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ABSTRACT: Detecting plant-derived signal molecules using fluorescent probes is a key topic and a huge challenge for scientists.
Salicylic acid (SA), a vital plant-derived defense hormone, can activate global transcriptional reprogramming to systemically express a
network of prominent pathogenesis-related proteins against invasive microorganisms. This strategy is called systemic acquired
resistance (SAR). Therefore, monitoring the dynamic fluctuations of SA in subcellular microenvironments can advance our
understanding of different physiological and pathological functions during the SA-induced SAR mechanism, thus benefiting the
discovery and development of novel immune activators that contribute to crop protection. Here, detection of signaling molecule SA
in plant callus tissues was first reported and conducted by a simple non-fluorescent rhodamine-tagged architecture bearing a flexible
2-amino-N,N-dimethylacetamide pattern. This study can markedly advance and promote the usage of fluorescent SA probes for
distinguishing SA in the plant kingdom.
KEYWORDS: salicylic acid, systemic acquired resistance, rhodamine probe, plant callus tissues

■ INTRODUCTION

Biogenic signal molecules are attractive and important
physiological activators that can conduct and determine
diverse physiological processes, such as cellular homeostasis,
metabolism, energy conversion, signal conduction, and
immunity, throughout the cell cycle.1−6 The abnormal
expression level of these bioactive substances can result in a
series of imbalance and reverse effects and is constantly
associated with various major diseases. Thus, detecting these
biogenic signal molecules in subcellular microenvironments is
crucial for bioanalysis, biomedicine, immunology, and related
drug discovery. In the past few decades, numerous animal-
derived bioactive ingredients, including reactive oxygen species
(H2O2,

1O2, and HOCl),7−10 reactive sulfur species (H2S, SO2,
GSH, and Cys),11−15 reactive nitrogen species (HNO, NO,
and NO2),

7,16−18 acetylcholine (Ach),19−21 adenosine triphos-
phate (ATP),22−24 dopamine,19,25−27 and histamine,19,28−30

have been elaborately monitored by exploiting fluorescent
imaging techniques. This process has achieved an improved
understanding of various pathological and physiological
processes that potentially benefit diagnosis and treatment of
animal diseases. However, detecting plant-derived signal
molecules using fluorescent probes is also a key topic and a
huge challenge for scientists. Salicylic acid (SA), a vital plant-
derived defensive signal molecule, can activate global tran-
scriptional reprogramming to express a network of prominent
pathogenesis-related proteins in uninoculated tissues against
secondary infections from invasive microorganisms systemi-
cally.31,32 This resistance can spontaneously spread throughout
tissues of the whole plant; this mechanism is called systemic

acquired resistance (SAR).33−35 Through this process, the
plant can obtain long-term protection in response to pathogen
challenges controlled by the innate immune system of the
plant. This process is considered the most economical and
ideal strategy for crop protection. Many proofs show that the
expression level of endogenous SA is enhanced in local and
systemic tissues after the initial invasion of offensive pathogens,
thus leading to the launch of SA-triggered signaling path-
ways.32,36−38 Therefore, monitoring the dynamic fluctuations
of SA in subcellular microenvironments can advance our
understanding of different physiological and pathological
functions during the SA-induced SAR mechanism and benefit
the discovery and development of novel immune activators
that contribute to crop protection. This outcome will not only
secure agricultural production and food supply but also
provide an ideal approach to reducing the usage of traditionally
harmful pesticides, thereby eliciting the concern of people.
However, the accurate, dynamic, and real-time detection of SA
has achieved considerable challenges for technological
restraints and significant interferences from SA analogues.
These distractors are methyl salicylate, 4-hydroxybenzoic acid,
2-methylbenzoic acid, 3-hydroxybenzoic acid, benzoic acid,
and catechol; thus, few chemosensors can monitor SA in
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vitro39−43 and in vivo.44 Thus, a campaign to discover and
develop fluorescent probes is urgently required to monitor
biological signaling molecule SA in situ and in vivo.
Rhodamine-based chemosensors, which exhibit versatile and

