Orthoamide, LVIII [1].

Kondensationsreaktionen von CH2-aciden Verbindungen mit Orthoamiden von Carbonsäuren und Alkincarbonsäuren*

Orthoamides, LVIII [1]. Condensation Reactions of CH2-Acidic Compounds with Orthoamides of Carboxylic Acids and Alkyne Carboxylic Acids*

Willi Kantlehner^{a,b}, Erwin Haug^a, Rüdiger Stieglitz^b, Wolfgang Frey^b, Ralf Kress^b und Jochen Mezger^b

^a Fachbereich Chemie / Organische Chemie, Fachhochschule Aalen,

Beethovenstr. 1, D-73430 Aalen,

^b Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart

Sonderdruckanforderungen an Prof. Dr. W. Kantlehner. Fax +49(7361)576250. E-mail: willi.kantlehner@fh-aalen.de

Herrn Prof. Dr. Volker Figala zum 60. Geburtstag gewidmet

Z. Naturforsch. 57 b, 399-419 (2002); eingegangen am 11. Januar 2002

Carboxylic Orthoacid Amides, Condensation Reactions, Push-pull-butadienes

The orthoamide derivatives 1s and 2e were prepared from the guanidinium salt 7a and the appropriate carbanions. Cleavage of the orthoamide 2e with benzoyl chloride affords the amidinium salt 10a, which can be transformed into the amidinium salt 10b by an anion exchange reaction. The enamines 11a-i, 12a-c, 13a, b, 14a-c, 15a, b, 16, 17a, b, 18a, b, 19a, b, 20 were prepared by condensation of CH₂-acidic compounds with the carboxylic acid orthoamides **2a-j**. The orthoamide **2d** reacts with 1-nitropropane to give the amidinium salt **27a** which is transformed into the salt 27b. From benzyl cyanide and orthoamides 2g, i the enamines 30 and 32 were obtained. Similar condensation reactions were performed with the orthoamides of alkyne carboxylic acids 1b, 1c, 1d, 1e, 1p, 1s, giving the push-pull-butadiene derivatives 35a-f, 36a-f, 37a-j, 38a, b, 39a, b, 40a, b. Crystal structure analyses of the butadiene derivatives 37a, 39a, b, 40a, b and 42 were performed, showing that in 37a, 39b, 40a, b by far the shortest bond distance is between C-2 and C-3 of the butadiene system. In **39a** the bonds between C1-C2, C2-C3 and C3-C4 are nearly of equal length, whereas in the 1,3-diene unit of **42** the shortest bonds are between C1-C2 and C3-C4.

Einleitung

In Ergänzung einer früheren Mitteilung [2] haben wir kürzlich über die Synthese einer Reihe von Orthoamiden von Alkincarbonsäuren 1 berichtet [3]. Wie anhand der Verbindungen 1a, 1f, 1g, 1o, 1p gezeigt wurde, eignen sich die Orthoamide 1 als Bausteine für push-pull-substituierte Butadiene und Heterocyclen [2, 4]. Ferner haben wir auch neue Orthoamide 2 beschrieben, die sich von strukturell stark unterschiedlichen Carbonsäuren ableiten [3].

Orthoamid-Derivate der Ameisensäure wie N,N-Dimethylformamidacetale 3, Aminalester (Brede-

5:
$$X = Y = N(C)$$

Schema 1.

reck-Simchen-Reagenz) 4 und Tris(dimethylamino)methan 5 sind inzwischen Standardreagenzien zur Formylierung CH₂- und NH₂-acider Verbindungen geworden [5] – Reaktionsprodukte sind dabei Enamine bzw. Amidine (Schema 1).

Dagegen ist über die entsprechende Verwendung von Orthoamid-Derivaten anderer Carbonsäuren

0932-0776/02/0400-0399 \$ 06.00 (c) 2002 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com Κ

Presented in part at the 5th Conference on Iminium Salts (ImSaT-5), Stimpfach-Rechenberg (Germany), September 11 - 13, 2001.

vergleichsweise wenig bekannt. In einer relativ großen Zahl von Arbeiten wurden NH_2 -acide bzw. CH_2 -acide Verbindungen mit *N*,*N*-Dimethylacetamidacetalen acetyliert; diesen Kondensationen können sich bei Vorhandensein entsprechender funktioneller Gruppen in den Edukten noch Cyclisierungen anschließen [6]. Über Kondensationsreaktionen höherer homologer Vertreter [7] oder von Orthoamid-Derivaten aromatischer [7a, 8] oder in α -Stellung funktionalisierter Orthoamid-Derivate [9] liegen nur wenig Arbeiten vor. Ziel der vorliegenden Arbeit war es, das bereits früher beschriebe-

ne Verfahren zur Synthese von Orthocarbonsäureamiden auf die Darstellung von Orthoamiden stickstoffhaltiger heterocyclischer Carbonsäuren auszuweiten. Ferner sollte exemplarisch das Verhalten der neuen, ebenso wie das der schon beschriebenen Orthoamid-Derivate gegenüber CH₂-aciden Verbindungen untersucht werden. Entsprechende Reaktionen sollten auch mit einigen Orthoamid-Derivaten von Alkincarbonsäuren durchgeführt werden.

Ergebnisse und Diskussion

Das bislang nicht bekannte Orthoamid-Derivat 2e wurde nach dem früher beschriebenen Verfahren [3] aus 2-Lithio-N-methylimidazol (6) hergestellt. Bekanntlich wird N-Methylimidazol in 2-Position durch *n*-Butyllithium in THF bei -20 °C in wenigen Minuten metalliert [10], daneben kann in geringem Umfang die Metallierung in 5-Position erfolgen [11]. Mit überschüssigem *n*-Butyllithium ist *N*-Methylimidazol auch zweifach metallierbar [12]. Das bei der 8-stdg. heterogenen Umsetzung von 6 in THF / Dimethoxyethan (1:3) mit N, N, N', N', N'', N''-Hexamethylguanidinium-chlorid (7) bei R. T. erhaltene Produkt (Ausb. 47%) wurde durch Sublimation im Ölpumpenvakuum gereinigt (Schema 2). Die Elementaranalyse ist im Einklang mit der Konstitution von 2e. Im ¹H-NMR-Spektrum des Produkts finden sich jedoch zwei Signale für Dimethylaminogruppen ($\delta = 2,33$ und 2,50) und zwei Signale für *N*-Methylgruppen ($\delta = 3,20$ und 3,40), und das Verhältnis der Gesamtintensitäten der heteroaromatischen Protonensignale und der N-Methylgruppen ist etwas größer als 2:21, wie es für reines 2e zu erwarten wäre. Versuche, unter anderen Reaktionsbedingungen (siehe Exp. Teil) zu einem reineren Produkt zu kommen, schlugen fehl. Auch das bei der homogen verlaufenden Umsetzung von 2-Lithio-N-methylimidazol mit Tris(dimethylamino)ethoxymethan (8) mit 20% Ausbeute entstehende Produkt 2e stimmte in seinen Eigenschaften mit den

Schema 2.

Schema 3.

unter anderen Bedingungen erhaltenen Produkten überein. Die Ergebnisse lassen sich deuten, wenn man annimmt, dass **2e** in Lösung stark dissoziiert vorliegt und sich möglicherweise auch ein Gleichgewicht zum Orthokohlensäure-Derivat **9** einstellt (Schema 3).

Bekanntlich reagieren geeignete Orthoamid-Derivate mit Säurechloriden zu Amidiniumchloriden [13 - 15] und Aminale zu *N*,*N*-Dialkyl-methyleniminiumsalzen [16]. Durch Umsetzung des rohen Produktes **2e** mit einem Säurechlorid erhofften wir daher weitere Informationen zu erhalten. Bei der Einwirkung von Benzoylchlorid auf **2e** wurde mit 90-proz. Rohausbeute das äußerst hygroskopische Amidiniumchlorid **10a** erhalten. Da für **10a** keine voll befriedigende Elementaranalyse erhalten werden konnte, wurde es mit Natriumtetraphenylborat in das nicht hygroskopische Salz **10b** übergeführt, das problemlos elementaranalytisch charakterisiert werden konnte (Schema 4). Die hohe Rohausbeute an **10a** deutet, in Verbindung mit den spektrosko-

2a-2g, 2i, 2j + XCH₂Y
$$\xrightarrow{-2HN(CH_3)_2}$$
 $\begin{pmatrix} R \\ CH_3 \end{pmatrix}_2 \begin{pmatrix} X \\$

Schema 5.

20a:
$$X = CN$$
, $Y = COOCH_3$
20b: $X = Y = COOCH_3$

Schema 6.

pischen Befunden, darauf hin, dass **2e** wohl in einem Gleichgewichtsgemisch vorliegt. Weitere Untersuchungen zu dem Problem stehen noch aus.

11-19

Verbin- dung	Reaktions- bedingungen Temp. [°C], Zeit [h]	Ausb. [%]	Schmp. [°C] Sdp. [°C/Torr] Literatur	n_D^{20}	Summenformel (molare Masse)	С	Н	N
11a	20-25/16 ^a	64	120 ^b , 120-121 [17]		$C_{12}H_{11}N_3$	ber. 73.07	5.62	21.31
11b	20-25/16 ^a	50	(schwach gelbe Kristalle) 95 ^c , 95 [18] (farblose		(197.23) $C_{13}H_{14}N_2O_2$	gef. 73.30 ber. 67.81	5.66 6.13	21.46
11c	65/2 ^a	62	(farblose Kristalle)		(230.26) $C_{14}H_{17}N_3O$ (243.30)	gef. 67.85 ber. 69.11 gef. 69.03	0.13 7.04 7.07	12.02 17.27 17.47
11d	65/2 ^a	61	129°		$C_{17}H_{16}N_2$	ber. 82.22	6.50	11.28
11e	20-25/14 ^{a,d}	23	(weiße Kristalle) 128 ^c , 128 [19] (gelbe Kristalle)		(248.31) $C_{10}H_{12}N_2O_2$ (192.21)	gef. 82.46 ber. 62.48 gef. 62.50	6.54 6.29 6.34	11.32 14.58 14.53
11f	65/35 ^a	63	150-164/0.005		$C_{16}H_{16}N_2O_2$	ber. 71.62	6.01	10.44
11g	65/35 ^a	59	(zanes, rotes OI) 95-98/0.001	1.6450	(268.30) $C_{12}H_{25}NO$ (189.25)	ger. 71.94 ber. 76.15 gef. 75.73	5.99 7.99 8.15	10.11 7.40 7.44
11h	65/30 ^a	65	172-176/0,001, 160-165/0,06 [20]		C ₁₇ H ₁₇ NO (251.31)	ber. 81.24 gef. 81.00	6.82 7.01	5.57 5.71
11i	65/48 ^a	62	(oranges, zähes OI) 110 ^{c,e} 122/0 001		$C_{15}H_{21}NO_2^{e}$ (197.23)	ber. 72.84	8.56 8.66	5.66
12a	65/2 ^a	71	119°		$C_{10}H_9N_3O$	gef. 64.07	4.84	22.45
12b	20-25/16 ^a	82	(farbiose Kristalle) 122° (galbliche Kristalle)		(187.20) $C_{11}H_{12}N_2O_3$ (220.22)	ber. 64.16 ber. 59.99	4.85 5.49 5.56	12.62 12.72
12c	20-25/15 ^a	22	$66^{b,f}$		$C_8H_{10}N_2O_3$ (182.18)	ber. 52.74	5.50 5.53 5.53	12.03
13a	65/1 ^a	71	147-148 ^c (schwach gelbe Kristalle)		$C_{10}H_9N_3S$ (203.20)	ber. 59.10 gef. 59.21	4.46 4.51	20.68 20.71
13b	65/1 ^a	59	111 ^c (Zers.) (gelbliche Kristalle)		$C_{11}H_{12}N_2O_2S$ (236.22)	ber. 55.93 gef. 55.72	5.12 5.13	11.86 11.82
14	20-25/16 ^a	27	74-75		$C_9H_{13}N_3O_2$	ber. 55.37	6.71	21.53
15a	65/2 ^a	36 ^g	144/0,05 167 (weiße Kristalle)		$C_{10}H_{11}N_5$ (201.23)	ber. 59.68	5.51 5.57	21.38 34.81 35.23
15b	65/2 ^a	38 ^g	125		$C_{11}H_{14}N_4O_2$	ber. 56.40	6.02	23.92
16	20-25/16 ^h	43	(weiße Kristalle) 40 160/0 001		(234.25) $C_9H_{11}N_3$ (161.20)	gef. 56.07 ber. 67.05	6.05 6.88 6.87	23.95 26.07
17	65/2 ^a	78	160/0.05	1.5462	$C_{10}H_{12}N_{3}O$ (191.23)	ber. 62.80	6.85 6.97	20.37 21.98 22.17
18	20-25/16 ^h	58	90 168/0 001		$C_{12}H_{16}N_2O_3$ (236.26)	ber. 61.00 gef 60.98	6.83 6.92	11.86
19	20-25/15 ^h	72	174/0.001		$C_{12}H_{15}N_{3}O_{2}$	ber. 61.78	6.48	18.02
20a	20-25/15 ^h	62	145 ^c		$C_{13}H_{21}N_3O_3$	ber. 58.41	7.92	15.72
20b	20-25/15 ^h	20	(orangerote Kristalle) 98 ^c		$\begin{array}{c}(267.32)\\C_{14}H_{24}N_2O_5\\(300.35)\end{array}$	gef. 58.56 ber. 55.98 gef. 54.55	8.00 8.05 7.87	15.93 9.32 9.04
						-		

Tab. 1. Enamine 11-20 aus CH-aciden Verbindungen und den Orthoamiden 2a-i.

