57, 5773-5776.
- [2] [2a] W. P. Almeida, C. R. D. Correia, *Tetrahedron Lett.* 1994, 35, 1367–1370. [2b] W. P. Almeida, C. R. D. Correia, *J. Brazil. Chem. Soc.* 1999, 5, 401–411.
- ^[3] ^[3a] I. Hoppe, D. Hoppe, C. Wolff, E. Egert, R. Herbst, Angew. *Chem.* **1989**, *101*, 65–67; *Angew. Chem. Int. Ed. Engl.* **1989**, 28, 67–69. – ^[3b] K. Conde-Frieboes, D. Hoppe, *Synlett* **1990**, 28, 67–69. – ^[50] K. Conde-Frieboes, D. Hoppe, *Synlett* **1990**, 99–102. – ^[3c] K. Conde-Frieboes, D. Hoppe, *Tetrahedron* **1992**, 48, 6011–6020. – ^[3d] A. Bernardi, S. Cardani, O. Ca-rugo, L. Colombo, C. Scolastico, R. Villa, *Tetrahedron Lett.* **1990**, 31, 2779–2782. – ^[3e] C. Palazzi, G. Poli, C. Scolastico, R. Villa, *Tetrahedron Lett.* **1990**, 31, 4223–4226. – ^[3f] E. Win-ter, D. Hoppe, *Tetrahedron* **1998**, 54, 10329–10338.
- ^[4] P. Cazeau, F. Duboudin, F. Moulines, O. Babot, J. Dunogues, Tetrahedron 1987, 43, 2075-2088. Silyl enol ether 4 was produced in 94% yield with a regioisomer ratio of 88:12 (GC) favouring the thermodynamically controlled product. Using spaltrohr distillation a fraction of 57% with a ratio of 98:2 was obtained.
- ^[5] [^{5a]} E. Nakamura, J. Shimada, Y. Horiguchi, I. Kuwajima, *Tetrahedron Lett.* **1983**, *24*, 3341–3342. [^{5b]} E. Nakamura, I. Kuwajima, *Tetrahedron Lett.* **1983**, *24*, 3343–3346. [^{5c]} M. T. Reetz, R. Peter, *Tetrahedron Lett.* **1981**, *22*, 4691–4694. – ^[5d] C. Siegel, E. R. Thornton, *J. Am. Chem. Soc.* **1989**, *111*, 5722–5728. – ^[5e] R. A. Pilli, C. F. Alves, M. A. Böckelmann, Y. P. Mascarenhas, J. G. Nery, I. Vencato, Tetrahedron Lett. 1999, 40, 2891-2894.
- [6] [6a] D. A. Evans, Asymmetric Synthesis (Ed.: J. D. Morrison), Academic Press, New York, **1984**, vol. 3, pp. 1–110. [6b] H.
 O. House, B. A. Tefertiller, H. D. Olmstead, J. Org. Chem.
 1968, 33, 935–942. [^{6c]} B. J. L. Huff, F. N. Tuller, D. Caine, J. Org. Chem. **1969**, 34, 3070–3075. [^{6d]} Y. Hasegawa, H.
 Versochi, V. Yose, Tatachadron Latt. **1903**, 34, 1963–1966 Kawasaki, K. Koga, Tetrahedron Lett. 1993, 34, 1963-1966.
- [7] [^{7a]} L. Fitjer, U. Quabeck, Synth. Commun. 1985, 15, 855–864.
 [^{7b]} M. Schlosser, K. F. Christmann, Angew. Chem. 1964, 76, 683–684; Angew. Chem. Int. Ed. Engl. 1964, 3, 636.
- ^[8] Programs used: data collection: Express (Nonius B.V., 1994); data reduction and absorbtion correction: MolEN (K. Fair, Enraf-Nonius B.V., **1990**); structure solution: SHELXS-86 and SHELXS-97 (G. M. Sheldrick, *Acta Crystallogr.* **1990**, A46, 467-473); structure refinement: SHELXL-97 (G. M. Sheldrick, Universität Göttingen, **1997**), graphic presentation: MoPict 3.0 (M. Brüggemann, Universität Münster, **2000**). Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-147881 for **9** and CCDC-147882

