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N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4] thiadiazine-

7-sulfonamide 1,1-dioxide: An efficient and homogeneous catalyst 

for one-pot synthesis of 4H-pyran , pyranopyrazole and 

pyrazolo[1,2-b] phthalazine derivatives under aqueous media  
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a
 Mohammad Ali Zolfigol,*

a
 Fatemeh Karimitabar,

a
 Iraj Nikokar

b
 and Ahmad 

Reza Moosavi-Zare
c 

N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4] thiadiazine-7-sulfonamide 1,1-

dioxide (DCDBTSD) as a highly efficient and homogeneous catalyst was successfully 

applied for the synthesis of 4H-pyran , pyranopyrazole and pyrazolo[1,2-b] phthalazine 

derivatives by the one-pot multi-component reaction (MCR) in water. The described 

method has some advantages such as mild and neutral reaction media, high yields, short 

reaction times, cleaner and easier reaction profiles and compliance with green chemistry 

protocols. 
 

Introduction  
Water as an available, inexpensive, nonflammable, nonhazardous, 

nontoxic, uniquely redoxstable solvent in enormous quantities, can 

accelerate the rate of organic reactions even for water-insoluble 

reactants as well as product isolation by straightforward filtration.
1 

Thus, the development of synthetically useful and convergent 

multicomponent reactions (MCRs) using water as a green reaction 

medium is more demand.
1
 Multi-component reactions (MCRs) play 

an important role in combinatorial chemistry because of the ability 

to preparation of target compounds with greater efficiency and 

atomic economy by generating structural complexity in a single step 

from three or more reactants.
2 

The preparation of tetrahydrobenzo[b]pyrans are important due to 

their significant anti-coagulant, diuretic, spasmolytic, anti-cancer, 

antihypertensive, calcium antagonists spasmolytic, pharmaceuticals 

and anti-anaphylactic properties.
3
 Several methods have been 

introduced for the synthesis of tetrahydro-4H-benzopyran 

derivatives using different catalyst such as [cmmim]Br,
4a

 

hexadecyldimethylbenzyl ammonium bromide (HDMBAB),
4b

 

Na2SeO4,
4c

 [Pyridine–SO3H]Cl,
4d

 magnesium oxide,
4e

 (S)-proline.
4f

 

Pyranopyrazoles are fused heterocyclic compounds, which are 

important because of their biological properties such as fungicidal,
5a

 

bactericidal,
5b

 vasodilatory activities
5c

 and they act as anticancer 

agents.
5d

 Some catalysts have been used to promote this reaction 

such as imidazole,
6
 [Dsim]AlCl4,

7a
 Silicotungstic acid,

7b
 L-Proline,

7c
 

isonicotinic acid.
7d

  

2H-indazolo[2,1-b]phthalazine-triones, as N-heterocycles 

compounds, show biological and pharmacological activities such as 

anticonvulsant, cardiotonic, and vasorelaxant.
8
 Various catalysts 

including dodecylphosphonic acid,
9a

 Ce(SO4)2,
9b

 heteropolyacids,
9c

 

Mg(HSO4)2,
9d

 silica sulfuric acid
9e

 and p-TSA
9f

 have been used for 

the synthesis of these compounds. 

However, some reported methods for the synthesis of mentioned 

compounds suffer from one or more of disadvantages such as using 

toxic, corrosive, expensive and/or large amount of catalysts, long 

reaction time, toxic and corrosive solvents and strong acidic media. 

Because of the importance of these compounds, the investigation 

for a milder, more eco-friendly under green, neutral and aqueous 

conditions and faster method with higher yields is still needed. 

A large group of compounds generically called N-halo reagents that 

are used as potentially reactive intermediates. These compounds 

are widely used in organic synthesis and in the chemistry of natural 

compounds. Some specific features of N-halo reagents such as high 

activity of the N-X bond and the various modes of splitting of this 

bond cause their wide application in organic transformations.
10-12

 

Having above facts and in continuation of our previous studies on 

the applications of N-halo reagents in organic synthesis,
13–21

 we 

have recently used N,2-dibromo-6-chloro-3,4-dihydro-2H-

benzo[e][1,2,4]thiadiazine-7-sulfonamide 1,1-dioxide (DCDBTSD) 

(Figure 1) as an efficient and homogeneous catalyst for the 

synthesis of 4H-pyran and pyrazolo[1,2-b] phthalazine and 

pyranopyrazole derivatives. 

 

 

 

 

Figure 1. The structure of N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo [e] 

[1,2,4] thiadiazine-7-sulfonamide 1,1-dioxide (DCDBTSD). 

Results and discussion 
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N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-7-

sulfonamide 1,1-dioxide (DCDBTSD) was prepared via a simple 

procedure and fully characterized by IR, UV, 
1
H and 

13
C NMR, XRD, 

TG/DTG as well as mass spectra and used as an efficient catalyst for 

the preparation of 4,40-(arylmethylene)-bis(3-methyl-1-phenyl-1H-

pyrazol-5-ol)s via one-pot pseudo five component condensation 

reaction of phenylhydrazine, acetoacetate derivatives and 

arylaldehydes.
13

 

In order to expand the application, efficacy and the scope of 

DCDBTSD in the synthesis of heterocyclic compound, initially, the 

synthesis of 4H- pyran derivatives via the one-pot condensation 

reaction of reactive α-methylene group with aromatic aldehydes 

and malononitrile was studied. 

In order to optimize the reaction conditions, the reaction of 4-

hydroxycoumarine (1) (1 mmol), 4-nitrobenzaldehyde (2) (1 mmol) 

and malononitrile (3) (1.2 mmol) as model reaction was 

investigated in the variation of reaction parameters, such as 

catalyst quantity, reaction temperature and kinds of solvents. The 

results are summarized in Table 1. 