^a In THF; ^b Rohprodukt mit Ethylacetat / Pentan einreiben, dann aus Ethylacetat umkristallisieren; ^c aus Ethylacetat; ^d im Methylformiat; ^e Monohydrat; ^f das Rohprodukt kristallisiert nach 6-12 h bei 0-5 °C; ^g es wurde rohes **2e** eingesetzt, bei der Ausbeuteberechnung wurde reines **2e** zugrunde gelegt; ^h in Diethylether.

Tab. 2. Spektroskopische Daten der Enamine 11 - 20.

Verbin- dung	UV/Vis $\lambda_{\max}[nm](\lg \varepsilon)$	$[R]{\tilde{\nu} \ [cm^{-1}]}$	¹ H-(80 MHz)- und ¹³ C-NMR(CDCl ₃ /TMS); δ [ppm]
11a	296 (4.100) ^a	2210, 2195 (C≡N),	¹ H: 3.21 [breites s, 6H, N(CH ₃) ₂], 7.1-7.6 (m, 5H, C ₆ H ₅)
		1575 (C=C) (KBr)	¹³ C: 43.04, 44.32 [N(CH ₃) ₂], 52.41 (C-2), 116.85 (CN), 117.48
	_		(CN), 128.53, 129.32, 131.65, 132.96 (C ₆ H ₅), 171.59 (C-3)
11b	321 (4.049) ^a	2200 (C≡N), 1690, 1685	2.95 und 3.21 [breites s, 6H, N(CH ₃) ₂], 3.58 und 3.79 (s, 3H,
		(C=O), 1550 (C=C) (KBr)	OCH_3 , 7.2-7.6 (m, 5H, C ₆ H ₅)
11c	311 (4.041) ^a	2185 (C≡N), 1625 (C=O),	2.88 [s, 6H, $N(CH_3)_2$], 3.10 [s, 6H, $CON(CH_3)_2$],
	225 (11(1))	1550 (C=C) (KBr)	7.1-7.7 (m, 5H, C ₆ H ₅)
11d	335 (4.164) ^a	$2195 (C \equiv N), 1595,$	¹ H: 2.62 und 3.07 [s, 6H, N(CH ₃) ₂], 6.7-7.6 (m, 5H, C ₆ H ₅)
		1585 (C=C) (KBr)	15 C: 43.09, 43.53 [N(CH ₃) ₂], 82.43, 84.36 (C-2), 122.58, 123.92
			(CN) , 124.96, 126.14, 127.85, 128.28, 128,68, 128.81, 129.32, 120.07, 120.22, 120.68, 121.14, 125.01, 126.41, 126.56 (A $_{\odot}$ C)
11.	254 (4 202) ^a	1550 (C. C) 1520	129.97, 130.33, 130.06, 131.14, 133.01, 130.41, 130.30 (AF-C)
11e	554 (4.505)	1350 (C=C), 1350, 1250 (NO) (KPr)	2.65 [S, 0H, $N(CH_3)_2$], 0.70 (S, 1H, =CH-), 6.0.75 (m, 5H, C, H)
11f	$312(3848)^{a}$	$1330(100_2)(RBI)$	2.73 [e 6H N(CH)] 5.87 (e 1H –CH) 6.6.7.3 (m 0H ÅrH)
11η 11σ	$303(4.278)^{a}$		1.64 (s. 3H COCH.) 2.80 [s. 6H N(CH.).]
115	505 (4.270)		$5.26 (s, 1H = CH_{-}) 7.1-7.5 (m, 5H C_{c}H_{-})$
11h	241 (4.155).		2.90 und 3.07 [s. 6H. N(CH2)2], 5.60 und 5.83
	$337 (4.240)^{a}$		(s, 1H, =CH-), 7.0-8.1 (m, 10H, ArH)
11i		3430 (OH), 1650 (C=C),	1.5-2.5 [m, 8H, (CH ₂) ₄], 3.09 und 3.60
		1580 (C=C) (KBr)	[s, 6H, N(CH ₃) ₂], 3.97 (s, 2H, OH), 7.42 (s, 5H, C ₆ H ₅)
12a	285 (4.102),	2210, 2200 (C≡N),	¹ H: 3.28 [s, 6H, N(CH ₃) ₂], 6.6-6.8, 7.2-7.4, 7.7-7.8 (m, 3H, ArH)
	324 (4.086) ^a	1592, 1565 (C=C) (KBr)	¹³ C: 43.75 [N(CH ₃) ₂], 51.11 (C-2), 116.52, 117.43 (CN),
			112.57, 121.01, 143.40, 146.96 (Furyl-C), 160.02 (C-3)
12b	291 (4.083),	2200 (C≡N), 1694 (C=O),	3.16 [s, 6H, N(CH ₃) ₂], 3.72 (s, 3H, COOCH ₃),
	339 (4.086) ^a	1560 (C=C) (KBr)	6.5, 6.9, 7.5 (m _c , 3H, ArH)
12c	255 (4.045),		$3.07 [s, 6H, N(CH_3)_2], 6.3-6.7 (m) und 7.47 (breites s)$
	363 (4.176) ^a		(insgesamt 4H, =CH- und ArH)
13a	242 (3.839),	2210, 2195 (C \equiv N),	¹ H: 3.23 [s, 6H, N(CH ₃) ₂], 7.0-7.7 (m, 3H, ArH)
	$302 (4.011)^{a}$	1550 (C=C) (KBr)	
13b	297 (3.916),	2200 (C≡N), 1695 (C=O),	3.20 [s, 6H, N(CH ₃) ₂], 3.70 (s, 3H, COOCH ₃),
14	$334(3.9/3)^{a}$	1560 (C=C) (KBr)	7.0-7.7 (m, 3H, ArH)
14	405 (4.190)*	1585 (C=C), 1540,	2.93 und 3.12 [s, 6H, N(CH ₃) ₂], 3.48 und 3.75
150	205 (4 199) ^a	$1350 (INO_2) (KBr)$ 2200 2210 (C-N)	$(S, 5H, N-CH_3), 0.0-0.2, 0.0-7.0 (M, 5H, AFH)$
15a	293 (4.108)	2200, 2210 (C=1N), 1585 (C-C) (KBr)	5.20 [DICHES S, UR, N(CR ₃) ₂], 5.70 (3 R, N-CR ₃), 6 0 7 3 (m 2H ArH)
15h	$310(4340)^{a}$	2200 (C=N) 1685 (C-O)	$3.13 \text{ und } 3.23$ [breites s 6H N(CH_a)] $3.4-3.9 \text{ (m 6H N}-CH_a)$
150	510 (7.570)	1555 (C=C) (KBr)	$COOCH_2$) 7 0-7 7 (m 2H ArH)
			2000ii,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Wir untersuchten nun exemplarisch das Verhalten der Orthoamide **2a-j** gegenüber CH-Säuren wie Malondinitril, Cyanessigsäureester, *N*,*N*-Dimethylcyanacetamid, Benzylcyanid, Malonester, Nitromethan, *o*-Nitrotoluol, Aceton, Acetophenon und Cyclohexanon.

Die Umsetzungen wurden bei 20 °C in Ether bzw. THF oder auch in siedendem THF durchgeführt (Schema 5). (Das Orthoamid **2h** wurde als Isomerengemisch [3], **2e** in der beschriebenen Form verwendet). In fast allen Fällen wurden die erwarteten Enamine mit befriedigenden bis guten Ausbeuten erhalten. Andersartige Produkte, nämlich die Ketenaminale **20**, erhält man aus dem Allen-orthoamid **2h** (Schema 6). Einige physikalische Daten, die Ergebnisse der Elementaranalysen sowie spektroskopische Angaben zu den Verbindungen **11-20** finden sich in den Tabn. 1 und 2. Das Reaktionsprodukt **11i** bildet beim Stehen an der Luft ein stabiles Monohydrat und wurde in dieser Form charakterisiert.

Bekanntlich können Enamine vom Typ **11f** mit geeigneten Reduktionsmitteln in Indole übergeführt werden (Leimgruber-Batcho-Synthese) [21], es gelang jedoch nicht – analog zu einer Vorschrift von Garcia [22] – aus **11f** mit Natriumdithionit in Ethanol / Wasser 2-Phenylindol (**21**) darzustellen. Als

Tab. 2 (Fortsetzung).

Verbin- dung	UV/Vis $\lambda_{\max}[nm](\lg \varepsilon)$	$\frac{IR}{\tilde{\nu} \ [cm^{-1}]}$	¹ H-(80 MHz)- und ¹³ C-NMR(CDCl ₃ /TMS); δ [ppm]
16		2180, 2170 (C≡N), 1535 (C=C)	¹ H: 0.9-1.7 (m, 5H, Cyclopropyl-H), 3.37 [s, 6H, N(CH ₃) ₂], ¹³ C: 10.40 und 15.39 (Cyclopropyl-C), 43.12 [N(CH ₃) ₂],
		$(CDCl_3)$	51.93 (C-2), 117.38 (CN), 172.85 (C-3)
17a	297 (4.0790) ^a		1.35 (t, $J = 7$ Hz, 3H, CH ₃), 3.23 [s, 6H, N(CH ₃) ₂], 3.85
	۴.		$(q, J = 7 Hz, 2H, CH_2-CH_3), 4.62 (s, 2H, =CH_2)$
18	320 (3.9510) ^b	2200 (C≡N), 1685	1.7-2.5 [m, 4H, $(CH_2)_2$], 3.13 [breites s, 6H, $N(CH_3)_2$],
		(C=O), 1640, 1620	$3.70 (s, 3H, COOCH_3), 4.13 (t, J = 7 Hz, 2H, -CH_2-CH_2-O),$
		(C=C)(KBr)	5.0-5.7 (m, 1H, -CH=)
19	298 (4.1430) ^b	2200, 2210 (C≡N),	1.5-2.5 [m, 4H, (CH ₂) ₂], 3.26 [s, 6H, N(CH ₃) ₂], 3.52 (s, 3H, OCH ₃),
		1566 (C=C) (KBr)	5.06 (t, J = 6 Hz, 1H, O-CH-O), 5.45 (t, J = 6 Hz, 1H, =CH)
20a	442 (4.0334),	2160 (C≡N),	¹ H: 2.22 (s, 3H, CH ₃), 3.11 [s, 12H, N(CH ₃) ₂], 3.37 (s, 3H, OCH ₃),
	245 (4.2122) ^b	1650 (C=O),	$3.61 (s, 3H, COOCH_3) - {}^{13}C: 17.84 (CH_3), 41.41, 41.55 [N(CH_3)_2],$
	× /	1590 (C=C) (KBr)	50.40 (OCH ₃), 59.57 (COOCH ₃), 63.41 (C-2), 124.94 (CN),
			126.55 (C-4), 150.21 (C-3), 168.04 (CO), 169.21 (C-5)
20b	310 (2.6990),	1688 (C=O), 1615	2.10 (s, 3H, CH ₃), 2.97 [s, 12H, N(CH ₃) ₂], 3.32 (s, 3H, OCH ₃),
	264 (4.0253) ^b	(C=C) (KBr)	3.60 (s, 3H, COOCH ₃)

^a In Acetonitril; ^b in Ethanol.

Schema 7.

Reaktionsprodukt wurde lediglich das durch Hydrolyse von **11f** entstehende Keton **22** erhalten (Schema 7).

