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Abstract: The combination of 4,4,6-trimethyl-1,3,2-dioxabori-
nane, a particularly stable and inexpensive borylation reagent, and
Buchwald’s palladium catalyst provides a simple, fast, cost-effec-
tive borylation of electron-rich, reactive iodides, bromides, and tri-
flates to produce stable, easily purified boronic esters.
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The increasing number of applications of the Suzuki–
Miyaura coupling prompts the design of efficient and
cost-effective methods for the preparation of the arylbo-
ronic precursors. Among these, the borylation of aryl ha-
lides or triflates with pinacolborane1 (PinBH) is an
excellent alternate to the more classical addition of orga-
nometallics to trialkoxyborane. Murata’s team2 and ours3

proposed the replacement of PinBH in this reaction by the
easily accessible, much less expensive, and more conve-
niently prepared MPBH [4,4,6-trimethyl-1,3,2-
dioxaborinane4 (1)]. In addition, Billingsley and
Buchwald1i completed in 2008 the original study of Bau-
doin et al.1c on the very positive role of bulky phosphine
ligands in the borylation with PinBH. We wondered if the
advantages of both implementations could be combined to
provide a convenient and cost-effective access to aryl bo-
ronic esters from aryl halides; we discuss herein the ad-
vantages and limitations of this system.

Scheme 1 Preparation of MPBH 1. Reagents and conditions: diox-
ane, 20 °C, 30 min.

MPBH is a particularly stable dioxaborinane,4 readily ac-
cessible from hexyleneglycol and borane. We described
earlier2,3 convenient preparations using BH3–DMS or
B2H6 generated from NaBH4 and MeSO3H. We consid-
ered the use of N,N-diethylaniline-borane, a safe5 source
of borane for large-scale applications, but the reaction of
hexylene glycol with this reagent was sluggish. Pd/C is

known6 to accelerate the decomplexation and solvolysis
of amine-boranes in methanol. In an analogous manner
(Scheme 1), we found that reacting N,N-diethylaniline-
borane and hexyleneglycol in the presence of Pd/C (5%
by weight of 10% Pd/C reagent) resulted in the complete
consumption of the diol in 30 min at room temperature.
Distillation of the reaction mixture in vacuo provided neat
MPBH in 75% yield.7,8

Scheme 2 Borylation of aryl halides and triflates

Then we studied the palladium-catalyzed borylation of
various aryl halides and triflates with MPBH and a cata-
lyst prepared from Pd2(dba)3 and CyJohnPhos9 according
to Baudoin’s procedure1c (Scheme 2, Table 1).10 In pre-
liminary experiments, we found that toluene and dioxane
were equally suitable solvents.

With PinBH, a dramatic feature of this catalyst system
compared to others1–3 is the extreme rapidity of the pro-
cess, when applied to electron-rich aryl iodides11 or bro-
mides.12 The same is true with MPBH. This high
reactivity allows complete conversion of reactive aryl io-
dides and bromides (entries 1–4, 7, 8) between 20–40 °C
within a few hours. To our knowledge, operating at 20 °C
has not been described for this reaction yet.13

The process remained efficient at low levels of catalyst:
the boronate ester was produced from p-bromo-N,N-dim-
ethylaniline in 90% yield in six hours at 20 °C when 0.3
mol% Pd was used (10 mmol run, entry 7).

When less reactive iodides were used, some hydrodehalo-
genation was observed. This side reaction is always met in
analogous borylation with PinBH and is favored by elec-
tron-withdrawing substituents on the aryl ring. In the
present work as well as in the literature,1 it is the only side
reaction: the homocoupling product was never observed.
We indicate whenever available the ArB(OR)2/ArH ratio,
but low-boiling arenes were seldom accurately measur-
able. Note that all reactions of Table 1 were run to com-
plete conversion of the starting material. Thus, lower
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Table 1 Borylation of Various Aryl Halides and Triflates with MPBH Catalyzed by Pd/CyJohnPhosa,10

Entry Substrate Conditions ArB(OR)2/ArHb Product yield (%)c

1 Pd (3 mol%), 20 °C, <0.5 h >99:1
2a
90

2 Pd (1 mol%), 20 °C, 1 h >95:5
2b
91

3 Pd (0.5 mol%), 20 °C, 0.5 h >97:3
2c
79

4 Pd (1 mol%), 20 °C, 3 h >97:3
2d
88

5 Pd (1 mol%), 80 °C, 3 h 70:30
2e
69

6 Pd (1 mol%), 40 °C, 16 h n.d.d
2f
60

7 Pd (0.3 mol%), 20 °C, 6 h >99:1
2a
90e

8 Pd (0.5 mol%), 40 °C, 6 h >95:5
2b
81

9
10

MPBH (3 equiv), Pd (1 mol%), 100 °C, toluene,f 30 h
PinBH (3 equiv), Pd (1 mol%), 100 °C, toluene,f 15 h