broad detection windows, have been extensively studied and
exploited for biological imaging in subcellular microenviron-
ments.7,18,45−47 Numerous research results have revealed that
fluorescent probes containing rhodamine skeletons display
exhilarating privileges, such as excellent sensitivity and
selectivity,48−51 real-time detection feature,52−54 and low
detection limits,55,56 toward detected objects. In our previous
work, a rhodamine-based sensor owning a N,N-dimethylhy-
drazinecarboxamide moiety could monitor SA in living animal
cells.44 To pursue a high-performing probe and further explore
the substantial application in detecting SA on plants, herein, a
simple and non-fluorescent rhodamine derivative 1 bearing a

flexible 2-amino-N,N-dimethylacetamide pattern was rationally
fabricated to monitor SA in vitro, in living cells and plant callus
tissues (Figure 1a). Within this framework, a free-rotated
methylene bridging linker was introduced to facilitate the
formation of a 1−SA binary complex in a relatively relaxed
pocket promoted by hydrogen bonding. The newly formed
combinations led to rearranging the electronic property of the
whole molecule and subsequently caused the ring opening of
the spirolactam structure accompanied by producing fluo-
rescence for distinguishing SA (Figure 1b). An achromatous
solution containing probe 1 immediately changed into pink
after adding SA, thus revealing that a colorimetric probe for
sensing SA with a naked-eye detection characteristic should be
developed.

Figure 1. (a) Synthetic route for probe 1, (b) proposed mechanism for sensing SA using probe 1, and (c) chemical structures of SA analogues.

Figure 2. (a) Fluorescence and (b) absorption spectra of probe 1 (10 μM) after adding 100 μM SA and its analogues, with λex = 554 nm, slits of 2/
2 nm, and MeOH−H2O (9:1, v/v), and (c) photographs of probe 1 (10 μM) after adding 20 equiv of SA or its analogues: (1) 1, (2) 1 + SA, (3) 1
+ 4-OHBA, (4) 1 + 2-MeBA, (5) 1 + 2-MeOBA, (6) 1 + salicylaldehyde, (7) 1 + ASA, (8) 1 + 3-OHBA, (9) 1 + catechol, (10) 1 + MeSA, (11) 1
+ phenol, (12) 1 + BA, and (13) 1 + 2-NH2BA in MeOH−H2O (9:1, v/v).
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■ MATERIALS AND METHODS
Instruments and Chemicals. All chemical reagents and

analytical reagent (AR) solvents were acquired from commercial
suppliers and used without further purification. Distilled water was
used throughout. Nuclear magnetic resonance (NMR) spectra were
obtained using a JEOL-ECX 500NMR spectrometer. High-resolution
mass spectroscopy (HRMS) spectra were performed on a Thermo
Scientific Q Exactive mass spectrometer. Fluorescence spectra were
performed by a Fluoromax-4 spectrofluorometer. Ultraviolet−visible
(UV−vis) spectra were recorded by a TU-1900 spectrophotometer
(Beijing Purkinje General Instrument Co., China). Fluorescence
imaging was performed using a Nikon ECLIPSE Ti-S fluorescence
microscope.
The stock solution of probe 1 (1.0 × 10−3 M) was prepared in

methanol. Analyte stock solutions (1.0 × 10−2 M) of SA and its
distractors were prepared in methanol, respectively. The preparation
of samples for UV−vis and fluorescence detections follows the
operations: 0.1 mL of stock solution of probe 1 was added to a 10 mL
volumetric flask, and then certain amounts of detection objects were
added; the mixture was filled up to 10 mL with the associated
solvents; and finally, the related spectra were obtained after incubating
the mixture for 10 min.