Bei Versuchen, die Orthoamid-Derivate 2a, 2c mit enolisierbaren CH2-aciden Verbindungen wie Acetessigsäuremethylester (23a) bzw. Acetylaceton (23b) zu kondensieren, beobachteten wir keine C,C-Verknüpfung. Stattdessen werden die β -Dicarbonylverbindungen 23 in Enamine 24a, 24b übergeführt und die Orthoamide in die entsprechenden Carbonsäureamide 25 umgewandelt (Schema 8). Die Gemische aus 24a / 25a bzw. 24a / 25b, entstanden aus 2a bzw. 2c und 23a, konnten destillativ nicht getrennt werden, jedoch scheidet sich aus dem Gemisch 24a / 25b bei längerem Stehen reines 25b aus. Auch aus 2a und 23b bildet sich ein destillativ nicht trennbares Gemisch aus 24b und 25a. Die Reaktionen erinnern an die von Barton [23] beschriebenen Umsetzungen von aromatischen Aldehyden mit Ketenaminalen. Dabei spalten die gebil-

deten Primärprodukte Wasser ab, was zur Hydrolyse der Ketenaminalfunktion führt, so dass letztendlich α,β -ungesättigte Carbonsäureamide entstehen.

Die Bildung der Enamine **24** ist verständlich, wenn man annimmt, dass sich in Analogie zu Arbeiten von Maas und Feith [24] aus den Orthoamiden **2** und den Enolformen der β -Dicarbonylverbindungen Aminalester **26** bilden, die dann zu Enaminen **24** und Amiden **25** zerfallen (Schema 9).

Während aus dem Orthoamid **2d** und Nitromethan das erwartete Enamin **14c** entsteht, liefert die Umsetzung von **2d** mit 1-Nitropropan unter gleichen Bedingungen (16 h, 20 - 25 °C) das Amidi-

$$(CH_3)_2 N O C CH_3 O CH_3 O$$

Schema 9.

+) _)

NaB(C₆H₅)₄ **27a**:
$$X = NO_2$$

NaNO₂ **27b**: $X = B(C_6H_5)_4$

Schema 10.

Schema 11.

niumnitrit **27a**, das mit Natriumtetraphenylborat in das Salz **27b** umgewandelt wurde (Schema 10).

Formal bewirkt das Orthoamid beim Nitropropan eine Eliminierung von salpetriger Säure, die sich dann mit **2d** unter Abspaltung von Dimethylamin zum Salz **27a** umsetzt. Möglicherweise erfolgt auch hier die Reaktion über den Aminalester **28**, der sich aus der Enolform des Nitropropans und **2d** bilden könnte (Schema 11). Es ist aber auch nicht völlig auszuschließen, dass die aus **2d** durch Dissoziation entstehenden Dimethylamidionen beim Nitropropan die β -Eliminierung von HNO₂ auslösen, was auch zum Entstehen von **27a** führen würde.

Bei der Umsetzung der Orthoamide **2g**, **2i** mit Benzylcyanid werden die Verbindungen **30** bzw. **32** erhalten (Schema 12). Offenbar addiert sich das im Verlauf der Reaktionen abgespaltene Dimethylamin an die Enolether-Funkion der primär entstehenden Kondensationsprodukte **29** bzw. **31**. Ähnliche Aminadditionen beobachtet man auch bei Kondensationen von CH-Säuren und Orthoamiden von Alkincarbonsäuren [2, 4] bzw. Propiolaldehydaminalen [25].

Abweichend vom allgemeinen, zu Enaminen führenden Reaktionsschema verlaufen die Konden-

sationen des Allen-orthoamids **2h**. Vermutlich bildet sich aus **2h** und dem CH_2 -aciden Reaktionspartner unter Aminabspaltung ein mesomeriestabilisiertes Kation **33**, an das sich die Carbanionen unter Bildung der Addukte **34** anlagern. Durch Prototropie

35f: X = CN, Y = C₆H₅ **36f**: X = CH₃CO, Y = COOCH₃

Schema 15.

Schema 16.

wandeln sich die Addukte **34** in die Ketenaminale **20** um (Schema 13).

Über Kondensationsreaktionen der Orthoamide 1a, 1f, 1g mit CH-Säuren haben wir bereits kurz berichtet, ebenso wie über einige, zu Heterocyclen führende Umsetzungen der Orthoamide 1a, 1f, 1o, 1p mit difunktionellen Verbindungen [2, 4]. Wir beschreiben im Folgenden einige orientierend durchgeführte Kondensationsreaktionen der Orthoami-

Schema 17.

40b: X = CN, $Y = COOC_2H_5$

Schema 18.

de **1b** - **e** mit methylenaktiven Verbindungen. Stark CH₂-acide Verbindungen setzen sich mit den Orthoamiden **1b**, **1c** in Ether bereits bei Raumtemperatur zu den push-pull-substituierten Butadienen **35**, **36** um (Schema 14). Die Reaktionen verlaufen ähnlich leicht wie mit den Orthoamiden **1a**, **1f**, **1g**. Physikalische und spektroskopische Daten der so hergestellten Verbindungen sind in den Tabn. 3 und 4 zusammengestellt. In gleicher Weise konnten aus den Orthoamiden **1d**, **1e** die, ein gekreuzt konjugiertes Doppelbindungssystem enthaltenden, Ketenaminale **37**, **38** gewonnen werden (Schema 15, Schema 16). Physikalische und spektroskopische Daten der Verbindungen finden sich in den Tabn. 5 - 8.

Aus dem Orthoamid **1p** und dem noch nicht beschriebenen Orthoamid **1s** und Nitromethan bzw. Cyanessigsäureethylester wurden die besonders gut kristallisierenden Ketenaminale **39a**, **39b** (Schema 17) und **40a**, **40b** (Schema 18) dargestellt.

Das Orthoamid **1s** wurde aus *N*,*N*,*N*',*N*'',*N*'',*N*''-Hexamethylguanidiniumchlorid (**7**) und 3-Ethyl-3trimethylsilyloxy-1-pentin (**41**) in Gegenwart von Natriumhydrid in absol. Tetrahydrofuran gewonnen (Schema 19).

Verbin- dung	Reaktions- bedingungen Temp. [°C], Zeit [h]	Aufarb. [%]	Ausb. Sdp. [°C/Torr]	Schmp. [°C]	Summenformel (molare Masse)	С	Н	N
35 (R =	CH ₃)							
35a	20-25/16 ^a	А	70	112 ^b	$C_{11}H_{16}N_4$	ber. 64.67	7.90	27.43
35b	20-25/2 ^a	А	94	(gelbe Kristalle) 125 (gelbe Kristalle)	(204.27) $C_{12}H_{19}N_{3}O_{2}$ (237.30)	ber. 60.79	7.80 8.07 8.07	17.71 17.53
35c	20-25/16 ^c	А	90	(tiefviolette Kristalle)	$C_{16}H_{20}N_4O_2$ (300.35)	ber. 63.98	6,71 6,72	18.65
35d	20-25/16 ^a	А	86	88 ^b	$C_{13}H_{22}N_2O_4$ (270.39)	ber. 57.76	8.20 8.17	10.36
35e	20-25/3 ^a	А	81	140 (Zers.) ^d	$C_9H_{17}N_3O_2$ (199.25)	ber. 54.25 gef 50.05	8.60 8.67	21.09 21.32
35f	20-25/15 ^a	В	70	71 152-156/0.01	$C_{16}H_{21}N_3$ (255.35)	ber. 75.25 gef. 75.57	8.29 8.38	16.46 16.58
36 (R =	C_2H_5)				()	8		
36a	20-25/5ª	А	72	108 ^d	$C_{12}H_{18}N_4$ (218.30)	ber. 66.02	8.31	25.67
36b	20-25/2 ^a	А	78	118-120 (gelbe Kristalle)	$C_{13}H_{21}N_{3}O_{2}$ (251.32)	ber. 62.12 gef 62.03	8.42 8.42	16.72
36c	20-25/15 ^a	А	91	(tiefviolette Kristalle)	$C_{17}H_{22}N_4O_2$ (284 35)	ber. 64.94	7.05	17.82
36d	20-25/15 ^a	С	79	55 129-134/0 001 ^e	$C_{14}H_{24}N_2O_4$ (284.35)	ber. 59.13	8.51	9.85
36e	20-25/16 ^a	А	79	(orongoforbono Kristello)	$C_{10}H_{19}N_3O_2$	ber. 56.31	8.98	19.70
36f	20-25/15 ^a	С	50	(orangerarbene Kristalle) 138/0.001 (rotes Öl)	$\begin{array}{c} (213.26) \\ C_{14}H_{24}N_2O_3 \\ (268.35) \end{array}$	ber. 62.66 gef. 62.08	9.02 9.02 8.93	19.82 10.44 9.69

Tab. 3. Push-pull-Butadiene 35, 36 aus CH₂-aciden Verbindungen und Orthoamiden 1b, c.

^a In Diethylether; ^b aus Ethylacetat; ^c in Tetrahydrofuran; ^d aus Acetonitril; ^e orangerotes zähes Öl, erstarrt bei längerem Stehen.

Tab	0.4.	Spel	ktros	kopis	che l	Daten	der	push	1-pul	l-Buta	diene	35,	36.
-----	------	------	-------	-------	-------	-------	-----	------	-------	--------	-------	-----	-----

Verbin- dung	UV/Vis $\lambda_{\max}[nm](\lg \varepsilon)$	$\frac{IR}{\tilde{\nu} \ [cm^{-1}]}$	¹ H-(80 MHz)- und ¹³ C-NMR(CDCl ₃ /TMS); δ [ppm]
35a	392 (3.6284) ^a	2200, 2180 (C≡N), 1554, 1530 (C=C) (KBr)	¹ H: 2.03 (s, 3H, CH ₃), 3.03 [s, 12H, N(CH ₃) ₂], 5.03 (breites s, 1H, -CH=) $-$ ¹³ C: 18.81, 24.77 (CH ₃), 41.06, 41.46 [N(CH ₃) ₂], 49.86, 53.83 (C-2), 90.68 (C-4), 119.39, 119.96 (CN) 163.54 165.67 (C-3) 167.76 168.09 (C-5)
35b	395 (3.648) ^a	2185 (C≡N), 1680, 1655 (C=O), 1560 (C=C) (KBr)	¹ H: 2.11 (s, 3H, CH ₃), 3.00 [s, 12H, N(CH ₃) ₂], 3.64 (s, 3H, CO ₂ CH ₃), 6.17 (breites s, $-CH=) - {}^{13}C$: 20.93 (CH ₃), 41.37 [N(CH ₃) ₂], 76.82 (C-2), 93.26 (C-4), 123.17 (CN), 163.38 (C-3), 167.54 (CO), 169.18 (C-5)
35c	510 (4.2504), 372 (4.1987), 270 (4.0569) ^a	2172 (C≡N), 1590, 1530 (C=C) (KBr)	¹ H: 2.17 (s, 3H, CH ₃), 2.80 [s, 12H, N(CH ₃) ₂], 4.57 (s, 1H, -CH=), 7.5-8.2 (m, 4H, ArH) – ¹³ C: 23.04 (CH ₃), 40.52 [N(CH ₃) ₂], 89.27 (C-2), 123.14 (CN), 123.49 (C-4), 127.60, 143.64, 145.74 (Ar-C), 157.69 (C-3), 165.58 (C-5)
35d	401 (4.3253), 266 (3.9614) ^a	1708, 1658 (C=O), 1548, 1530 (C=C) (KBr)	¹ H: 2.06 (s, 3H, CH ₃), 2.82 [s, 12H, N(CH ₃) ₂], 3.70 (s, 6H, CO ₂ CH ₃), 4.95 (s, 1H, -CH=) $^{-13}$ C: 20.70 (CH ₃), 40.55 [N(CH ₃) ₂], 50.94 (OCH ₃), 89.42 (C-2), 105.46 (C-4), 159.04 (C-3), 165.87 (CO), 168.81 (C-5)
35e	396 (4.1367) ^a	1590, 1570 (C=C), 1525, 1285	1.93 (s, 3H, CH ₃), 3.02 [s, 12H, N(CH ₃) ₂], 5.95 (breites s, 1H, CH=NO ₂), 6.61 (s, 1H, -CH=)

Tab. 4 (Fortsetzung).