As it is shown at Table 1, 10 mol% of DCDBTSD (0.0455 g) in water 

was the best reaction condition for the described reaction (Table 1, 

entry 3). Notably, no product was observed in the absence of 

catalyst (Table 1, entry 1) which further requires the use of 

DCDBTSD in this transformation. To optimize the reaction 

temperature, we also performed several experiments in water at 

25, 60, and 80 °C. It was found that the excellent yield of product 

was achieved at 80 °C (Table 1, entry 3). 

Also, the reaction could be efficiently done in all the tested solvents 

(Table 1, entries 3 and 7-9). The reaction using water as the solvent 

lead to higher yields and shorter reaction time than those using 

methanol, ethanol and acetonitrile as solvent. Thus, water, which 

additionally is an available, low-cost, safe, harmless, was chosen as 

the solvent for all further reactions. 

Table 1. Optimization of reaction conditions for the preparation of 4H-pyran 

derivatives.
a
 

Entry Amount of  

catalyst/mol% 
 

Solvent Temp. Time 

(min) 

Yelid
b
 

1 - H2O 80 240 Trace 

2 5 H2O 80 70 82 

3 10 H2O 80 30 88 

4 20 H2O 80 30 88 

5 10 H2O 60 60 79 

6 10 H2O r.t 150 40 

7 10 MeOH 80 60 70 

8 10 EtOH 80 40 85 

9 10 CH3CN 80 60 78 

10 10 neat 80 60 68 

a
Model reactions: 4-hydroxycoumarine 1 (1 mmol), 4-nitrobenzaldehyde 2 

(1 mmol), malononitrile 3 (1 mmol) and DCDBTSD.  
b 

Isolated yield. 

With the optimized conditions in hand, to outline this approach, the 

scope and generality of this protocol was next examined by 

employing a good range of aromatic aldehydes possessing a 

reactive α-methylene group and malononitrile (Scheme 1).  

All the reactions proceeded efficiently under the optimized 

conditions (Tables 2 and 3). 

 

 

 

 

 

Scheme 1. The synthesis of 4H-Pyrans. 

Table 2. The preparation of 4H-pyran derivatives by the reaction of 

chroman-2,4-dione, aldehydes and malononitrile using DCDBTSD.  

     

Entry Product Yield
a
 Time 

(min) 

M.p. (Lit)
Ref

 

 

 

1 

 

 

 

95 

 

 

20 

 

 

263–265 (262-264)
22

 

 

 

 

2 

 

 

 

 

 

90 

 

 

 

30 

 

 

 

260–262 (258-260)
22

 

 

 

 

3 

 

 

 

 

85 

 

 

 

25 

 

 

 

286-288(289–290)
23

 

 

 

 

4 

 

 

 

 

 

82 

 

 

 

15 

 

 

 

250–252 (247-249)
23

 

 

 

 

5 

 

 

 

 

80 

 

 

 

 

40 

 

 

 

257–259 (256-258)
22

 

 

 

 

6 

 

 

 

 

 

 

 

85 

 

 

 

60 

 

 

 

269-271(266–268)
14

 

 

 

 

7 

 

 

 

 

 

85 

 

 

 

 

30 

 

 

 

253-254 (251-252)
14

 

 

 

 

9 

 

 

 

 

80 

 

 

 

 

 

80 

 

 

 

223-224 (223-224)
24

 

a 
Isolated yield. 

 

 
Table 3. The preparation of 4H-pyran derivatives by the reaction of 

naphthalen-1-ol, aldehydes and malononitrile using DCDBTSD. 
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Entry Product Yield
a
 Time 

(min) 

M.p. (Lit)
Ref

 

 

 

 

1 
 

 

 

 

 

85 

 

 

 

20 

 

 

 

 

247–248 (247-248)
24

 

 

 

 

2 
 

 

 

 

92 

 

 

 

30 

 

 

 

 

 

 

246–248 (243-244)
24

 

 

 

3 

 

 

 

 

86 

 

 

 

 

 

35 

 

 

 

207–209 (207-209)
24
 

 

 

 

4 

 

 

 

91 

 

 

15 

 

 

211–212(213-214)
24

 

 

 

 

5 

 

 

 

 

 

83 

 

 

 

25 

 

 

 

258–261 (259-260)
25

 

 

 

6 

 

O

NH2

CN

OH

4n

OEt

 

 

 

87 

 

 

25 

 

 

225–227 (222-223)
24

 

 

 

 

7 

 

4o

O

NC
CN

NH2

 

 

 

 

79 

 

 

 

25 

 

 

 

280–282(284-286) 
25

 

 

 

 

8 

 

4p

O

Cl
CN

NH2

 

 

 

90 

 

 

 

20 

 

 

 

236-239 (237-238)
26

 

 

 

9 

 

O

CN

NH2
4q

 

 

 

 

85 

 

 

 

40 

 

 

 

290-292(291-292)
13b

 

 

 

 

10 

 

 

O

4r

Cl
CN

NH2

 

 

 

 

85 

 

 

 

22 

 

 

 

216–218 (214-215)
24

 

 

 

 

11 

 

4s

O

CN

NH2

O2N

 

 

 

92 

 

 

30 

 

 

186–188 (187-189)
27

 

 

 

 

12 

 

4t

O

CN

NH2

Br

 

 

 

 

91 

 

 

 

25 

 

 

 

238–240 (238-240)
27

 

 

 

 

13 

 

4u

O

CN

NH2

 

 

 

 

84 

 

 

 

30 

 

 

 

271-274(273-275)
14

 

a
 Isolated yield. 

Aromatic aldehydes with bearing both electron-withdrawing 

and electron-donating groups in ortho, meta and para 

positions of the aromatic ring were converted into favorite 

products in good to excellent yields.  