■ RESULTS AND DISCUSSION

Rhodamine-based chemosensor 1 was prepared, as illustrated
in Figure 1a. The starting material Boc-glycine was reacted
with dimethylamine through typical condensation to provide
an intermediate a, which was then treated with trifluoroacetic
acid to remove the protective group (−Boc) to realize an
intermediate b. Finally, the target probe 1 was fabricated
through a simple cyclization reaction between the intermediate
b and rhodamine B chloride. The final molecular framework
was confirmed using 1H and 13C NMR, HRMS, and its related
crystal structures (Figures S1−S6 and Table S1 of the
Supporting Information). Fluorescence and UV−vis spectra
were performed to evaluate the detection competence of probe
1 toward SA and its distractors (Figure 1c and panels a and b
of Figure 2). A methanol solvent and a methanol−water
solution (9:1, v/v) were rationally selected for monitoring SA
based on the fluorescence enhancement folds at 578 nm upon
exposing the 1−SA complex in various test fluids (Figures S7
and S8 of the Supporting Information). Probe 1 displayed
superior selectivity and sensitivity to those of other SA
analogues in detecting SA from the fluorescence spectrum
(Figure 2a). These SA analogues included 4-hydroxybenzoic
acid, o-methylbenzoic acid, o-methoxybenzoic acid, salicylalde-
hyde, acetylsalicylic acid (ASA), 3-hydroxybenzoic acid,
catechol, methyl salicylate, benzoic acid, and anthranilic acid.
The significantly produced fluorescent intensity triggered by
adding SA revealed that SA can ring open the spirolactam
pattern probably promoted by hydrogen-bonding interactions.
This result was consistent with the newly generated UV
absorption peak depicted in Figure 2b, thereby confirming that
probe 1 can distinctively monitor SA. A pink color was only
observed after adding SA (Figure 2c), thus suggesting that a
colorimetric sensor was unexpectedly acquired for distinguish-
ing SA with a naked-eye detection feature. Definitively, probe 1
showed improved detection behavior compared to our
previously reported probe (Figure S9 of the Supporting
Information).
To validate the selectivity and anti-interference functions

further, competition assays should be conducted by sub-
sequently adding SA to the premixed solution containing probe
1 with diverse interfering ingredients. Fluorescent intensity at

578 nm was substantially elevated only by the subsequent
stimulation from SA, thus manifesting that the designed probe
1 possesses a superior anti-interference characteristic for
recognizing SA (Figure 3). Moreover, a 1:1 binding

stoichiometry between probe 1 and SA was revealed by Job’s
plot experiment (Figure S10 of the Supporting Information),
and the binding constant was calculated as 4.31 × 103 μM−1

(Figure S11 of the Supporting Information). The concen-
tration-dependent titration assay demonstrated that the
fluorescent intensity at 578 nm increases gradually after adding
different dosages of SA. Consequently, a favorable linear
detection within 10−100 μM was detected for a potential
quantitative study (Figures S12 and S13 of the Supporting
Information). Furthermore, the related detection limit was
obtained as 1.0 nM by testing the signal-to-noise ratio. Given
the above-mentioned results, a prospective probe that can
selectively monitor SA in vitro in a naked-eye detection manner
was discovered.

1H NMR spectra were performed to explain the possible
mechanism for monitoring SA in a concentration-dependent
manner (Figure 4). The protons (1′, 2′, 3′, and 4′) that belong
to the benzene ring of SA exhibited large chemical shifts to
high fields because the molar ratio was 1:1 (Tables S2 and S3
of the Supporting Information). In contrast, further increasing
the amount of SA (2 or 3 equiv) resulted in a reduced variation
on the chemical shift, as illustrated by the corresponding
changes in protons 1′, 2′, 3′, and 4′: −0.03, −0.08, −0.05, and
−0.06 ppm for 1 equiv of SA and −0.02, −0.06, −0.04, and
−0.05 ppm for 3 equiv of SA. This phenomenon might
contribute to insufficient binding sites offered by probe 1 with
excess SA molecules directed by hydrogen bonding. In
contrast, the protons in probe 1 provided gradually increased
chemical shifts by elevating the abundance of SA. The protons
(11) of the methylene group showed significant low-field shifts
with the changed values of 0.08 ppm for 1 equiv of SA, 0.11 for
2 equiv of SA, and 0.13 ppm for 3 equiv of SA. This finding
might be due to the increased shielding effect from excess SA
molecules promoted by hydrogen bonding. This action
simultaneously led to rearranging the global electrons of
probe 1. The protons at the 5−10 positions presented