Verbin- dung	UV/Vis $\lambda_{\max}[nm](\lg \varepsilon)$	$\frac{\text{IR}}{\tilde{\nu} [\text{cm}^{-1}]}$	¹ H-(80 MHz)- und ¹³ C-NMR(CDCl ₃ /TMS); δ [ppm]
35f	300 (4.3096), 270 (4.0569) ^a	2185 (C≡N), 1595, 1550(C=C) (KBr)	¹ H: 1.91 und 2.18 (s, 3H, CH ₃), 2.51, 2.66, 2.80 [s, 12H, N(CH ₃) ₂], 4.30 und 4.58 (s, 1H, -CH=), 6.9-7.6 (m, 5H, ArH) – ¹³ C: 20.32, 23.05 (CH ₃), 35.64, 39.41, 39.77, 40.32 [N(CH ₃) ₂], 87.04, 88.80 (C-2), 94.16, 95.40 (C-4), 122,95, 123.72 (CN), 125.87, 126.04, 127.97, 128.17, 128.55, 128.85, 129.19, 136.85, 137.34 (C ₆ H ₅), 154.31, 155.81 (C-3), 162.90 (C-5)
36a	395 (4.4771), 278 (3.7671) ^a	2200, 2170 (C≡N), 1570, 1520 (C=C) (KBr)	1.38 (t, $J = 7$ Hz, 3H, -CH ₂ -CH ₃), 2.35 (q, $J = 7$ Hz, 2H, -CH ₂ -CH ₃), 3.05 [s, 12H, N(CH ₃) ₂], 4.32 (breites s, 1H, -CH=)
36b	400 (4.3636) ^a	2199 (C≡N), 1665 (C=O), 1570, 1525 (C=C) (KBr)	1.17 (t, <i>J</i> =7 Hz, 3H, -CH ₂ -C <i>H</i> ₃), 2.55 (q, <i>J</i> = 7 Hz, 2H, -C <i>H</i> ₂ -CH ₃), 3.00 [s, 12H, N(CH ₃) ₂], 3.67 (s, 3H, CO ₂ CH ₃), 4.56 (breites s, 1H, -CH=)
36c	520 (4.0719), 1589 (C=C), 372 (4.1139),	2170 (C \equiv N), 1550 (NO ₂), 1530 (C=C), 273 (4.0719) ^a 1285 (NO ₂) (KBr)	¹ H: 1.22 (t, $J = 7$ Hz, 3H, -CH ₂ -CH ₃), 2.1-3.0 (m, 2H, -CH ₂ -CH ₃), 2.65 [s, 12H, N(CH ₃) ₂], 4.20 (breites s, 1H, -CH=), 7.3-8.2 (m, 4H, ArH) – ¹³ C: 14.77 (CH ₃), 32.20 (CH ₂), 40.12 [N(CH ₃) ₂], 86.43 (C-2), 87.95 (C-4), 123.01 (CN), 123.32, 127.29, 143,83, 146.16 (Ar-C), 164.25 (C-3), 165.00 (C-5)
36d	408 (4.041), 265 (4.0900) ^a	1680 (C=O), 1555, 1515 (C=C) (CDCl ₃)	1.12 (t, $J = 7$ Hz, 3H, -CH ₂ -CH ₃), 2.42 (q, $J = 7$ Hz, 2H, -CH ₂ -CH ₃), 2.84 [s, 12H, N(CH ₃) ₂], 3.65 (s, 6H, OCH ₃), 4.37 (s, 1H, -CH=)
36e	395 (3.9845) ^a	1592 (C=C), 1570 (NO ₂), 1285 (NO ₂) (KBr)	1.12 (t, $J = 7$ Hz, 3H, -CH ₂ -CH ₃), 2.25 (q, $J = 7$ Hz, 2H, -CH ₂ -CH ₃), 3.06 [s, 12H, N(CH ₃) ₂], 5.37 (breites s, 1H, -CH=C), 6.66 (s, 1H, O ₂ N-CH=)
36f	—	1710, 1630 (C=O), 1605, 1545 (C=C) (CDCl ₃)	1.08 (t, $J = 7$ Hz, 3H, -CH ₂ -CH ₃), 2.12, 2.16 (s, 3H, CH ₃ CO), (q, $J = 7$ Hz, 2H, -CH ₂ -CH ₃), 2.89 und 2.95 [s, 12H, N(CH ₃) ₂], 3.60 und 3.66 (s, 3H, COOCH ₃), 5.65 und 5.74 (s, 1H, =CH-)

^a Ethanol.

Tab. 5. Ketenaminale 37 aus Kohlenstoffsäuren und dem Orthoamid 1d.

Verbin- dung	Reaktions- bedingungen Temp. [°C], Zeit [h]	Aufarb. [%]	Ausb. Sdp. [°C/Torr]	Schmp. [°C]	Summenformel (molare Masse)	С	Н	N
37a	20-25/15 ^a	В	62	127-128 ^b (gelbe Kristalle)	$C_{13}H_{18}N_4$	ber. 67.79	7.88	24.33
37b	20-25/8 ^a	В	66	(gelbe Kristalle) 105 ^b	$C_{14}H_{21}N_3O_2$	ber. 63.85	8.04	15.96
37c	20-25/16 ^a	С	71	(gende Kristane) 107 ^b ; 174/0.005	$C_{15}H_{24}N_4O$	ger. 65.18 ber. 65.18	8.12 8.75	20.27
37d	20-25/16 ^c	С	58	(gelbe Kristalle) 154-156/0.005	(2/6.37) $C_{18}H_{23}N_3$	gef. 65.25 ber. 76.83	8.84 8.24	20.49 14.93
37e	65/2 ^a	С	84	(viskoses, rotes Ol) 95 ^b ; 158-162/0.001	(281.39) $C_{15}H_{24}N_2O_4$ (200.26)	gef. 76.80 ber. 60.79	8.09 8.16	15.11 9.45
37f	20-25/3 ^c	А	46	(orangegeibe Kristalle) 88-90 ^d	(296.36) $C_{15}H_{24}N_2O_2$ (264.26)	ger. 60.96 ber. 68.15	8.24 9.15	9.45
37g	20-25/12 ^c	А	89	(orangerote Kristalle) 127 (ziegelrote Kristalle)	(204.30) $C_{11}H_{19}N_3O_2$ (225.29)	gef. 60.82 ber. 58.64	9.22 8.50 8.55	10.21
37h	20-25/17 ^c	С	63	(ziegenote Kristane) 170-178/0.001 (viskosos Öl)	$C_{16}H_{28}N_3O_3P$ (241.40)	ber. 56.28	8.27 8.27	12.31
37i	20-25/0.5 ^c	А	72	(VISKUSES OI) 99 (orangerote Kristalle)	$C_{15}H_{24}N_2O_3$ (280.36)	ber. 64.26	8.50 8.63 8.70	9.99
37j	20-25/5 ^a	А	89	(gelbe Kristalle) (gelbe Kristalle)	$\begin{array}{c} (230.30) \\ C_{16}H_{24}N_4O_3 \\ (320.38) \end{array}$	ber. 59.88 gef. 59.98	7.54 7.61	9.90 17.49 17.39
	L			L				

Verbin- dung	Reaktions- bedingungen Temp. [°C], Zeit [h]	Aufarb. [%]	Ausb. Sdp. [°C/Torr]	Schmp. [°C]	Summenformel (molare Masse)	С	Н	N
38a	20-25/4 ^a	А	71	114	$C_{16}H_{22}N_4$	ber. 71.07	8.2	20.73
				(gelbe Kristalle)	(270.37)	gef. 70.89	8.00	20.82
38b	20-25/1 ^a	А	93	168	$C_{17}H_{25}N_3O_2$	ber. 67.30	8.31	13.85
				(gelbe Kristalle)	(303.39)	gef. 66.83	8.23	13.56
38c	20-25/15 ^b	А	84	135	$C_{18}H_{28}N_4O$	ber. 68.32	8.92	17.71
				(gelbe Kristalle)	(316.44)	gef. 68.10	8.80	17.71
38d	20-25/22 ^a	А	66	121 ^c	$C_{21}H_{27}N_3$	ber. 78.46	8.47	13.07
	1			(gelbe Kristalle)	(321.45)	gef. 78.38	8.48	12.90
	20-25/6 ^b	А	66	116-117				
				(gelbe Kristalle)				
38e	20-25/7 ^a	А	88	113ª	$C_{18}H_{28}N_2O_4$	ber. 64.26	8.39	8.33
					(336.42)	gef. 64.34	8.33	8.30
38 f	20-25/3 ^a	А	87	120 ^e	$C_{18}H_{28}N_2O_2$	ber. 71.01	9.12	9.20
				(hellrote Kristalle)	(304.42)	gef. 69.96	9.27	9.06

Tab. 6. Ketenaminale 38 aus Kohlenstoffsäuren und dem Orthoamid 1e.

^a In Diethylether; ^b in Tetrahydrofuran; ^c aus *tert*-Butylmethylether / Ethylacetat (1:1); ^d aus Ethylacetat ^e die hygroskopische Substanz zerfließt an der Luft zu einem braunen Öl, eine befriedigende Elementaranalyse wurde nicht erhalten.

Tab. 7. Spektroskopische Daten der Ketenaminale 37.

Verbin-	UV/Vis	IR	¹ H-(80 MHz)- und ¹³ C-NMR(CDCl ₃ /TMS); δ [ppm]
dung	$\lambda_{\max}[\operatorname{nm}](\lg \varepsilon)$	$\tilde{\nu} [\mathrm{cm}^{-1}]$	
37a	440 (4.4533),	2200, 2180 (C≡N),	¹ H: 1.85 und 2.00 (s, 3H, CH ₃), 2.91 und 3.06 [s, 12H, N(CH ₃) ₂],
	268 (3.8573) ^a	1550,	5.20 (s, 2H, CH ₂), 5.33 (s, 1H, =CH) $-$ ¹³ C: 22.26 (CH ₃), 40.51,
		1525 (C=C) (KBr)	41.11, 41.77 [N(CH ₃) ₂], 46.77, 52.54 (C-2), 88.03, 90.03 (C-4),
			117.75, 118.43 (CH ₂ =), 119.99 (CN), 120.70 (CN), 142.21,
			144.95 (CH ₃ - <i>C</i> =), 167.99, 168.32 (C-3), 170.65 (C-5)
37b	406 (4.3224) ^a	2188 (C \equiv N),	¹ H: 1.98 (s, 3H, CH ₃), 2.98 [s, 12H, N(CH ₃) ₂], 3.68 (s, 3H, OCH ₃),
		1652 (C=O), 1565,	5.1-5.2 (m, 3H, =CH und =CH ₂) –
		1525 (C=C) (KBr)	¹³ C: 22.59 (CH ₃), 41.31 und 41.82 [N(CH ₃) ₂], 50.57 OCH ₃), 91.87,
			67.97 (C-2), 93.98 (C-4), 116.29 (CN), 144.84 (CH ₂ =),
			148.21 (CH ₃ - <i>C</i> =), 166.94(CO), 167.56 (C-3), 170.39 (C-5)
37c	420 (4.3829),	2170 (C≡N),	¹ H: 1.87 (s, 3H, CH ₃), 2.85 [s, 12H, N(CH ₃) ₂],
	265 (3.9823) ^a	1620 (C=O),	$3.05 [s, 6H, -CON(CH_3)_2], 4.42 (s, 1H, =CH),$
		1545 (C=C) (KBr)	5.10 (breites s, 2H, $=$ CH ₂)
37d	415 (4.2041),	2185 (C≡N),	¹ H: 1.67 und 1.95 (s, 3H, CH ₃), 2.45, 2.66, 2.80 [s, 12H, N(CH ₃) ₂],
	264 (4.1139) ^a	$1550 (C=C) (CDCl_3)$	4.10 und 4.27 (s, 1H, =CH), 5.02, 5.20, 5.32 (s, 2H, CH ₂ =),
			7.0-7.6 (m, 5H, ArH)
37e	420 (3.9282),	1680, 1675 (C=O),	¹ H: 1.85 (s, 3H, CH ₃), 2.90 [s, 12H, N(CH ₃) ₂], 3.61 (s, 6H, OCH ₃),
	265 (4.3154) ^a	1625,	$4.92 (s, 2H, =CH_2), 5.04 (s, 1H, =CH) - {}^{15}C: 22.90 (CH_3),$
		1550 (C=C) (KBr)	41.08 [N(CH ₃) ₂], 50.57(OCH ₃), 92.24 (C-4), 113.68 (CH ₂ =),
			149.53 (CH ₃ - <i>C</i> =), 166.00 (C-3), 168.85 (CO), 169.34 (C-5)
37f	—	—	¹ H: 1.91, 2.00, 2.21 (s, 9H, CH ₃ , CH ₃ CO), 2.8-3.2 [m, 12H,
			$N(CH_3)_2$, 5.1-5.3 (m, 1H, =CH), 5.3-5.5 (d, J = 7 Hz, 2H, =CH ₂)
37g	410 (3.9542),	1565, 1536	¹ H: 1.90 (s, 3H, CH ₃), 2.99 [s, 12H, $N(CH_3)_2$],
	258 (4,1399) ^a	$(C=C und NO_2),$	$5.09 (s, 2H, =CH_2), 5.10 (s, 1H, =CH),$
		$1320 (NO_2) (KBr)$	$6.79 (s, 1H, =CH-NO_2)$
37h	395 (4.3161) ^a	2180 (C \equiv N),	⁺ H: 1.90 (breites s, 3H, =C-CH ₃), 2.6-3.1 [m, 12H, N(CH ₃) ₂],
		$1530 (C=C) (CDCl_3)$	$4.08 (q, J = 7 Hz, 4H, OCH_2-CH_3), 4.9-5.3 (m, 3H, =CH-, =CH_2)$

Tab. 7 (Fortsetzung).