Moreover, the presented methodology was used successfully 

for various carbonyl compounds which have a reactive  

α-methylene group, and corresponding desired products were 

obtained in good to excellent yields without observing any by-

products. 

We also compared the result of the present DCDBTSD with 

other catalysts reported in the literature such as 

triethylbenzylammonium Chloride (TEBA), PEI@Si–MNPs, 

Hexamethylenetetramine (HMT) and TiO2 nanowires (TiO2 

NWs) for preparation of 4H-Pyran derivatives (Table 4). Table 4 

obviously demonstrates that DCDBTSD is effective catalysts in 

terms of reaction time and yield of obtained product relative 

to other reported catalysts. 
Table 4. Comparison of the results of with other catalysts reported in 

literature with DCDBTSD in the synthesis of 4H-Pyran derivatives. 

Entry Catalyst Conditions Time 

(min) 

Yield
a
 Ref.  

1 TEBA H2O, 90 
o
C 600 88 28  

2 PEI@Si–MNPs H2O, Reflux 50 96 3  

3 HMT EtOH, Reflux 40 95 23  

4 TiO2 NWs EtOH/H2O(1/1), Reflux 40 90 29  

5 DCDBTSD H2O, 80 
o
C 20 95 -

b 
 

a
 Yields refer to isolated pure products. Based on the reaction of 4-

hydroxycoumarine 1 (1 mmol), 3-nitrobenzaldehyde 2 (1 mmol), 

malonitrile 3 (1 mmol) in corresponding condition. 
b
 The presented work. 

OH

Ar

CN

CN

(DCDBTSD) 10%

Water, 80 oC

O

Ar

CN

NH2

4i-n

O NH2

CN

4o-u

OH

OH

or

Ar

or
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Indole holds a noticeable ability among the various 

heterocyclic systems because it is present as a core unit in a 

number of compounds having a wide spectrum of biological 

activates.
30

 

 It has been reported that the spiro-oxindole heterocyclic 

framework is an important structural motif in biologically 

relevant compounds as natural products and pharmaceuticals, 

e.g., surugatoxin, horsfiline, spirotryprostatin A and B, 

elacomine, gelsemine, alstonisine and strychnofoline.
31-37

 

The development of efficient and convenient syntheses of 

novel bioactive organic compounds, such as spirooxindoles is 

an important current research area, with MCRs considered the 

most efficient method of preparing spirooxindoles.
38

 To 

further expand the scope of the reaction, it was meaningful 

thought to replace aromatic aldehydes with N-alkyl isatin 

derivatives in order to show the versatility of this protocol 

(Scheme 2). 

 
Scheme 2. Synthesis of spiro[2-amino-4H-pyran-oxindoles]. 

 
 

 

At first, N-alkyl isatin derivatives were prepared by the 

reaction of isatin with K2CO3 and alkyl halide(Scheme 3).
39 

 

To our surprise, N-alkyl isatin derivatives were easily 

transformed into the desired products in excellent yields 

(Table 5). 

Table 5. The preparation of spiro[2-amino-4H-pyran-oxindole] 

derivatives.  

a 
Isolated yield. 

Heterocycles containing pyrazole rings are important target 

compounds in synthetic and medicinal chemistry because the 

ring is a key moiety in various biologically active compounds.
38

 

Pyrazole derivatives have been widely studied in the 

development of insecticides, acaricides, fungicides, herbicides, 

dyes, and reagents because of their efficiency, low toxicity, 

unique reaction mechanisms, safety, lack of cross-resistance, 

and other characteristics.
38, 41

 Being inspired by the above 

results and also in continuation of our interests to extend the 

scope of the N-bromo sulfonamide reagent in the synthesis of 

heterocyclic compounds, we investigated the three-

component reaction of aromatic aldehydes possessing a 3-

methyl-1-phenyl-2-pyrazolin-5-one and molonitrile in the 

present of DCDMTSD. (Scheme 3).   

 

 

 

 

 

Scheme 3. Synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles. 

As can be seen from Table 6, for precursors bearing either 

electron-donating or electron-withdrawing, the reactions all 

proceeded very smoothly to provide the desired products. The 

property of the electronic character of substituents on the 

aromatic ring of the aldehyde did not exert an obvious effect 

on the reaction yields. All desired products were obtained in 

high yields and in short reaction times. 

Table 6. The preparation of 1,4-dihydropyrano[2,3-c]pyrazole 

derivatives. 

     

Entry Product Yield
a
 Time (min) 

 

M.p. (Lit)
Ref

 

 

 

1 

 

 

 

 

80 

 

 

 

 

25 

 

 

 

198–200  

(197–199)
42a

 

 

 

 

2 

 

 

 

 

 

92 

 

 

 

 

25 

 

 

 

 

230–232 

 (233–235)
42b

 

 

 

 

3 

 

 

 

 

 

95 

 

 

 

 

20 

 

 

 

194–196 

 (192–195)
42a 

a 
Isolated yield. 

     

Entry Structure Yield
a
 Time 

(min) 

M.p. (Lit)
Ref

 

 

1 

 

 

95 

 

40 

 

296-298  

(303)
40a

 

 

2 

 

 

90 

 

45 

 

 

277-279  

(278-

280)
40b

  

 

3 

 

 

95 

 

30 

 

270-272 

 

4 

 

 

95 

 

35 

 

268-270 

H2O, 80
oC

(DCDMTSD) 10 %

Ar

O

H

CN

CN

N
N

O

O NH2

CN

N
N

+

Ar

2 37 8a-k

+
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Table 6. Continued. 