Figure 3. Competition experiments for adding 600 μM SA into the
premixed solution consisting of probe 1 (10 μM) and various SA
analogues (600 μM): (1) blank, (2) ASA, (3) 2-MeOBA, (4) 4-
OHBA, (5) 2-MeBA, (6) catechol, (7) 2-NH2BA, (8) MeSA, (9) BA,
(10) phenol, (11) salicylaldehyde, and (12) 3-OHBA. Black bars,
fluorescence intensity for probe 1 with SA analogues at 578 nm; red
bars, after adding SA into the premixed solution containing probe 1
with SA analogues. Experimental conditions: λex, 554 nm; slits, 2/2
nm; and MeOH−H2O, 9:1 (v/v).
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considerable low-field shifts, which might be attributed to the
launch of ring opening the spirolactam structure. We
successfully obtained the newly fluorescent product 2 by the
common separation on a silica gel column, and its molecular
structure was confirmed by 1H NMR and HRMS (Figure 5
and Figures S14 and S15 of the Supporting Information), in
which broadening peaks were observed at 5−10 and 11
positions in comparison to those of probe 1 with sharp peaks.
This finding further verified that SA detection was based on a
fluorescence “turn-on” mode, thereby verifying the proposed
mechanism (Figure 1b).
To explore the in vivo detection capability of probe 1 toward

SA, A549 cell lines and plant callus tissues of Malus asiatica
Nakai were randomly selected for SA imaging. For animal cell
imaging, 10 μM probe 1 was added to the prepared A549 cells
and incubated for 0.5 h at 37 °C. These cells were washed by a
phosphate-buffered saline (PBS) buffer (0.01 M, pH 7.4)
thrice and subsequently treated with 100 μM SA for 1 h at 37
°C. Finally, the cells were washed with PBS buffer thrice before
imaging. Red fluorescent cells (Figure 6) were only observed
by incubating the cells with probe 1 and SA, thereby indicating

that probe 1 could penetrate the cell membrane and detect SA
in animal cells. Moreover, we found that probe 1 showed low

Figure 4. Partial 1H NMR spectra for different molar ratios of probe 1 with SA (500 MHz, CDCl3).

Figure 5. Comparison of partial 1H NMR spectra of the new product 2 and probe 1 (500 MHz, CDCl3).

Figure 6. Fluorescence imaging of probe 1 relative to SA in living
A549 cells: (a1) bright field and (a2) fluorescence images of A549 cells
incubated using 10 μM probe 1 for 30 min at 37 °C, (a3) merged
image of a1 and a2, (b1) bright field and (b2) fluorescence image of
A549 cells incubated with 10 μM probe 1 and 100 μM SA for 1 h at
37 °C, and (b3) merged image of b1 and b2. Red channel, 510−560
nm.
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toxicity toward A549 cells monitored by 3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays
(Figure S16 of the Supporting Information). For plant callus
tissue imaging, the corresponding incubation time for probe 1
(10 μM) and SA (100 μM) in solid agar medium was 25 and
30 days before imaging. A strongly emerging fluorescence
located at callus tissues (Figure 7) was only presented in the
samples containing probe 1 and SA, thereby further confirming
that probe 1 can also monitor SA in plant callus tissues (Figure
7b). Moreover, the localization of coloring was mainly in the
cytoplasm (Figure 7c). Thus, probe 1, which possesses
promising applications in SA signaling in vitro and in vivo,
should be further developed.
In summary, a novel non-fluorescent rhodamine derivative 1

possessing a flexible 2-amino-N,N-dimethylacetamide pattern
was designed and prepared to monitor SA. During this process,
a probable mechanism for detecting SA was recommended. A
binary complex 1−SA could form directed by hydrogen-
bonding interaction and subsequently rearranging the elec-
tronic property of the whole molecule. This occurrence would
cause the ring opening of the spirolactam structure along with
producing fluorescence for distinguishing SA. This outcome
was further confirmed by fluorescence, UV−vis, and 1H NMR
spectra. The results showed that probe 1 can selectively
distinguish SA in vitro with the detection limit of 1 nM. A
favorable linear detection ranging from 10 to 100 μM was
obtained for the potential quantitative study of SA. Probe 1
could be exploited to detect SA in living cells and plant callus
tissues sensitively. Given these promising performances and
applications, we anticipate that this probe should be further
studied in monitoring SA in the plant kingdom and can launch
the discovery of fresh immune activators for crop protection.
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