Verbin- dung	UV/Vis $\lambda_{\max}[nm](\lg \varepsilon)$	$\frac{\text{IR}}{\tilde{\nu} [\text{cm}^{-1}]}$	¹ H-(80 MHz)- und ¹³ C-NMR(CDCl ₃ /TMS); δ [ppm]
37i	412 (3.4314), 270 (4.4771) ^a	1650, 1630 (C=O), 1605, 1570 (C=C) (KBr)	¹ H: 2.00 (s, 3H, CH ₃), 2.15 (breites s 3H, CH ₃ CO), 2.90 und 3.07 [s, 12H, N(CH ₃) ₂], 3.55 (s, 3H, OCH ₃), 5.05 und 5.13 (s, 2H, =CH ₂), 5.98 (s, 1H, =CH)
37j	386 (3.6021), 264 (4.3096) ^a	1680, 1630 (Č=O), 1525 (C=C) (KBr)	¹ H: 1.88 (s, 3H, CH ₃), 2.98 [s, 12H, N(CH ₃) ₂], 3.20 [s, 6H, (CO) ₂ N-CH ₃), 4.98, 5.14 (s, 2H, =CH ₂), 5.34 (s, 1H, =CH) – ¹³ C: 17.18, 21.90 (CH ₃), 27.60 (N-CH ₃), 28.72 (N-CH ₃), 41.98, 42.70 [N(CH ₃) ₂], 89.98 (C-4), 108.14, 110.18 (C-2), 114.91 (CH ₂ =C), 148.32 (CH ₃ -C =), 153.13 (C-3), 161.97, 162.59 (Ring CO), 167.76 (N-CO-N), 171 (C-1)

^a In Ethanol.

Tab. 8. Spektroskopische Daten der Ketenaminale 38.

Verbin- dung	UV/Vis $\lambda_{\max}[nm](\lg \varepsilon)$	$\frac{IR}{\tilde{\nu} \ [cm^{-1}]}$	¹ H-(80 MHz)- und ¹³ C-NMR(CDCl ₃ /TMS); δ [ppm]
38 a	413 4.4771), 276 (3.9614) ^a	2198, 2180 (C≡N), 1565, 1558 (C=C) (KBr)	¹ H: 1.5-1.9 [m, 4H, (CH ₂) ₂], 1.9-2.4 (m, 4H, -CH ₂ -C=), 2.97 [s, 12H, N(CH ₃) ₂], 4.4-4.8 (m, 1H, N-C=CH), 5.9-6.1 (m, 1H, =CH) – ¹³ C: 21.97, 22.74, 25.53, 28.51 [(CH ₂) ₄], 41.09, 41.69 [N(CH ₃) ₂], 53.66 (C-), 87.44, 89.67 (C-4), 120.14 (CN), 131.59 (-CH=), 135.94,
38b	406 (4.3464) ^a	2190 (C≡N), 1655 (C=O), 1565, 1520 (C=C) (KBr)	138.20 (YXC=), 166.27, 169.67 (C-3), 172.01 (C-5) ¹ H: 1.67 [breites s, 4H, (CH ₂) ₂], 2.17 (breites s, 4H, -CH ₂ -C=), 2.97 [s, 12H, N(CH ₃) ₂], 3.66 (s, 3H, OCH3), 4.2-4.7 (m, 1H, N-C=CH), 5.85 (breites s, 1H, =CH) – ¹³ C: 22.08, 23.00, 25.71, 28.71 [(CH ₂) ₄], 41.73, 41.30 [N(CH ₃) ₂], 50.55 (OCH ₃), 75.16 (C-2), 91.41, 93.68 (C 4), 123.50, 124.38 (CN), 120.67 (CH ²), 138.00 (XXC=)
38c	411 (4.4014), 272 (4.0334) ^a	2170 (C≡N), 1628 (C=O), 1545, 1500 (C=C) (KBr)	9.5.68 (C-4), 125.50, 124.58 (C1V), 129.07 (-C11-), 136.20 (1XC-), 141.25 (C-3), 168.09 (C-5), 170.09, 170.66 (CO) ¹ H: 1.4-1.8 [m, 4H, (CH ₂) ₂], 1.8-2.3(m, 4H, -CH ₂ -C=), 2.84 [s, 12H, N(CH ₃) ₂], 3.05 [s, 6H, CON(CH ₃) ₂], 4.36 (s, 1H, N=C-CH), 5.9 (breites s, 1H, =CH) – ¹³ C: 22.20, 22.93, 25.71, 28. [(CH ₂) ₄], 37.12 [CON(CH ₃) ₂], 40.87 [N(CH ₃) ₂], 84.66 (C-4), 121.80 (CN), 129.17 (-CH=) 138.66 (XXC=) 165.92 (C-3)
38d	414 4.2279), 272 (4.0792) ^a	2182 (C≡N), 1598, 1555 (C=C) (KBr)	^{125.17} (-CH=), 138.00 (17C=), 105.92 (C-3), 107.01 (C-3) and CO) ¹ H: 1.3-1.8 [m, 4H, (CH ₂) ₂], 1.8-2.3 (m, 4H, -CH ₂ -C=), 2.49, 2.65, 2.82 [s, 12H, N(CH ₃) ₂], 4.06 und 4.25 (s, 1H, N-C=CH),
38e	420 (3.8062), 270 (4.1461) ^a	1665, 1640 (C=O), 1620, 1590, 1538 (C=C) (KBr)	5.6-5.8 und 5.9-6.2 (m, 1H, =CH), 6.8-7.6 (m, 5H, C ₆ H ₅) ¹ H: 1.4-1.8 [m, 4H, (CH ₂) ₂], 1.9-2.3(m, 4H, -CH ₂ -C=), 2.90 [s, 12H, N(CH ₃) ₂], 3.62 (s, 6H, OCH ₃), 4.91 (s, 1H, N-C=CH), 5.7-5.9 (m, 1H, =CH) – ¹³ C: 22.35, 23.09, 25.82, 29.19 [(CH ₂) ₄], 41.10 [N(CH ₃) ₂], 50.58 (OCH ₃), 91.39 (C-4), 126.63 (C-CH=),
38f	340 (3.5911), 257 (4.3344) ^a	—	142.31 (YXC=), 166.95 (C-3), 168.61 (CO), 169.51 (C-5) ¹ H: 1.4-1.6 [m, 4H, (CH ₂) ₂], 2.06 (s, 6H, CH ₃ CO), 2.0-2.3 (m, 4H, =C-CH ₂), 2.96 [s, 12H, N(CH ₃) ₂], 5.27 (s, 1H, N-C=CH), 6 15 (braites s. 1H, $-CH$)
38g	410 (3.9731), 296 (3.3424), 264 (4.1140) ^a	1565 (C=C), 1532, 1285 (NO ₂) (KBr)	¹ H: 1.5-1.8 [m, 4H, (CH ₂) ₂], 1.9-2.3 (m, 4H, -CH ₂ -C=), 3.04 [s, 12H, N(CH ₃) ₂], 5.7-6.1 (m, 2H, =CH), 6.70 (s, 1H, =CH-NO ₂)

^a In Ethanol.

Um Aussagen über die Bindungsverhältnisse machen zu können und um die Konstitution der Kondensationsprodukte zu sichern, die aus den Orthoamiden von Alkincarbonsäuren und CH₂-aciden Verbindungen entstehen, wurden exemplarisch von den Verbindungen **37a**, **39a**, **39b**, **40a**,**40b** sowie

Abb. 1. Stereobild (ORTEP-Plot) von 2-Cyan-5,5-bis(dimethylamino)-3-(iso-propenyl)-2,4-pentadiennitril (37a).

Schema 20.

von dem bereits früher beschriebenen Ketenaminal **42** [4] Kristallstrukturanalysen durchgeführt.

Die dabei erhaltenen Resultate bestätigen die Konstitution der Kondensationsprodukte. In den Abbn. 1 - 6 finden sich Stereobilder der Verbindungen **37a**, **39a**, **39b**, **40a**, **40b** und **42**, die Größe der Schwingungsellipsoide repräsentiert jeweils eine 50-proz. Aufenthaltswahrscheinlichkeit.

In Tab. 9 sind die C,C-Abstände der Butadiengerüste der Verbindungen **37a**, **39a**, **39b**, **40a**, **40b** und **42** zusammengestellt. Viehe und Mitarbeiter [26] haben das Ketenaminal **43** einer Kristallstrukturanalyse unterzogen. Dabei wurden für die C,C-Abstände des Butadiensystems folgende Werte geTab. 9. C-C Bindungsabstände in den Butadiengerüsten von **37a**, **39a**, **39b**, **40a**, **40b**, und **42** (die Positionsangaben finden sich in Schema 20).

	C1-C2	Abstand [Å] C2-C3	C3-C4
37a	1.404	1.391	1.410
39a	1.384	1.387	1.392
39b	1.433	1.380	1.430
40a	1.423	1.358	1.444
40b	1.443	1.363	1.450
42	1.383	1.423	1.381

funden: C1-C2 1.396 Å, C2-C3 1.366 Å und C3-C4 1.414 Å.

Wie die Bindungsabstände zeigen, hat in **43** die C2-C3-Bindung – die scheinbare Einfachbindung – einen höheren Doppelbindungscharakter als die formalen Doppelbindungen zwischen C1-C2 und C3-C4. Dies ist nicht weiter überraschend, denn das Substituentenmuster der Verbindung lässt erwarten, dass die Bindungsverhältnisse in **43** am besten durch die dipolare Struktur **43B** beschrieben wird [26]. Bei den Verbindungen **37a**, **39b**, **40a**, **40b** liegen ähnliche Verhältnisse vor, wie ein Vergleich der Bindungsabstände der Doppelbindungen zwischen C1-C2, C3-C4 und der formalen Einfachbindung zwischen C2-C3 zeigt. Offenbar ist in **40a**

Tab. 10. Ausgewählte Torsionswinkel (°) in den push-pull-Butadienen **37a**, **39a**, **39b**, **40a**, **40b**, **42** (zur Positionsbezeichnung siehe Schema 20).

	X-C1-C2-R	Y-C1-C2-R	X-C1-C2-C3	Y-C1-C2-C3	C1-C2-C3-C4	R-C2-C3-C4	C2-C3-C4-N1	C2-C3-C4-N2
37 a ^a	-1.0(3)	-178.7(2)	173.7(2)	-3.9(3)	172.3(2)	-13.1(3)	-33.9(3)	146.9(2)
39a ^b		179.8(5)	—	-5.0(10)	164.3(6)	-20.8(9)	-35.7(9)	147.8(6)
39b ^c	10.0(3)	179.7(2)	165.1(2)	-5.2(3)	-174.5(2)	0.4(3)	-43.1(4)	137.5(2)
40a ^d		-154.0(3)	—	23.4(5)	9.7(6)	-173.0(3)	46.4(5)	-139.9(3)
40b ^e	28.2(3)	-143.7(2)	-158.5(2)	29.7(3)	10.4(4)	-176.1(2)	48.7(3)	-136.7(2)
42^{f}	-8.4(5)	-176.6(3)	164.0(3)	-11.0(5)	166.9(3)	-20.7(5)	-34.8(5)	145.9(3)

^a X = CN, Y = CN, R = -C(CH₃)=CH₂; ^b X = H, Y = NO₂, R = p-C₆H₄Cl; ^c X = CN, Y = CO₂C₂H₅, R = p-C₆H₄Cl; ^d X = H, Y = NO₂, R = C(C₂H₅)₂OSi(CH₃)₃; ^e X = CN, Y = CO₂C₂H₅, R = C(C₂H₅)₂OSi(CH₃)₃; ^f X = CN, Y = C₆H₅, R = C₆H₅.