Entry Product Yield
a
 Time (min) 

 

M.p. (Lit)
Ref

 

 

 

 

4 

 

 

 

 

83 

 

 

 

30 

 

 

 

 173-175  

(170-171)
43

 

 

 

 

5 

 

 

 

 

 

79 

 

 

 

30 

 

 

 

173-175  

(172–174)
29

 

 

 

 

6 

 

 

 

 

 

80 

 

 

 

35 

 

 

 

159-162 (159-

160)
43

 

 

 

 

7 

 

 

 

 

88 

 

 

 

20 

 

 

 

184–185  

(184–185)
42b

 

 

 

 

8 

 

 

 

 

78 

 

 

 

30 

 

 

 

183-185  

(188–191)
29

 

 

 

 

9 

 

 

 

 

 

 

80 

 

 

 

 

40 

 

 

 

 

166-168 

 (169-170)
30 

 

 

 

 

10 

 

 

 

 

 

81 

 

 

 

30 

 

 

 

212–214  

(210–212)
29

 

a
 Isolated yield. 

 

Heterocyclic having bridgehead hydrazine have been studied 

for over a century owing to their pharmacological 

characteristics and clinical applications.
38, 44, 45

 Thus, more and 

more research briefs have been reported in the past five 

decades.
46-50

 In order to expand the application of DCDBTSD in 

the synthesis of heterocyclic compounds, we decided to 

prepare 3-amino -1H-pyrazolo[1,2-b]phthalazine-5,10-dione by 

three-component reaction of aromatic aldehydes or N-alkyl 

isatin derivatives possessing a 2,3-dihydrophthalazine-1,4-

dione and malonitrile (scheme 4). 

 

 

 

 

 

Scheme 4. Synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. 

As is it shown in Table 7, the presented procedure provides an 

efficient and green approach for the synthesis of 3-amino -1H-

pyrazolo[1,2-b]phthalazine-5,10-dione derivatives. According 

to the obtained results (Table 7), DCDBTSD could be applicable 

for the synthesis of various types of nitrogen-containing 

heterocyclic compounds. 

Table 7. The preparation of 1H-pyrazolo[1,2-b]phthalazine-5, 10-dione 

derivatives.  

     

Entry Product Yield
a
 Time (min) 

 

M.p. (Lit)
Ref

 

 

 

1 

 

 

 

 

80 

 

 

30 

 

 

271-273  

(276–278)
38

 

 

 

2 

 

 

 

 

93 

 

 

15 

 

 

271–273  

(270–272)
51

 

 

 

3 

 

 

 

 

95 

 

 

15 

 

 

229–230  

(228–229)
52

 

 

 

4 

 

 

 

82 

 

 

25 

 

 

250-252  

(253–255)
38

 

 

 

5 

 

 

 

 

85 

 

 

35 

 

 

154–156  

(152–154)
52

 

     
a 
Isolated yield. 
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Table 7. Continued.  

Entry Product Yield
a
 Time (min) 

 

M.p. (Lit)
Ref

 

 

 

6 

 

10f

N

N
CN

NH2O

O

O

 

 

 

80 

 

 

20 

 

 

250–252 (248–

250)
53

 

 

 

7 

 

10g

N

N
CN

NH2O

O

Br

 

 

 

87 

 

 

20 

 

 

264–266 (263–

265)
53

 

 

 

8 

 

N

N
CN

NH2O

O

NO2

10h

 

 

 

87 

 

 

20 

 

 

268–268 (266–

267)
53

 

 

 

9 

10i

N

N
CN

NH2O

O

OH

 

 

 

80 

 

 

35 

 

 

271–273 (270–

272)
54

 

 

 

10 

 

10j

N

N
CN

NH2O

O

Br

 

 

 

81 

 

 

15 

 

 

274–276 (271–

273)
53

 

 

 

 

11 

10k

N

N
CN

NH2O

O

 

 

 

84 

 

 

20 

 

 

275–277 (276–

278)
51

 

     
a
 Isolated yield. 

To evaluate the generality and versatility of our catalyst for the 

preparation of bioactive compounds, we decided synthesis of 

spiro[indoline-3,40-pyrano [2,3-c]pyrazole] derivatives and 3'-

aminospiro[indoline-3,1'-pyrazolo [1,2-b]phthalazine]-2,5',10'-

trione using DCDBTSD (scheme 7). For this purpose, we have 

examined the reaction of N-Substituted isatins, 3-methyl-1-

phenyl-2-pyrazolin-5-one or 2,3-dihydrophthalazine-1,4-dione 

with malononitrile (scheme 5). 

 

 

 

 

 

 

Scheme 5. Synthesis of spiro[indoline-3,4’-pyrano[2,3-

c]pyrazole] (11a-d) and spiro[indoline-3,1'-pyrazolo[1,2-

b]phthalazine]-2,5',10'-trione(12a-d) derivatives in the 

presence of DCDMTSD . 

As Table 8 Table 9, indicates that the desired products were 

obtained in all cases with excellent yields. Our effort to use  

N-Substituted isatins as a starting material with active carbonyl 

functional group in the above mentioned MCR was also 

successful verifying to the flexibility of the existing procedure. 

Table 8. The preparation of spiro[pyrano[2,3-c]pyrazoles] derivatives. 

     

Entry Structure Yield
a
 Time (min) 

 

M.p. (Lit)
Ref

 

 

 

 

1 

 

 

 

 

 

94 

 

 

 

30 

 

 

 

237-238 

(236-237) 
55

 

 

 

 

2 

 

 

 

 

90 

 

 

35 

 

 

228-230 

(232–234) 
56

 

 

 

 

3 

 

 

 

 

 

89 

 

 

 

40 

 

 

 

210-212 

 

4 

 

 

87 

 

40 

 

198-200 

a 
Isolated yield. 

 Table 9. The preparation spiro[indoline-3,1'-pyrazolo[1,2-

b]phthalazine] derivatives. 

