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Summary: Adirect synthesisof(neolemnanylacetateisqxxted. 

We have shown that the intramolecular addition of allylsilanes to conjugated dienones is a powerful 

means of constrncting a wide range of functional&d bi- and tricyclic systems.29 For example, 

cyclization of conjugated dienone i. a 4-butenyl-dienone, using ethylaluminum dichloride produced 

solely the 6,6-fnsed bicyclic enone ii while treatment of i with fluoride ion gave fused cyclooctane iii.5*6 

Equation 1 

ii i 
. . . 
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This study suggested a direct approach to neolemnanyl acetate (1). an unusual 6,8-fused 

sesquiteqene isolated fmm the widely distributed Pacific soft coral femnalia @kicana May (IQ. 2).7 We 

were confident that the C(3)-C(4) double bond of 3 would permit functionalization of the eight-membered 

ring using traditional procedures. Accordingly, we undertook a stereocontrolled synthesis of trienone 2. 

Equation 2 

Neolemnanyl 
Acetate (1) 

9 Dedicated to Professor N. L. Allinger on the occasion of his receipt 
of an Arthur C. Cope Scholar Award 
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The stereochemistry of the vicinal methyl groups in trienone 2 was controlled by successive 

alkylations of the en01 ether of dihydroorcinol4;g the relative configuration at the adjacent asymmetric 

centers was determined by the order of alltylation.9 Indeed initial alkylation of 4 with methyl iodide and 

thenwithiodide51~ providedan8:1mixtumofdiastaeamers of which compound 6 is the major isomer 

(Es. 3). l1 LindIar reduction of the internal alkyne moiety generated the g&disubstituted allylsilane 7 with 

complete geomeuic integrity. This matetial was converted into t&none 2 using standard procedures. The 

formation of fused cyclooctane 3 routinely oaxnred in greater than 56% yie& scaling up the reaction to 7 

grams of substrate had little impact (i 5%) upon the overall yield.12 

Equation 3 
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Treatment of enone 3 with LAH provided exclusively the equatorial allylic alcohol 8 in 95% 

yield.13 whereas reduction using L-selectride gave both C(10) alcohols with the desired axial alcohol (9) 

as the major’isomer (76% yield]. The equatorial alcohol could not be cleanly inverted using either 

Mitsunobu methodology14 or classical displacement protocokls 

In previous research, photooxygenation has proven useful for the preparation of cycloaJkenones.le 

We were pleased to discover that photooxygenation of acetate 10 using meso-tetraphenylporphine, in the 

presence of DMAP and acetic anhydride, led to a mixture of enone 11, utueacted starting material, and 

enol ether 12. in 52%. 25%. and 13% yield, respectively; recycling recovered 10 afforded enone 11 in 

70% yield (Eq. 4). Addition of tetramethyl xirconiuml7J8 to enone 11 produced tertiary allylic alcohol 

13 which was cleanly oxidized to enone 14. Note that these three transformations introduce both the 

C(14) methyl group and the C(5) carbonyl. 

llwee manipulations remained to complete our synthesis: 1) the migration of the C(3)-C(4) olefiu 

to C(2)-C(3); 2) thk stenmpecific hydroxylation of C(4); and 3) acetylation of the C(4) hydroxyl group. 

Our strategy for achieving these fbuctionalizations relied upon the stemispecific construction of a C(3)- 
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Equation 4 

14 13 12 

C(4) epoxide (Eq. 5). Molecular models indicate that epoxidation would occur exclusively from the less- 

hindered peripheral face of 14, thus introducing an oxygen atom with the correct stereochemistry at C(4). 

Epoxidation of enone 14 was achieved using t&on-B and l-butyl hydroperoxide (71% yield).19 Under 

the basic conditions used, deacetylation occurred thus necessitating reprotection of the C( 10) hydroxyl. 

Equation 5 

I-BuOOH (71%) 13) Tit& 

o 12) A020 AC& 
(99%) 

z Aoo’c 

14 15 
I l6 

(99%) 

+ 15) Ag02CCF3 
AC@* I&- -AL?& 

b 

(18; 35%) (1; 35%) 17 

We anticipated that Lewis acid-catalyzed opening of epoxide IS would generate the requisite C(2)- 

C(3) double b0nd.m Instead, reaction of epoxide 15 with either Tit24 or EtAlC12 gave chlorohydrin 16 

in good yield The C(4) hydroxyl group was then acetylated. Dehydrohalogenation of tertiary chloride 17 

with silver trifluoroacetate~t yielded a separable mixture of neolemnanyl acetate (1) in 35% yield and an 

equal amount of isomer 18 having an exocyclic double bond. 22 The NMB (300 MHZ). infrared, and 

mass spectra as well as the chtomatographic pmperties of synthetic (It)-neolemnanyl acetate were identical 

with those of a sample kindly furnished by Professor William Fenical, thus confuming the first total 

synthesis of this sesquiterpene. 
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