Abb. 2. Stereobild (ORTEP-Plot) von 3-(4-Chlorphenyl)-1,1-bis(dimethylamino)-4-nitro-1,3-butadien (39a).

und **40b** die C2-C3-Bindung geringfügig kürzer als die in **43**. Bemerkenswerterweise besteht in **39a** ein nahezu völliger Bindungsausgleich, was bedeuten könnte, dass polare Grenzstrukturen in gleichem Umfang wie die unpolare Grenzstruktur zur Gesamtstruktur beitragen. Bei der Verbindung **42** schließlich liegt wieder eine Butadienstruktur vor. Die C2-C3-Bindung ist jetzt länger als die C1-C2 bzw. C3-C4-Bindung, offenbar reichen die Akzeptoreigenschaften der Cyanbenzylidengruppe nicht aus, um in **42** eine stärkere Ladungstrennung zu induzieren. Ausgewählte Torsionswinkel für die Butadiene **37a, 39a, 39b, 40a, 40b** und **42** sind in Tab. 10 zusammengestellt. Die Diederwinkel C1-C2-C3-C4 zeigen, dass die vier C-Atome der Butadiengerüste nicht coplanar angeordnet sind. Noch stärker sind die Ebenen, in denen X, C1 und Y bzw. N1, C4 und N2 liegen, gegeneinander verdrillt. Erwartungsgemäß liegen die Butadiene **37a, 39a, 39b** und **42** transoid vor, wogegen die Verbindungen **40a, 40b** eine cisoide Konformation einnehmen, was wohl auf den sterisch besonders anspruchsvollen Rest am C2 zurückgehen dürfte.

Abb. 3. Stereobild (ORTEP-Plot) von 3-(4-Chlorphenyl)-2-cyan-5,5-bis(dimethylamino)-2,4-pentadiensäureethylester (**39b**).

Experimenteller Teil

Darstellung von rohem 2-[Tris(dimethylamino)methyl]-1-methylimidazol (2e)

Zu 6.6 g (80 mmol) N-Methylimidazol in 50 ml absol. Dimethoxyethan und 150 ml Tetrahydrofuran gibt man unter Rühren bei -15 °C (Kühlung mit Eis / Kochsalz) 50 ml n-Butyllithium (80 mmol) in Hexan $[c(C_4H_9Li) = 1.6 \text{ mol } l^{-1}]$ mit einer Spritze zu, wobei sich die Lösung tiefgelb färbt. Nach 5 min Rühren werden 14.4 g (80.2 mmol) N,N,N',N',N'',N''-Hexamethylguanidinium-chlorid zugesetzt, das Kühlbad wird entfernt und es wird noch 8 h bei Raumtemp. gerührt. (Nach ca. 3 h bildet sich ein voluminöser Niederschlag.) Das Unlösliche wird unter Feuchtigkeitsausschluss abfiltriert, das Filtrat im Vak. zur Trockene eingedampft und der Rückstand bei ca. 10^{-2} Torr sublimiert. Das so erhaltene weiße, kristalline Sublimat schmilzt bei 102 - 104 °C. Ausb.: 8.5 g (47% auf reines 2e bezogen). -¹H-NMR (60 MHz, C₆D₆ / TMS): δ = 2.33 und 2.50 [s, N(CH₃)₂], 3.20 und 3.40 (s, N-CH₃), 6.3 - 6.5 und 7.0 - 7.3 (m, H-arom.) (Die Intensität der Signale bei 2.33 und 2.50 sowie die bei 3.20 und 3.40 stehen im Verhältnis von *ca.* 1:1.) – $C_{11}H_{23}N_5$ (225.33): ber. C 58.63 H 10.29 N 31.08; gef. C 58.61 H 10.14 N 30.97.

Wird die Metallierung innerhalb von 10 min zwischen -70 und -20 °C und die anschließende Umsetzung mit dem Guanidiniumsalz 7 16 h zwischen -70 und 0 °C

durchgeführt, so wird **2e** nicht gebildet. Man erhält das obige rohe **2e** aber mit 38-proz. Ausbeute, wenn man die Menge an *N*-Methyl-imidazol verdoppelt, 5 min zwischen -70 und 0 °C metalliert und noch 3 d mit dem Guanidiniumsalz **7** bei 20 °C umsetzt.

Führt man die Metallierung innerhalb 15 min bei 0 °C durch und setzt dann noch 16 h bei 20 °C mit Tris(dimethylamino)-ethoxy-methan (8) um, so erhält man rohes 2e mit 20% Ausbeute.

Umsetzung von rohem 2e mit Benzoylchlorid

Zu 4.14 g (18.0 mmol) rohem 2e in 50 ml absol. Diethylether lässt man bei 20 °C und unter Feuchtigkeitsausschluss unter Rühren innerhalb von 10 min 4.2 g (30 mmol) Benzoylchlorid in 30 ml Diethylether tropfen, wobei sich unter Erwärmung ein weißer Niederschlag bildet. Man erhitzt 5 min unter Rückfluss und rührt noch 15 min bei 20 °C. Man erhält 3.6 g (90%) N,N,N',N'-Tetramethyl-1-methylimidazol-2-carboxamidinium-chlorid (10a) in Form weißer, stark hygroskopischer Kristalle mit Schmp. 207 - 210 °C (Zers.). Analysenreines 10a mit Schmp. 216 - 217 °C (Zers.) erhält man durch Umkristallisieren aus N,N-Dimethylformamid. – ¹H-NMR (60 MHz, CDCl₃/TMS): δ = 3.48 [sehr breites s, 12H, N(CH₃)₂], 4.07 (s, 3H, N-CH₃), 7.33 und 7.46 (s, 2H, H-arom.). - C₉H₁₇N₄Cl (216.27): ber. C 49.88 H 7.91 N 25.86 Cl 16.36; gef. C 49.28 H 7.89 N 25.83 Cl 16.47.

Abb. 4. Stereobild (ORTEP-Plot) von 1,1-Bis(dimethylamino)-3-[(1-ethyl-1-trimethylsilyloxy)-1-propyl]-4-nitro-1, 3-butadien (**40a**).

N,*N*,*N*',*N*'-*Tetramethyl-1-methyl-imidazol-2-carboxamidinium-tetraphenylborat* (**10b**)

Eine Lösung von 0.7 g (3.2 mmol) **10a** in 20 ml Acetonitril wird mit einer Lösung von 1.1 g (3.2 mmol) Natriumtetraphenylborat in 20 ml absol. Acetonitril unter Rühren versetzt und dann zum Sieden erhitzt. Das ausgeschiedene Kochsalz wird abfiltriert und das Filtrat im Vak. im Rotationsverdampfer eingeengt. Die ausgefallenen Kristalle werden abgesaugt und im Ölpumpenvakuum getrocknet. Man erhält 1.4 g (88%) **10b**, weiße Kristalle mit Schmp. 245 °C. – ¹H-NMR (60 MHz, d₆-DMSO/TMS): $\delta = 2.48$ (s, 3H, N-CH₃), 2.53 [sehr breites s, 12H, N(CH₃)₂], 6.6-7.4 (m, 22H, H-arom.). – C₃₃H₃₇N₄B (500.47): ber. C 79.19 H 7.45 N 11.20; gef. C 79.16 H 7.50 N 11.43.

Kondensation der Orthoamide **2a** - j mit CH₂-aciden Verbindungen – Allgemeine Vorschrift

Zu 15 - 50 mmol der CH_2 -aciden Verbindung in 25 ml absol. Tetrahydrofuran bzw. absol. Diethylether lässt man innerhalb 15 - 20 min unter Rühren bei 20 °C eine Lösung äquimolarer Mengen (15 - 50 mmol) des Orthoamids in 25 ml absol. Tetrahydrofuran bzw. absol. Diethylether tropfen.

Variante A: Es wird mehrere Stunden unter Feuchtigkeitsausschluss bei R. T. gerührt.

Variante B: Es wird bei Feuchtigkeitsausschluss mehrere Stunden unter Rühren zum Rückfluss erhitzt. Danach wird das Lösungsmittel bei *ca.* 15 Torr im Rotationsverdampfer entfernt. Feste Produkte werden abfiltriert und umkristallisiert (Aufarbeitung A); flüssige oder schlecht kristallisierende Produkte werden bei *ca.* 10^{-3} Torr fraktionierend destilliert und gegebenenfalls nach dem Erstarren umkristallisiert (Aufarbeitung B) – Einzelheiten siehe Tab. 1.

Umsetzung von 2a mit Cyclohexanon

5.7 g (26 mmol) **2a** und 2.5 g (26 mmol) Cyclohexanon werden nach der allgem. Vorschrift, Variante B, 48 h umgesetzt. "Wasserfreies" **11i** ist ein zähes, gelboranges Öl mit Sdp. 122 °C/0.001 Torr, das nach eintägigem Stehen an der Luft unter Wasseraufnahme zu farblosen Kristallen erstarrt, die aus Ethylacetat umkristallisiert werden – Daten siehe Tab. 1.

Versuch zur Umwandlung von 11f in 2-Phenylindol (21)

Zu einer Lösung von 1.3 g (4.8 mmol) **11f** in 60 ml Tetrahydrofuran / Ethanol (1:1) gibt man portionsweise unter Rühren eine Lösung von 16 g (92 mmol) Natriumdithionit in 40 ml Wasser. Nach 25 min Erhitzen unter Rückfluss werden die Lösungsmittel bei *ca.* 15 Torr im Rotationsverdampfer entfernt. Der Rückstand wird zweimal mit je 50 ml Diethylether extrahiert. Die vereinigten Etherphasen werden eingedampft, das zurückbleibende bräunliche Öl kristallisiert beim Anreiben. Das

Abb. 5. Stereobild (ORTEP-Plot) von 2-Cyan-5,5-bis(dimethylamino)-3-[(1-ethyl-1-trimethylsilyloxy)-1-propyl]-2,4-pentadiensäureethylester (**40b**).

Abb. 6. Stereobild (ORTEP-Plot) von 5,5-Bis(dimethylamino)-2,3-diphenyl-2,4-pentadiennitril (42).

Rohprodukt liefert, aus Ethanol umkristallisiert, 0.7 g (60%) (2-Nitrophenylmethyl)-phenylketon (**22**) als gelbe Kristalle mit Schmp. 77 °C [Lit. [27]: Schmp. 75 - 77 °C]. – ¹H-NMR (60 MHz, CDCl₃/TMS): δ = 4.71

(s, 2H, CH₂), 7.2-8.3 (m, 9H, ArH) – IR (KBr): ν = 1520 und 1360 cm⁻¹ (NO₂), 1685 (CO). – C₁₄H₁₁NO₃ (241.24): ber. C 69.70 H 4.59 N 5.80; gef. C 69.62 H 4.60 N 5.70.

Umsetzung von 2c mit Acetessigsäuremethylester (23a)

Bei der Umsetzung von 5.5 g (24 mmol) **2c** mit 2.8 g (24 mmol) Acetessigsäuremethylester (allgemeine Vorschrift / Variante A, 16 h) erhält man nach destillativer Aufarbeitung 3.5 g eines gelben Öls mit Sdp. 70 - 73 °C / 0.001 Torr, aus dem sich nach zweiwöchigem Stehen bei 0 - 5 °C Kristalle abscheiden, die abgesaugt werden: Ausbeute: 0.5 g (13%) Thiophen-2-carbonsäure-dimethylamid (**25b**) mit Schmp. 42 °C [Lit. [28]: Schmp. 44 °C]. – C₇H₉NOS (155.15): ber. C 54.19 H 5.85 N 9.03 S 20.63; gef. C 54.29 H 5.88 N 9.08 S 20.15. Das ¹H-NMR-Spektrum des Filtrats zeigt, dass ein Gemisch aus **25b** und 3-Dimethylamino-crotonsäuremethylester (**24a**) vorliegt.