     

Entry Structure Yield
a
 Time (min) 

 

M.p. (Lit)
Ref

 

 

 

1 

 

 

 

 

92 

 

 

20 

 

 

263–265  

(260–261) 
44
 

 

 

2 

 

 

 

 

90 

 

 

20 

 

 

260-263  

(265-266) 
57

 CN

CNH2O, 80
0C, Cat.

+

H2O, 80
0C, Cat.N

O

O

R

N

N

N

CN

NH2

O

O

O

R

5 3 11a-d

N O

O

CN

NH2

N
N

R

N
N

O

7

NH

NH

O

O9

12a-d
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3 

 

 

 

86 

 

 

25 

 

 

218--220 

 

4 

 

 

87 

 

25 

 

210-212 

 

a 
Isolated yield. 

 

Experimental 
 

Materials 

All chemicals were purchased from Merck or Fluka Chemical. 

The known products were identified by comparison of their 

physical properties such as melting points and spectral data 

with those reported in the literature. 

General procedure for the synthesis of DCDBTSD 

A solution of sodium hydroxide (6 mol.Lit-1, 1mL) was added 

dropwise to a stirring round bottomed flask (50 mL) containing 

hydrochlorothizide (0.6 g, 2 mmol) in distillated water (2 mL) 

over a period of 10 min at room temperature. After the addition 

was completed, the reaction mixture was stirred for 20 min. 

After this time, to the stirring solution of hydrochlorothiazide, 

bromine (0.08 mL, 3 mmol) was slowly added over a period of 

15 min at 0 °C. The insoluble brominated catalyst was removed 

by filtration and washed with H2O (10 mL) to give N,2-

dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-

7-sulfonamide 1,1-dioxide (DCDBTSD) in 90 % of yield (0.82 

g).13 

 

 

General procedure for the synthesis of 4a-u 

Carbonyl compounds possessing a reactive α-methylene 

group1 (1 mmol), aromatic aldehyde 2 (1 mmol), malonitrile 3 

(1.2 mmol) and DCDBTSD (0.0455 g, 10 mol%) were added to 2 

mL water and the reaction mixture was stirred at 80 °C for the 

appropriate time as mentioned in Tables 2 and 3. After 

completion of the reaction, as monitored by TLC, the reaction 

mixture was cooled to room temperature and the solid 

product was obtained by simple filtration and the solid residue 

was finally recrystallized from EtOH. 

 

General procedure for the synthesis of 6a-d 

4-hydroxy-2H-chromen-2-one1 (1 mmol), isatin 5 (1 mmol), 

malonitrile 3 (1.2 mmol) and DCDBTSD (0.0455 g, 10 mol%) 

were added to 2 mL water and the reaction mixture was 

stirred at 80 °C for the appropriate time as mentioned in Table 

5. After completion of the reaction, as monitored by TLC, the 

reaction mixture was cooled to room temperature and the 

solid product was obtained by simple filtration and the solid 

residue was finally recrystallized from EtOH. 

 

General procedure for the synthesis of 8a-k 

A mixture of aromatic aldehyde 2  (1 m mol), malonitrile 3 (1.2 

m mol), 3-methyl-1-phenyl-2-pyrazolin-5-one 7 (1mmol) and 

DCDBTSD (0.0455 g, 10 mol%) were added to 2 mL water and 

the reaction mixture was stirred at 80 °C for the appropriate 

time as mentioned in Table 6. After completion of the 

reaction, as monitored by TLC, the reaction mixture was 

cooled to room temperature and the solid product was 

obtained by simple filtration and the solid residue was finally 

recrystallized from EtOH. 

General procedure for the synthesis of 10a-k 

A mixture of aromatic aldehyde 2 (1 m mol), malonitrile 3 (1.2 

mmol), 2,3-dihydrophthalazine-1,4-dione 9 (1 mmol) and 

DCDBTSD (0.0455 g, 10 mol%) were added to 2 mL water and 

the reaction mixture was stirred at 80 °C for the appropriate 

time as mentioned in Table 7. After completion of the 

reaction, as monitored by TLC, the reaction mixture was 

cooled to room temperature and the solid product was 

obtained by simple filtration and the solid residue was finally 

recrystallized from EtOH. 

 

General procedure for the synthesis of 11a-d 

A mixture of isatin 5 (1 mmol), malonitrile 3 (1.2 mmol), 3-

methyl-1-phenyl-2-pyrazolin-5-one 7 (1mmol) and DCDBTSD 

(0.0455 g, 10 mol%) were added to 2 mL water and the 

reaction mixture was stirred at 80 °C for the appropriate time 

as mentioned in Table 8. After completion of the reaction, as 

monitored by TLC, the reaction mixture was cooled to room 

temperature and the solid product was obtained by simple 

filtration and the solid residue was finally recrystallized from 

EtOH. 

 

General procedure for the synthesis of 12a-d 

A mixture of isatin 5 (1 mmol), malonitrile 3 (1.2 mmol), 2,3-

dihydrophthalazine-1,4-dione 9 (1 mmol) and DCDBTSD 

(0.0455 g, 10 mol%) were added to 2 mL water and the 

reaction mixture was stirred at 80 °C for the appropriate time 

as mentioned in Table 9. After completion of the reaction, as 

monitored by TLC, the reaction mixture was cooled to room 

temperature and the solid product was obtained by simple 

filtration and the solid residue was finally recrystallized from 

EtOH. 

Conclusions 

 In conclusion, we demonstrated that N,2-dibromo-6-chloro-

3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine-7-sulfonamide 1,1-

dioxide (DCDBTSD), was a remarkably effective homogeneous 

catalyst for the one-pot construction of the 4H-pyran, 

pyranopyrazole, pyrazolo[1,2-b] phthalazine and spiro-

oxindoles derivatives in aqueous media from commercially 

available starting materials. The most noticeable feature 

within the study was that water used both as a reaction 

medium as well as a medium for synthesis of the catalyst. 