for ent-9. Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

- [9] S. Poigny, M. Guyot, M. Samadi, Tetrahedron 1998, 54, 14791-14802. 1,2,4,5-Tetramethoxybenzene (5) was prepared in three steps in an overall yield of 81%.
- ^[10] [^{10a]} A. J. Mancuso, S.-L. Huang, D. Swern, J. Org. Chem. **1978**, 43, 2480–2482. [^{10b]} T. T. Tidwell, Org. React. **1990**, 39, 297-572.
- [11] [11a] E. J. Corey, J. W. Suggs, *Tetrahedron Lett.* 1975, 16, 2647–2650. [11b] G. Piancatelli, A. Scettri, M. D'Auria, Synthesis 1982, 245-258.
- [12] [12a] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155–4156. ^[12b] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277–7287. ^[12c] R. E. Ireland, L. Liu, J. Org. Chem. 1993, 58, 2899. ^[12d] S. D. Meyer, S. L. Schreiber, J. Org. Chem. 1904, 50, 7540, 7552. Org. Chem. 1994, 59, 7549-7552
- ^[13] M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Ma-samune, W. R. Roush, T. Sakai, *Tetrahedron Lett.* **1984**, 25, 2183 - 2186.
- ^[14] [14a] G. Wittig, W. Haag, Chem. Ber. 1955, 88, 1654-1666. -^[14b] M. Schlosser, *Top. Stereochem.* (Eds.: E. L. Eliel, N. L. Allinger), Wiley-Interscience, New York, **1970**, vol. 5, pp. 1 - 30.
- ^[15] [15a] E. Winterfeldt, Synthesis 1975, 617-630. ^[15b] N. M. Yoon, Y. S. Gyoung, J. Org. Chem. 1985, 50, 2443-2450.
- Yoon, Y. S. Gyoung, J. Org. Chem. 1905, 50, 2445-2450.
 [^{16]} [^{16a]} E. J. Corey, D. Seebach, Angew. Chem. 1965, 77, 1134-1136; Angew. Chem. Int. Ed. Engl. 1965, 4, 1075-1077. [^{16b]} D. Seebach, Synthesis 1969, 17-36. [^{16c]} D. Seebach, E. J. Corey, J. Org. Chem. 1975, 40, 231-237. [^{16d]} B.-T. Groebel, D. Seebach, Synthesis 1977, 357-402. [^{16d]} B.-T. Groebel, D. Seebach, Synthesis 1977, 357-402. [^{16e]} M. Ide, M. Vacuda, M. Nalata, Swither 1009, 026-028. M. Yasuda, M. Nakata, Synlett 1998, 936-938.
- ^[17] ^[17a] J. Bougault, E. Cattelain, P. Chabrier, Bull. Soc. Chim. Fr. 1938, 5, 1699. - [17b] R. Mozingo, Org. Synth. 1941, 21, 15-17.
- ^[18] [^{18a]} G. B. Spero, A. V. McIntosh Jr., R. H. Levin, J. Am. Chem. Soc. **1948**, 70, 1907–1910. ^[18b] G. Rosenkranz, S. Kaufmann, J. Romo, J. Am. Chem. Soc. 1949, 71, 3689-3694. ^[18c] L. F. Fieser, J. Am. Chem. Soc. 1954, 76, 1945-1947.
- ^[19] V. Georgian, R. Harrisson, N. Gubisch, J. Am. Chem. Soc. 1959, 81, 5834-5835
- ^[20] R. E. Ireland, T. I. Wrigley, W. G. Young, J. Am. Chem. Soc. 1958, 80, 4604-4606.
- ^[21] C. G. Gutierrez, R. A. Stringham, T. Nitasaka, K. G. Glass-
- cock, J. Org. Chem. **1980**, 45, 3393–3395. ^{[22] [22a]} I. Kubo, T. Kamikawa, I. Miura, *Tetrahedron Lett.* **1983**, 24, 3825–3828. – ^[22b] I. Kubo, M. Kim, I. Ganjian, *Tetrahedron* **1987**, 43, 2653–2660. – ^[22c] J. Pfeifer, H. Gerlach, *Liebigs* Ann. 1995, 131-137.
- ^[23] At variance with ref.^[1], we did not detect any ¹³C resonance at δ = 28.6. We observed two triplet signals at δ = 21.8 rather than one, and found the signal at $\delta = 33.9$ to be a doublet rather than a triplet. All other shifts were in accordance with the literature. The results of DEPT, ¹H-¹H COSY, HMQC, and HMBC spectra confirm the structure of metachromin A (1). Received August 17, 2000

[O00416]