Umsetzung von 2d mit 1-Nitropropan

5.6 g (25 mmol) **2d** werden mit 2.2 g (25 mmol) 1-Nitropropan nach der allgemeinen Vorschrift / Variante A, 16 h umgesetzt. Der im Verlauf der Reaktion gebildete weiße Niederschlag wird abgesaugt. Nach Umkristallisieren aus absol. Acetonitril erhält man 2.8 g (49%) *N*,*N*,*N*'.1-Pentamethylpyrrol-2-carboxamidinium-nitrit (**27a**) mit Schmp. 188 - 189 °C. Mit Lunges Reagenz lassen sich in einer wässrigen Lösung von **27a** Nitritionen nachweisen. – ¹H-NMR (60 MHz, CDCl₃/TMS): δ = 3.25 [sehr breites s, 12H, N(CH₃)₂], 3.70 (s, 3H, N-CH₃), 6.1 - 7.1 (m, 3H, H-arom.). – C₁₀H₁₈N₄O₂ (226.28): ber. C 53.08 H 8.02 N 24.76; gef. C 53.19 H 8.04 N 24.90.

N,N,N'N'-1-Pentamethylpyrrol-2-carboxamidiniumtetraphenylborat (**27b**)

Lösungen von 0.1 g (0.4 mmol) des Amidiniumsalzes **27a** und 0.15 g (0.44 mmol) Natriumtetraphenylborat in je 10 ml absol. Acetonitril werden unter Rühren gemischt, wobei Natriumnitrit ausfällt. Man erhitzt zum Sieden und saugt nach dem Abkühlen auf R. T. das Natriumnitrit ab. Das Filtrat wird weitgehend eingeengt. Die ausgefallenen Kristalle werden abgesaugt, mit Ether gewaschen und getrocknet. Man erhält weiße Kristalle mit Schmp. 236 °C. – ¹H-NMR (60 MHz, CD₃CN/TMS): δ = 3.05 [sehr breites s, 12H, N(CH₃)₂], 3.53 (s, 3H, N-CH₃), 6.2-7.5 (m, 23H, C₆H₅ und H-aromat.). – C₃₄H₃₈N₃B (499.48): ber. C 81.75 H 7.67 N 8.41; gef. C 81.64 H 7.72 N 8.61.

Umsetzung von 2g mit Benzylcyanid

3.4 g (16 mmol) **2g** werden mit 1.8 g (16 mmol) Benzylcyanid nach der allgemeinen Vorschrift / Variante B 2 h umgesetzt. Durch Destillation bei *ca*. 10^{-3} Torr erhält man 3.0 g (66%) 3,5-Bis(dimethylamino)-4-ethoxy-2phenyl-2-pentennitril (**30**) als ein deutlich aminartig riechendes, gelbes Öl mit Sdp. 118 - 120 °C / 0.001 Torr; $n_D^{20} = 1.5163. - IR$ (kapillarer Film): $\tilde{\nu} = 2250 \text{ cm}^{-1}$ (C \equiv N), 1642 (C=C). - ¹H-NMR (60 MHz, CDCl₃/TMS): $\delta = 1.20$ (t, J = 7 Hz, 3H, CH₂-CH₃), 2.47 und 2.52 [s, 12H, N(CH₃)₂], 2.6 - 2.9 (m, 2H, -CH₂-N), 3.48 (q, J =7 Hz, 2H, O-CH₂-CH₃), 4.0 (t, J = 7 Hz, 1H, O-CH-), 7.0 - 7.4 (m, 5H, C₆H₅). - C₁₇H₂₅N₃O (287.39): ber. C 71.04 H 8.77 N 14.62; gef. C 71.24 H 8.83 N 14.60.

Umsetzung von 2i mit Benzylcyanid

4.00 g (17.6 mmol) **2i** werden bei Feuchtigkeitsausschluss mit 2.06 g (17.6 mmol) Benzylcyanid in Tetrahydrofuran 2 h unter Rückfluss erhitzt und anschließend 14 h bei 20 °C gerührt. Das Lösungsmittel wird im Vak. entfernt. Der Rückstand wird mit Ether versetzt. Nach längerem Stehen bilden sich Kristalle, die abgesaugt werden. Ausb.: 2.30 g (44%) 3-Dimethylamino-3-(3-dimethylamino-tetrahydropyran-2-yl)-2-phenyl-acrylnitril (**32**), schwachgelbe hygroskopische Kristalle mit Schmp. 87 °C. – IR (kapillarer Film): $\tilde{\nu} = 2258 \text{ cm}^{-1} \text{ (C} \equiv \text{N})$, 1658, 1620 (C=C). – ¹H-NMR (80 MHz, CDCl₃/TMS): $\delta = 1.1-2.5 \text{ [m, 4H, (CH₂)₂], 2.67 [s, 12H, N(CH₃)₂], 2.8-$ 3.6 (m, 2H, OCH₂), 4.0 - 4.3 (m, 2H, OCH, NCH), 7.3 (s,5H, ArH). – C₁₈H₂₅N₃O (299.40): ber. C 72.20 H 8.42 N14.04; gef. C 72.36 H 8.46 N 14.08.

Die Ketenaminale **35**, **36**, **37**, **38** wurden nach der allgemeinen Vorschrift (Kondensation der Orthoamide **2a-j** mit methylenaktiven Verbindungen) aus den Orthoamiden **1b**, **1c**, **1d**, **1e** und CH_2 -aciden Verbindungen hergestellt. Einzelheiten siehe Tabn. 3 - 8.

3-(4-Chlorphenyl)-1,1-bis(dimethylamino)-4-nitro-1,3butadien (**39a**)

Nach der allgemeinen Vorschrift werden 5.92 g (21.2 mmol) **1p** in 20 ml absol. Tetrahydrofuran mit 1.30 g (21.2 mmol) Nitromethan in 10 ml absol. Tetrahydrofuran 15 h bei 20 °C umgesetzt (Zugabe bei 0 °C). Aufarbeitung A. Ausb.: 4.95 g (79%) **39a**; aus Essigsäureethylester rubinrote Kristalle mit Schmp. 164 °C (Zers.). – ¹H-NMR (250 MHz, CDCl₃/TMS): δ = 2.74 (s, 1H, CH=C-N) 3.07 [breites s, 12H, N(CH₃)₂], 6.72 (s, 2H, O₂N-CH=), 7.1 - 7.6 (m, 4H, ArH). – C₁₄H₁₈N₃O₂Cl (295.77): ber. C 56.85 H 6.13 N 14.21 Cl 11.91; gef. C 56.90 H 6.12 N 14.32 Cl 11.96.

3-(4-Chlorphenyl)-2-cyan-5,5-bis(dimethylamino)-2,4pentadiensäureethylester (**39b**)

Zu 2.04 g (17.9 mmol) Cyanessigsäureethylester in 10 ml absol. Ethanol lässt man bei 20 °C unter Rühren 5.00 g (17.9 mmol) **1p** in 20 ml absol. Ethanol, der 3 Tropfen Triethylamin enthält, zutropfen. Danach wird

	37a	39a	39b ^a	40a	40b ^a	42
Empirische Formel	C ₁₃ H ₁₈ N ₄	C ₁₄ H ₁₈ ClN ₃ O ₂	C ₁₈ H ₂₂ ClN ₃ O ₂	C ₁₆ H ₃₃ N ₃ O ₃ Si	C ₂₀ H ₃₇ N ₃ O ₃ Si	C ₂₁ H ₂₃ N ₃
Molare Masse	230.31	295.76	347.84	343.54	395.62	317.42
Temperatur [K]	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
Kristallgröße [mm]	$0.6 \times 0.3 \times 0.25$	$0.7 \times 0.5 \times 0.4$	$0.6 \times 0.5 \times 0.3$	$0.9 \times 0.2 \times 0.15$	$2.0 \times 1.0 \times 0.7$	$0.5 \times 0.3 \times 0.25$
Kristallsystem	monoklin	orthorhomb.	triklin	triklin	orthorhomb.	monoklin
Raumgruppe $P2_1/c$	$P2_12_12_11$	<i>P</i> 1	<i>P</i> 1	Pna2	$P2_1/n$	
$a\left[\dot{A}\right]$	9.6363(6)	10.654(9)	9.8389(6)	6.7250(16)	14.780(2)	10.587(2)
<i>b</i> [Å]	16.3837(6)	11.19197(7)	10.0950(5)	8.239(3)	12.319(2)	9.001(2)
<i>c</i> [Å]	9.8314(6)	12.456(9)	11.5722(6)	19.622(6)	13.283(2)	19.048(4)
α [°]	90	90	69.649(5)	92.44(3)	90	90
β[°]	119.017(4)	90	68.819(4)	99.09(3)	90	90.73(2)
γ [°]	90	90	62.700(4)	108.42(3)	90	90
Volumen [Å ³]	1357.33(13)	1486.0(19)	929.01(9)	1013.6(6)	2418.7(6)	1815.0(7)
Ζ	4	4	2	2	4	4
$\rho_{\rm ber} [\rm g cm^{-3}]$	1.127	1.322	1.243	1.126	1.086	1.162
$\mu [{\rm mm}^{-1}]$	0.552 ^b	0.262 ^c	1.937 ^b	1.156 ^b	0.119 ^c	0.069 ^c
F(000)	496	624	368	376	864	680
θ -Bereich [°]	5.25 - 67.97	2.45 - 27.00	4.20 - 67.98	2.29 - 64.98	2.15 - 32.50	2.14 - 24.99
Index-Bereiche	$-11 \le h \le 1$	$0 \le h \le 13$	$-11 \le h \le 1$	$0 \le h \le 7$	$0 \le h \le 22$	$0 \le h \le 12$
	$-19 \le k \le 1$	$-10 \le k \le 14$	$-11 \le k \le 10$	$-9 \le k \le 9$	$0 \le k \le -18$	$0 \le k \le 10$
	$-10 \le l \le 11$	$-11 \le l \le 15$	$-13 \le 1 \le 13$	$-23 \le l \le 22$	$0 \le 1 \le 20$	$-22 \le l \le 22$
Beob. Reflexe	2938	3913	3646	3698	4545	3387
Unabh. Reflexe	2330	2410	3103	3371	4545	3200
Verfeinerung	d	d	d	d	d	d
Daten	2252	2410	3032	3371	4984	3200
Unterdrückte Werte	0	0	0	0	1	0
Parameter	155	182	218	209	245	218
GooF an F^2	1.102	1.103	1.066	1.013	1.076	1.167
<i>R</i> -Werte für	R1 = 0.0624	R1 = 0.0827	$R \ 1 = 0.0662$	R1 = 0.0633	R1 = 0.0530	R1 = 0.0901
$[I > 2\sigma(I)]$	wR2 = 0.1874	wR2 = 0.1831	wR2 = 0.1870	wR2 = 0.1711	wR2 = 0.1427	wR2 = 0.1590
<i>R</i> -Werte (alle Daten)	R1 = 0.0688	R1 = 0.1160	R1 = 0.0795	R1 = 0.0893	R1 = 0.0646	R1 = 0.1299
	wR2 = 0.2025	wR2 = 0.1981	wR2 = 0.2059	wR2 = 0.1944	wR2 = 0.1596	wR2 = 0.1719
RestelDichte [e $Å^{-3}$]	0.256, -0.175	0.317, -0.283	0.360, -0.331	0.305, -0.286	0.203, -0.200	0.228, -0.178

Tab. 11. Kristallographische Daten für die Verbindungen 37a, 39a, 39b, 40a, 40b, 42.

^a Die Methylgruppen am Stickstoff sind rotationsfehlgeordnet. ^b (Cu-K_{α}-Strahlung: $\lambda = 1.54178$ Å). ^c (Mo-K_{α}-Strahlung: $\lambda = 0.71073$ Å). ^d Nach der Methode der kleinsten Fehlerquadrate ohne Einschränkungen gegen das Quadrat der Strukturfaktoren.

unter Rühren 24 h unter Rückfluss erhitzt, im Rotationsverdampfer eingeengt und der Rückstand aus Essigester umkristallisiert. Ausb.: 5.11 g (82%) **39b**, gelbe Kristalle mit Schmp. 187 °C (Zers.). – ¹H-NMR (250 MHz, CDCl₃/TMS): δ = 1.23 und 1.32 (je t, *J* = 7.0 Hz, 3H, OCH₂-CH₃), 2.65 und 3.04 [s, 12H, N(CH₃)₂], 4.06 und 4.22 (q, *J* = 7.0 Hz, 2H, OCH₂-CH₃), 4.44 und 6.24 (s, 1H, N-C=CH), 7.2 - 7.5 (m, 4H, ArH). – ¹³C-NMR (CDCl₃ / TMS): δ = 14.61 und 14.72 (CH₂-CH₃), 41.39 [N(CH₃)₂], 59.14 und 59.39 (O-CH₂), 92.90 (C-2), 123.16 (C≡N), 128.05, 130.68, 135.02, 139.00 (Ar-C), 140.90 (C-4), 162.25 (C-3), 167.63 (CO), 170.12 (C-5). - IR (KBr): $\tilde{\nu}$ = 2140 (C≡N), 1680 (CO). – C₁₈H₂₂N₃O₂Cl (347.84): ber. C 62.15 H 6.37 N 12.08 Cl 10.19; gef. C 62.31 H 6.42 N 12.15 Cl 10.10.