Moreover the aqueous conditions, outstanding yields, simple 

experimental procedure, environmentally proceeds and 

elimination of hazardous organic solvents are several 

advantages of this protocol.  
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Spectral data analysis of compounds 

Spiro[2-amino-4H-pyran-oxindole] (6a, Table 5). White powder; mp 

292-294 °C (lit: 303 °C). IR (KBr) (ʋmax, cm
-1

): 3361, 3297, 3197, 

2206, 1734, 11712, 1675, 1360. 
1
H NMR (400 MHz, DMSO-d6) δppm: 

6.869-6889 (d, 1H, J=8 Hz, ArH), 6.938-6.976 (t, 1H, J=7.6 Hz ArH), 

7.225-7.241 (d, J=6.4 Hz, 2H, ArH), 7.502-7.582 (m, 2H, ArH), 7.707 

(s, 2H, NH2, D2O exchangeable), 7.768-7.806 (t, J=7.2 Hz, 1H, ArH), 

7.954-7.973 (d, J=7.6 Hz, 1H, ArH), 10.717 (s, 1H, NH). 
13

C NMR 

(400MHz, DMSO-d6): δppm 48.074, 57.494, 101.89, 109.973, 

112.929, 117.138, 117.441, 122.524, 123.137, 124.600, 125.482, 

129.390, 133.520, 134.140, 142.657, 152.51, 155.542, 158.741, 

158.906, 177.615 

Spiro[2-amino-4H-pyran-oxindole] (6b, Table 5). White powder; mp 

278-280 °C (lit: 278-280 °C). IR (KBr) (ʋmax, cm
-1

): 3451, 3452, 3166, 

2946, 2880, 2196, 1695, 1673, 1611, 1505, 1466, 1360, 762, 746. 1H 

NMR (400 MHz, DMSO-d6) δppm: 2.066-2.128 (m, 2H, CH2), 3.841-

3.976 (m, 2H, CH2-N), 4.032-4.048 (d, 2H, J=6.4 Hz, CH2-O), 6.941-

6.971 (m, 2H, ArH), 6.989-7.026 (t, J=7.6 Hz, 1H, ArH),7.101 -7.145 

(m, 3H, ArH), 7.268-7.319 (m, 2H, ArH), 7.504-7.524(d, J=8 Hz, 1H, 

ArH), 7.553-7.591 (t, J=7.6 Hz, 1H, ArH), 7.771-7.816(m, 3H, NH2 and 

ArH , D2O exchangeable), 7.962-7.980 (d, J=7.2 Hz, 1H, ArH). 
13

C 

NMR (400MHz, DMSO-d6): δppm 27.27, 37.123, 47.616, 57.132, 

65.708, 101.669, 108.970, 112.919, 116.127, 116.207, 116.287, 

116.354, 117.184, 117.389, 123.186, 124.588, 125.539, 129.577, 

132.739, 134.238, 143.346, 152.524, 155.246, 155.694, 155.753, 

158.095, 158.825, 158.985, 176.109. 

Spiro[2-amino-4H-pyran-oxindole] (6c, Table5). White powder; mp 

270-272 °C. IR (KBr) (ʋmax, cm
-1

): 3482, 3452, 3166, 2946, 2880, 

2196, 1695, 1673, 1611, 1505, 1466, 1360, 762, 746. 
1
H NMR (400 

MHz, DMSO-d6) δppm: 2.066-2.113 (t, 2H, J=6.4 Hz, CH2-O), 3.841-

3.976 (m, 2H, CH2), 4.032-4.048 (d, 2H, J=6.4 Hz, CH2-N), 6.926-

6.960 (m, 2H, ArH), 6.989-7.026 (t, J=7.6 Hz, 1H, ArH),7.08 -7.131 

(m, 3H, ArH), 7.253-7.305 (m, 2H, ArH), 7.490-7.511(d, J=8.4 Hz, 1H, 

ArH), 7.540-7.577 (t, J=7.6 Hz, 1H, ArH), 7.751-7.802(m, 3H, NH2 and 

ArH), 7.944-7.966 (dd, J=1.2 Hz, 1H, ArH). 
13

C NMR (400MHz, 

DMSO-d6): δppm 27.27, 37.123, 47.616, 57.132, 65.708, 101.669, 

108.970, 112.919, 116.127, 116.207, 116.287, 116.354, 117.184, 

117.389, 123.186, 124.588, 125.539, 129.577, 132.739, 134.238, 

143.346, 152.524, 155.246, 155.694, 155.753, 158.095, 158.825, 

158.985, 176.109. 

Spiro[2-amino-4H-pyran-oxindole] (6d, Table 5). Pale yellow 

powder; mp 268-270 °C. 
1
H NMR (400 MHz, DMSO-d6) δppm: 1.839-

1.873 (br s, 4H, CH2), 3.794-3.824 (t, J=6 Hz, 2H, CH2N), 4.127-4.155 

(t, J=5.6 Hz, 2H, CH2O), 7.002-7.039 (t, J=7.6 Hz, 1H, ArH), 7.091-

7.120 (dd, J=2.4 Hz, 1H, ArH), 7.288-7.353 (m, 3H, ArH), 7.430- 

7.448 (d, J=7.2 Hz, 2H, ArH), 7.467-7.496 (1H, ArH ), 7.538-7.576 (t, 

J=7.6 Hz, 1H, ArH), 7.637-7.657 (d, J=8 Hz, 2H, ArH), 7.699 (br s, 2H, 

NH2, D2O exchangeable), 7.759-7.822 (m, 4H, ArH), 7.902-7.922(d, 

J=8 Hz, 1H, ArH), 7.958-7.977 (d, J=7.6 Hz, 1H, ArH).
 13

C NMR 

(400MHz, DMSO-d6): 23.948, 24.188, 26.387, 57.140, 67.391, 

67.675, 101.726, 107.150, 117.165, 118.614, 119.225, 123.099, 

123.184, 123.812, 123.909, 123.996, 126.120, 126.759, 126.830, 

127.107, 127.953, 128.868, 129.571, 129.676, 132.855, 134.793, 

146.983, 152.533, 155.664, 156.830, 156.994, 158,744, 176.089 

Spiro[pyrano[2,3-c]pyrazole] (11a, Table 8). White powder; mp 237-

238 °C (lit: 236-237 °C). IR (KBr) (ʋmax, cm
-1

): 3410, 3287, 3124, 

2202, 1692, 1655, 1526, 1132. 
1
H NMR (400 MHz, DMSO-d6) δppm: 