30:70
92:8

2g
–
3g
–

11
12

MPBH, Pd (1 mol%), 150 °C, toluene,f 15 ming

PinBH, Pd (1 mol%), 150 °C, toluene,f 15 ming
29:71
70:30

2h
–
3h
701i

13 Pd (1 mol%), 80 °C, 6 h n.d.
2i
82

14 Pd (1 mol%), 80 °C, 16 h n.d.
2j
73

15 Pd (1 mol%), 100 °C, 16 h >95:5
2b
90

16 Pd (2 mol%), 80 °C, 16 h 51:49
2k
45

17 Pd (1 mol%), 80 °C, 24 h n.d.
2i
62

a Unless otherwise stated: MPBH (1.5 equiv), Et3N (3 equiv), Pd [as Pd2(dba)3], CyJohnPhos (2 equiv per Pd), in dioxane.
b Measured by GC, except entries 3 and 4: 1H NMR.
c Isolated yields after chromatography.
d n.d.: not determined.
e 10 mmol bromide.
f Run in toluene.
g Sealed vessel, microwaves heating.
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isolated yields reflect a higher level of hydrodehalogena-
tion. With the reactive substrates of entries 1–4, 7, and 8,
the reduced product was below detection. In all cases, it
was found to be less present than with the PdCl2(TPP)2

catalyst in our former work.3 It can be concluded that in
the case of reactive, electron-rich aryl iodides and bro-
mides, MPBH is a cost-effective substitute to pinacolbo-
rane in a fast and efficient palladium-catalyzed borylation.

Disappointingly, with less reactive aryl halides, a clear-
cut difference in reactivity between PinBH and MPBH ap-
peared, with MPBH favoring the unwanted hydrodehalo-
genation. The difference remained limited with electron-
depleted iodides (entries 5 and 6). Entry 5 (69% yield)
should be compared with Masuda’s1b result: borylation of
ethyl 4-iodobenzoate with PinBH in the presence of
PdCl2dppf yielded 79% ArPin (hydrodehalogenated prod-
uct 17%). More dramatic differences appeared with elec-
tron-depleted bromides, for which hydrodehalogenation
became deleterious (entries 9–12). In the same conditions,
PinBH was much more efficient (compare entries 9 and
10, 11 and 12).

The borylation of chlorides was practically limited to the
most reactive, electron-rich ones (entries 15–17).14 Re-
markably, aryl triflates1b,15 were borylated efficiently (en-
tries 13 and 14). The extent of the hydrodetriflation
seemed less dependent of the electron-donating (entry 13)
or electron-withdrawing nature of the substituents (entry
14, compare also with entry 11).

So far, all reported optimizations of this reaction were car-
ried out with electron-rich substrates.1–3 We decided to
check the influence of reaction parameters on the boryla-
tion/hydrodehalogenation ratio when the substrate was
electron withdrawn; 2-bromonaphthalene was our model
of such an ‘unreactive’ substrate.16 Reactions were moni-
tored by GC with an internal standard. Although we could
not increase the yield in boronic ester 2g above 50%,
some interesting trends became apparent. Higher temper-
atures favored borylation over hydrodehalogenation (37%
yield in 2g at 80 °C, 50% at 150 °C), making this reaction
a good candidate for closed-vessel, microwaves-heated
conditions. Nevertheless, at identical temperatures, mi-
crowave heating did not lead to significantly faster reac-
tion than conventional heating. With 2-bromonaphthalene
and MPBH, other ligand systems (dppf,1a,b dpePhos,1f

excess TPP,3 N-(dicyclohexylphosphino)-2-(2¢-
tolyl)indole17 or di-tert-butylbipyridyl) led to slower reac-
tions and increased hydrodehalogenation.

Monitoring the course of the reaction showed that the bo-
rylation/hydrodehalogenation ratio is lower at early stages
of the reaction. Examples have been reported with
PinBH18 where prolonged heating of the reaction mixtures
caused an increase of the hydrodehalogenation. In the
present conditions, both reactions are concurrent. Pro-
longed heating after the end of the conversion of the bro-
mide never caused any significant loss of borylated
product. A larger excess of MPBH (3 equiv) slightly fa-

vored hydrodehalogenation and best results were obtained
with only 1.5 equivalents dialkoxyborane.

Our hypothesis is that MPBH is more prone than PinBH
to some disproportionation19 under the reaction condi-
tions, releasing small amounts of BH3 that would favor
Pd-catalyzed reduction of the substrate. Indeed, replacing
MPBH by BH3–Et3N caused extensive hydrodehalogena-
tion.

In conclusion, the combination of MPBH, a particularly
stable and inexpensive reagent, and Buchwald’s palladi-
um catalyst provides a simple, very fast, cost-effective bo-
rylation of reactive, electron-rich aryl iodides, bromides,
and triflates, to produce stable, easily purified boronic
esters, that can be readily used as such in Suzuki cou-
plings.1,2

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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