1,1-Bis(dimethylamino)-3-[1-ethyl-1-trimethylsilyloxy-propyl]-4-nitro-1,3-butadien (**40a**)

Zu 4.57 g (14.0 mmol) **1s** in 20 ml absol. Tetrahydrofuran lässt man bei Eiskühlung unter Rühren und unter Feuchtigkeitsausschluss 0.86 g (14.0 mmol) Nitromethan in 10 ml absol. Tetrahydrofuran tropfen. Nach 15-stdg. Rühren bei 20 °C wird der orangerote Niederschlag abgesaugt und aus Tetrahydrofuran umkristallisiert. Ausb.: 4.21 g (88%) **40a**, orangefarbene Kristalle mit Schmp. 130 °C. – ¹H-NMR (250 MHz, CDCl₃ / TMS_{extern}): δ = 0.09 [s, 9H, (CH₃)₃Si], 0.70 (t, *J* = 7.3 Hz, 6H, CH₂-*CH*₃), 1.5 - 1.6 und 1.7 - 1.8 (m, je 2H, CH₃-*CH*₂), 3.02 [s, 12H, N(CH₃)₂], 5.30 (s, 1H, *H*C=C-N), 6.59 (s, 1H, O₂N-CH=). – ¹³C-NMR (CDCl₃/TMS_{extern}): δ = 2.08 [(CH₃)- $\begin{array}{l} Si], 8.23 \ (CH_3-CH_2), 34.83 \ (CH_3-CH_2), 41.72 \ [N(CH_3)_2], \\ 82.41 \ (C_2H_5-C), \ 101.82 \ (C-4), \ 108.42 \ (C-2), \ 154.66 \ (C-3), \ 173.19 \ (C-1). - C_{16}H_{33}N_3O_3Si \ (343.54): \ \text{ber. C} \ 55.94 \\ H \ 9.68 \ N \ 12.23; \ \text{gef. C} \ 56.16 \ H \ 9.71 \ N \ 12.07. \end{array}$

2-Cyan-5,5-bis(dimethylamino)-3-[1-ethyl-1-trimethylsilyloxylpropyl]-2,4-pentadiensäureethylester (**40b**)

Wie vorstehend beschrieben werden 4.91 g (15.0 mmol) 1s in 20 ml absol. Tetrahydrofuran mit 1.67 g (15.0 mmol) Cyanessigsäureethylester in 10 ml absol. THF umgesetzt (96 h Rückfluss). Das Lösungsmittel wird bei 15 Torr im Rotationsverdampfer entfernt und der orangerote Feststoff aus Essigester umkristallisiert. Ausb.: 5.49 g (93%) 40b, orangefarbene Kristalle mit Schmp. 128 °C. – ¹H-NMR (250 MHz, C_6D_6 / TMS_{extern}): $\delta = 0.24$ [s, 9H, (CH₃)₃Si], 1.05 (t, J = 7.3 Hz, 6H, C-CH₂- CH_3), 1.21 (t, J = 7.1 Hz, 3H, CH_3 - CH_2 -O), 1.7 - 1.8 und 2.9 - 3.0 (m, je 2H, CH₃-CH₂-C), 2.53 [s, 12H, N(CH₃)₂], $4.10 (q, J = 7.1 Hz, 2H, CH_3-CH_2-O), 5.41 (s, 1H, =CH).$ $-{}^{13}\text{C-NMR} (C_6 D_6 / \text{TMS}_{\text{extern}}): \delta = 3.10 [(CH_3)_3 \text{Si}], 9.76$ (CH₃-CH₂-C), 15.76 (CH₃-CH₂-O), 35.61 (CH₃-CH₂-C), 41.70 N(CH₃)₂], 59.19 (CH₃-CH₂-O), 63.21 (C-OSi), 85.91 (C-2), 100.79 (C-4), 125.35 (CN), 166.93 (C-3), 169.47 (CO), 173.76 (C-5). – IR (KBr): $\tilde{\nu} = 2130$ (C \equiv N), 1690 cm^{-1} (CO). – $C_{20}H_{37}N_3O_3Si$ (395.62): ber. C 60.72 H 9.43 N 10.62; gef. C 60.92 H 9.42 N 10.63.

1,1,1-Tris(dimethylamino)-4-ethyl-4-trimethylsilyloxyhex-2-in (**1s**)

17.60 g (0.44 mol) Natriumhydrid (60% in Weißöl) werden mit 50 ml absol. Toluol und 30 ml absol. Tetrahydrofuran gewaschen. Das so erhaltene Natriumhydrid und 71.9 g (0.40 mol) N,N,N',N',N''-Hexamethylguanidinium-chlorid (7) werden in 200 ml absol. Tetrahydrofuran suspendiert. Dazu tropft man unter Rühren 73.8 g

- LVII. Mitteilung: G. Ziegler, E. Haug, W. Frey, W. Kantlehner, Z. Naturforsch. 56b, 1178 (2001).
- [2] W. Kantlehner, P. Speh, H. Lehmann, H.-J. Bräuner, Chemiker Ztg. 114, 176 (1990).
- [3] W. Kantlehner, R. Stieglitz, M. Hauber, E. Haug, C. Regele, J. Prakt. Chem. 342, 256 (2000).
- [4] W. Kantlehner, M. Vettel, H. Lehmann, K. Edelmann, R. Stieglitz, J.C. Ivanov, J. Prakt. Chem. 340, 408 (1998).
- [5] Eine Zusammenstellung von Übersichtsartikeln findet sich in [3] unter loc. lit. [2].
- [6] G. Simchen, in H. Böhme, H. G. Viehe (eds): Iminium Salts in Organic Chemistry, Adv. Org. Chem.

(0.40 mol) 3-Ethyl-3-trimethylsilyloxy-1-pentin zu und erhitzt danach 72 h bei Feuchtigkeitsausschluss auf 50-55 °C. Das Unlösliche wird unter Feuchtigkeitsausschluss abfiltriert. Das Filtrat wird im Rotationsverdampfer bei ca. 15 Torr vom Tetrahydrofuran befreit und der Rückstand über eine 30 cm lange Vigreux-Kolonne bei 0.001 Torr fraktionierend destilliert. Ausb.: 122.70 g (94%) 1s, farblose Flüssigkeit mit Sdp. 104 - 105 °C / 0.001 Torr. – ¹H-NMR (250 MHz, C_6D_6 / TMS_{extern}): δ = 0.45 [s, 9H, (CH₃)₃Si], 1.21 (t, J = 7.4 Hz, 6H, CH₂-CH₃), 1.8-1.9 (m, 4H, CH₃-CH₂), 2.66 [s, 18H, N(CH₃)₂]. -¹³C-NMR (C_6D_6/TMS_{extern}): $\delta = 2.86 [(CH_3)_3Si], 9.86 (CH_3-$ CH₂), 37.00 (CH₃-CH₂), 40.77 [N(CH₃)₂], 74.77 (C-4), 82.05 (C-2), 89.52 (C-3), 94.70 (C-1). - C₁₇H₃₇N₃OSi (327.59): ber. C 62.33 H 11.38 N 12.72; gef. C 62.43 H 11.44 N 12.83.

Kristallstrukturanalysen der Verbindungen **37a**, **39a**, **39b**, **40a**, **40b**, **42**

Die Daten für **37a**, **39b**, **40a** wurden mit einem Siemens P4 Vierkreisdiffraktometer im Omega-Scan-Modus (Cu-K_{α}, $\lambda = 1.54178$ Å) gemessen. Entsprechend wurden die Daten für **39a**, **40b**, **42** mit einem Nicolet P3-Diffraktometer im Wyckoff Scan modus ermittelt (Mo-K_{α}, $\lambda = 0.71073$ Å). Die Kristallplättchen wurden hierzu in eine dünnwandige Kapillare eingeklebt. Die Verfeinerung der Daten wurden im "full matrix"-Modus ohne Einschränkungen nach der Methode der kleinsten Fehlerquadrate durchgeführt (SHELXTL-97). Die Resultate finden sich in Tab. 11.

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Cambridge Crystallographic Date Center unter Angabe der Hinterlegungsnummer CCDC 179052 (**37a**), 179053 (**39a**), 179054 (**39b**), 179055 (**40a**), 179056 (**40b**) bzw. 179057 (**42**) angefordert werden; Email: deposit@cede.com.ac.uk

9/2, 393, Wiley & Sons, New York, London, Sidney, Toronto (1979).

- [7] a) T. Severin, D. Schul, P. Adhiteary, Chem. Ber. 102, 2966 (1969); b) F. Eiden, M. Dürr, Arch. Pharm (Weinheim) 312, 708 (1979); c) T. I. Skudarnova, O. A. Furova, N. M. Smirnova, G. M. Chelyheva, T. S. Safonova, Khim-Farm. Zh. 28, 39 (1994); Chem. Abstr. 124, 29695v (1996).
- [8] a) E. Ambach, U. Nagel, W. Beck, Chem. Ber. 116, 659 (1983); b) Y. Lin, M. N. Jennings, D. R. Sliskovic, T. L. Fields, S. A. Lang (Jr.), Synthesis 946 (1998); c) F. Closs, R. Gompper, Angew. Chem. 99, 564 (1987); Angew. Chem. Int. Ed. Engl. 26, 552 (1987).

- [9] a) H. Bredereck, W. Kantlehner, D. Schweizer, Chem. Ber. 104, 3475-3485 (1971); b) C. T. Gokou, M. Chehna, J.-P. Pradere, G, Duguay, L. Poupet, Phosphorus Sulfur 27, 327 (1986).
- [10] L. Brandsma, H. Verkruijsse, Preparative Organometallic Chemistry 1, p. 138, Springer Verlag Berlin (1987)
- [11] D. Shirley, P. Alley, J. Am. Chem. Soc. 79, 4922 (1957).
- [12] P. Jutzi, W. Sakriß, Chem. Ber. 106, 2815 (1973).
- [13] a) D.H. Clemens, W.D. Emmons, J. Am. Chem. Soc. 83, 2588 (1961); b) D.H. Clemens, E.Y. Shropshire, W. D. Emmons, J. Org. Chem. 27, 3664 (1962).
- [14] W. Kantlehner, R. Bauer, H. Bredereck, Liebigs Ann. Chem., 358 (1980).
- [15] W. Kantlehner, H. Lehmann, Th. Stahl, W. Kaim, Chemiker Ztg. 115, 183 (1991).
- [16] Übersicht: H. Böhme, M. Haake, in H. Böhme, H. G. Viehe (eds): Iminium Salts in Organic Chemistry, Adv. Org. Chem. 9/1, p. 123, Wiley & Sons, New York, London, Sidney, Toronto (1976). [17] T. Mukaiyama, Bull. Chem. Soc. Jpn. **39**, 2005
- (1966).

- [18] G. Morel, R. Seux, A. Foucand, Bull. Soc. Chim. Fr. 177 (1976).
- [19] T. Mukaiyama, Bull. Chem. Soc. Japan 38, 2107 (1965).
- [20] S. Tseng, J. W. Epstein, H. Brabander, J. Heterocycl. Chem. 24, 837 (1987).
- [21] Übersichtsartikel: R. D. Clark, D. B. Repke, Heterocycles 22, 195 (1984).
- [22] E. Garcia, I. Fryer, J. Heterocycl. Chem. 11, 219 (1974).
- [23] D. H. R. Barton, G. Hewitt, P. G. Sammes, J. Chem. Soc. C, 16 (1969)
- [24] G. Maas, B. Feith, Synth. Commun. 14, 1073 (1984).
- [25] M. Kiesel, E. Haug, W. Kantlehner, J. Prakt. Chem. 339, 159 (1997)
- [26] B. Tinant, J.-P. Declerq, D. Bouvy, Z. Janousek, H.G. Viehe, J. Chem. Soc. Perkin Trans 2, 911 (1993).
- [27] F. Krönke, I. Vogt, Liebigs Ann. Chem. 589, 26 (1954).
- [28] M. Davis, R. Lakhan, B. Ternai, J. Org. Chem. 41, 3591 (1976).