1.560(s, 3H, CH3),6.955-6.974 (d, J=7.6 Hz, 1H, ArH), 7.03-7.067 (t, 

J=7.6 Hz, 1H, ArH ), 7.190-7.208 (d, J=7.2 Hz, 1H, ArH), 7.286-7.324 

(t, J=7.6 Hz ,2H, ArH), 7.353-7.390 (t, J=7.2 Hz ,1H, ArH), 7.516-7.556 

(t, J=8.4 Hz 2H, ArH), 7.612 (s, 2H, NH2, D2O exchangeable), 7.796-

7.815 (d, J = 7.6 Hz 2H, ArH) 10.774 (s,1H, NH). 
13

C NMR (400MHz, 

DMSO-d6): δppm 12.17, 48.24, 56.62, 96.82, 110.32, 118.40, 118.43, 

120.60, 123.12, 125.38, 127.05, 129.76, 129.94, 132.60, 137.71, 

142.07, 144.42, 145.40, 161.46, 161.50, 177.98. 

Spiro[pyrano[2,3-c]pyrazole] (11b, Table 8). Pale yellow powder; mp 

228-230 °C (lit: 232–234°C). IR (KBr) (ʋmax, cm
-1

): 3390, 3314, 3191, 

2904, 2200, 2208, 1701, 1662, 1396, 746. 
1
H NMR (400 MHz, 

DMSO-d6) δppm:1.368 (s, 3H, CH3), 4.943-5.096 (AB-q, 2H, CH2), 

7.094-7.130 (t, J=7.6 Hz, 2H, ArH), 7.276-7.399 (m, 6H, ArH), 7.444-

7.462 (d, J=7.2 Hz, 2H, ArH), 7.523-7.563 (t, J=7.6 Hz, 2H, ArH), 

7.697 (s, 2H, NH2, D2O exchangeable), 7.801-7.821 (d, J=8 Hz, 2H, 

ArH). 
13

C NMR (400MHz, DMSO-d6): δppm 12.19, 43.79, 47.98, 56.33, 

96.58, 110.00, 118,42, 120.67, 123.93, 125.33, 127.13, 128.08, 

129.06, 129.83, 129.95, 131.82, 136.51, 137.67, 142.60, 144.33, 

145.46, 161.59, 161.63, 161.67, 176.61. 

 Spiro[pyrano[2,3-c]pyrazole] (11c, Table 8). Yellow powder; mp 

210-212 °C. IR (KBr) (ʋmax, cm
-1

): 3401, 3380, 3021, 2890, 2870, 

2238, 1702, 1691, 1610, 1515, 1450, 1341, 1203,755. 
1
H NMR (400 

MHz, DMSO-d6) δppm: 1.516(s, 3H, CH3), 2.152-2.303 (m, 2H,CH2), 

3.933-4.06 (m, 2H, CH2N), 4.189-4.213(t, J=7.6 Hz, 2H, CH2O), 7.079-

7.135 (t, J=7.6 Hz, 1H, ArH), 7.168-7.304 (m, 4H, ArH), 7.344-7.393 

(m, 3H, ArH), 7.444-7.480 (t, J=7.2 Hz, 1H, ArH), 7.518-7.558 (t, 

J=7.6 Hz, 1H, ArH), 7.697 (s, 2H, NH2, D2O exchangeable), 7.797-

7.859(m, 5H, ArH). 
13

C NMR (400MHz, DMSO-d6): δppm 12.30, 26.94, 

37.37, 37.63, 47.87, 56.47, 96.49,107.23, 101.45, 118.65, 119.23, 

120.65, 123.80, 124.06, 126.84, 127.11, 127.16, 127.99, 128.99, 

129.76, 129.94, 132.02, 134.71, 137.68, 142,68, 144.34, 145.48, 

156.78, 161.46, 161.46, 161.50, 176.33. 

Spiro[pyrano[2,3-c]pyrazole] (11d, Table 8). Yellow powder; mp 

198-200 °C. IR (KBr) (ʋmax, cm
-1

): 3370, 3329, 3181, 2944, 2875, 

2207, 1699, 1662, 1601, 1552, 1467, 1395, 1359, 1219,751, 652. 1H 

NMR (400 MHz, DMSO-d6) δppm:  1.504(s, 3H, CH3), 1901(br s, 

4H,CH2), 3.881-3.911(t, J=6 Hz 2H, CH2N), 4.151-4.179(t, J=6.4 Hz 

2H, CH2O),  7.112-7.189(m, 2H, ArH), 7.251-7.287(t, J=7.2 Hz, 2H, 

ArH), 7.329-7.406(m, 4H, ArH), 7.439-7.476(t, J=7.6 Hz, 1H, ArH), 

7.520-7.60(t, d, J=7.2 Hz, 2H, ArH), 7.647(s, 2H, NH2), 7.798-

7.837(m, 5H, ArH); 
13

C NMR (400MHz, DMSO-d6): δppm 12.28, 18.99, 

19.04, 24.40, 26.55, 47.87, 56.39, 96.56, 107.16, 109.55, 118.23, 
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119.20, 120.64, 123.72, 123.97, 125.31, 126.82, 127.13, 127.96, 

128.91, 129.73, 129.94, 131.96, 134.79, 137.68, 142.86, 144.31, 

145.49, 156.98, 161.49. 161.54, 176.34. 

Spiro[indoline-3,1'-pyrazolo[1,2-b]phthalazine] (12b, Table 9). 

Yellow powder; mp 260-263 °C (lit: 265-266 °C). IR (KBr) (ʋmax, cm
-1

): 

3310, 3270, 3020, 2895, 2229, 1720, 1666, 1662, 1593, 1494, 1349, 

1083, 791, 759. 
1
H NMR (400 MHz, DMSO-d6) δH: 4.957(s, 2H, CH2), 

7.062-7.082(d, J=8 Hz, 1H, ArH), 7.191-7.231(t, J=8 Hz, 1H, ArH), 

7.306-7.348(m, 1H, ArH), 7.367-7.441 (m, 4H, ArH), 7.582-7.620 (t, 

J=7.6 Hz, 1H, ArH), 7.892-7.925 (m, 3H, ArH), 7.962-7.981 (d, J=7.6 

Hz, 1H, ArH), 8.091(br s, 3H, NH2 and ArH). 
13

C NMR (400MHz, 

DMSO-d6): δppm 43.47, 82.12, 111.43, 111.99, 113.44, 118.72, 

124.06, 125.61, 126.16, 127.88, 128.20, 129.19, 133.08, 135.70, 

137.98, 146.57, 150.05, 163.12. 

Spiro[indoline-3,1'-pyrazolo[1,2-b]phthalazine] (12c, Table 9). 

Yellow powder; mp 218-220 °C. IR (KBr) (ʋmax, cm
-1

): 3434, 3434, 

3029, 2926, 2870, 2228, 1727, 1661, 1628, 1613, 1597, 1470, 1371, 

1259, 1180, 837, 762, 748. 
1
H NMR (400 MHz, DMSO-d6) δppm: 

2.136- 2.184 (m, 2H, CH2), 3.917-3.951 (t, J=6.8 Hz, 2H, CH2N), 

4.164-4.193( t, J=5.6 Hz, 2H, CH2O), 7.094- 7.122(dd, J=2.4 Hz, 1H, 

ArH), 7.170-7.208(t, J=7.6 Hz, 1H, ArH), 7.241-7.261 (m, 2H, ArH), 

7.332-7.372 (m, 1H, ArH), 7.439-7.480 (m, 1H, ArH), 7.439-7.480(m, 

1H, ArH), 7.588-7.629 (m, 1H, ArH), 7.762-7.787 (d, J=8 Hz 1H, ArH), 

7.809-7.884 (m, 2H, ArH), 7.892-7.956(m, 5H, ArH), 8.090 (br s, 2H, 

NH2);
 13

C NMR (400MHz, DMSO-d6): δppm 26.93, 37.37, 37.63, 65.51, 

81.50, 107.23, 111.08, 111.91, 113.43, 118.65, 119.06, 123.80, 

124.06, 125.58, 126.10, 126.87, 127.11, 127.99, 128.96, 129.74, 

133.10, 134.66, 138.11, 147.10, 150.30, 156.64, 163.00. 

Spiro[indoline-3,1'-pyrazolo[1,2-b]phthalazine] (12d, Table 9). 

Yellow powder; mp 210-212 °C. IR (KBr) (ʋmax, cm
-1

): 3430, 3401, 

3180, 2931, 2870, 2221, 1720, 1668, 1610, 1603, 1590, 1470, 1370, 

1240, 1110, 768, 750, 718. 
1
H NMR (400 MHz, DMSO-d6) δppm:1.846 

(br s, 4H, 2CH2), 3.784-3.816 (t, J=7.6 Hz, 2H, CH2N), 4.115-4.147 (t, 

J=6.8 Hz, 2H, CH2O), 7.098-7.126 (dd, J=2.4 Hz, 1H, ArH), 7.188-

7.226 (t, J=7.6 Hz, 1H, ArH),7.249-7.268 (d, J=8 Hz, 1H, ArH), 7.289-

7.298 (d, J=2 Hz, 1H, ArH), 7.327-7.363(t, J=7.2 Hz, 1H, ArH), 7.439-

7.475( t, J=7.2 Hz, 1H, ArH), 7.645-7.683 (t, J=7.6 Hz, 1H, ArH), 

7.782-7.831 (m, 3H, ArH), 7.889-7.921 (m , 3H, ArH), 8.089 (br s, 2H, 

NH2);
 13

C NMR (400MHz, DMSO-d6): δppm 23.97, 26.40, 37.35, 37.60, 

67.39, 81.61, 107.15, 111.13, 111.94, 113.37, 118.59, 119.11, 

123.82, 124.01, 125.58, 126.12, 126.84, 127.12, 127.97, 128.88, 

129.73, 133.08, 134.73, 138.11, 146.96, 150.10, 156.80, 162.93. 
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Graphical Abstract 

N,2-dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4] thiadiazine-7-

sulfonamide 1,1-dioxide: An efficient and homogeneous catalyst for 

one-pot synthesis of 4H-pyran , pyranopyrazole and pyrazolo[1,2-b] 

phthalazine derivatives under aqueous media 

 Ardeshir Khazaei,* Mohammad Ali Zolfigol,* Fatemeh Karimitabar, Iraj Nikokar and Ahmad 

Reza Moosavi-Zare
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DCDBTSD was successfully applied for the synthesis of 4H-pyran , pyranopyrazole and pyrazolo[1,2-b] 

phthalazine derivatives by the one-pot multi-component reaction  in water. 
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