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ABSTRACT: A practical and sustainable synthesis of arylsulfonate
esters has been developed through electro-oxidation. This reaction
employed the stable and readily available phenols and sodium
arenesulfinates as the starting materials and took place under mild
reaction conditions without additional oxidants. A wide range of
arylsulfonate esters including those bearing functional groups were
produced in good to excellent yields. This reaction could also be
conducted at a gram scale without a decrease of reaction efficiency.
Those results well demonstrated the potential synthetic value of
this reaction in organic synthesis.

■ INTRODUCTION

Electro-oxidation uses electrons as clean redox reagents and is
recognized as an environmentally friendly alternative1 to
chemical oxidation, which requires additional overstoichio-
metric oxidants.2 During the past decades, great progress has
been made, and many groups such as Lei’s group,1c,3 Xu’s
group,4 and Baran’s group5 have contributed greatly to this
field.
Arylsulfonate esters are a type of important compound

commonly occurring in many drugs and materials.6 Those
compounds are also valuable building blocks and widely used
in coupling chemistry.7 However, methods for their synthesis
are limited and usually suffer from harsh reaction conditions
and (or) compatibility issues with functional groups. Thus, the
nucleophilic substitution of active sulfonyl reagents like
sulfonyl halides and sulfonic anhydrides with phenols was
extensively used for their synthesis (Scheme 1a).8 The reaction
of phenols with thiols using a H2O2/POCl3 system could also
produce arylsulfonate esters (Scheme 1b).9 In 2015, Yuan and
coauthors reported an oxidative sulfonylation of phenols with
sodium sulfinates10 using a stoichiometric amount of sublimed
and corrosive I2 as the oxidant (Scheme 1c).11 This reaction
took place via the highly active RSO2I, indicating it was
moisture sensitive. In addition, the reaction does not seem
efficient enough for the electron-rich phenols, since high yields
were obtained with electron-deficient phenols, while for the
electron-rich phenols, only derivatives bearing alkyl group at
the benzene ring were demonstrated with moderate yields.
There also were no substrates with high steric hindrance
reported.
Herein, we reported a practical, clean, and general synthesis

of arylsulfonate esters starting from phenols and sodium

arenesulfinates through electro-oxidation in MeCN/water
(Scheme 1d). This reaction was conducted in an undivided
cell and avoided the use of chemical oxidants. Both electron-
rich and electron-deficient phenols including those with high
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Scheme 1. Methods for the Synthesis of Arylsulfonate Esters
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steric hindrance coupled with sodium arenesulfinates readily to
produce the corresponding arylsulfonate esters in high yields.
Wide functional group tolerance was also observed; i.e., alkyl,
MeO, MeS, CF3O, F, Cl, Br, ester, carbonyl, aldehyde and
vinyl groups all survived well under the reaction conditions.
These advantages are also the embodiment of sustainable
chemical principles.12

■ RESULTS AND DISCUSSION
It is reported that phenolic radical can be generated under the
electrochemical conditions. The strategy has been extensively
applied in the synthesis of various phenols.3m,13 Therefore, the
challenge of this reaction is the competing generation of
phenolic radicals which might homocouple to produce
biphenols14 or cross couple with arenesulfinates to produce
o-hydroxyl arylsulfones.15 We chose the oxidative coupling of
phenol 1a with sodium benzenesulfinate 2a as the model
reaction and successfully overcame the challenge after
extensive reaction optimization. Thus, when the reaction was
carried out in an undivided cell with the use of graphite rod as
an anode, platinum plate as a cathode, and tetrabutylammo-
nium bromide (nBu4NBr) as an electrolyte, the corresponding
product 3a was generated almost quantitatively in the MeCN/
H2O mixing solvent under a 15 mA constant current (Table 1,
entry 1). The current yield is ca. 35.7%. When the reaction
time was reduced to 1 h, only 66% yield of 3a was produced
(Table 1, entry 2). KBr worked comparably to nBu4NBr as an
electrolyte; KCl also gave a good yield; while low yields of 3a

were given with nBu4NBF4,
nBu4NI, or KI or in the absence of

electrolyte (Table 1, entries 3−8). Under the premise of
constant electric quantity, the electric current was subsequently
screened with 15 mA being the best choice (Table 1, entries 1,
9, and 10). Without H2O or CH3CN, the yield of 3a
dramatically decreased (Table 1, entries 11 and 12). The
results would be ascribed to the poor solubility of sodium
benzenesulfinate in MeCN and phenol in water. The reaction
could also proceed smoothly in THF/H2O (Table 1, entry 13)
but poorly in MeOH/H2O (Table 1, entry 14). By addition of
2 equiv of NaOH, the yield slightly decreased (Table 1, entry
15). Probably due to the suppressed generation of phenolate
anion, the reaction progressed sluggishly in the presence of 2
equiv of HOAc (Table 1, entry 16). When the electrodes were
switched to Pt(+)|Pt(−) or Pt(+)|C(−), the reaction efficiency
decreased to some extent (Table 1, entries 17 and 18). The
results might be ascribed to the better hydrogen-producing
properties of Pt cathode which would be beneficial to anodic
oxidation. A high yield of 3a was also obtained under N2
atmosphere (Table 1, entry 19). The result ruled out the
possibility that air acted as an oxidant in the reaction. Finally,
electricity is essential to this reaction, since no reaction took
place without electric current (Table 1, entry 20).
With the optimized reaction conditions in hand, we

subsequently investigated the substrate scope. As shown in
Table 2, a variety of phenols coupled readily with sodium
arenesulfinates produced the corresponding sulfonate esters in
high yields. Thus, phenols bearing methyl, tert-butyl, phenyl,
methoxy, thiomethoxy, and the easily hydrolyzed trifluorome-
thoxy all were transformed smoothly into the expected
products (3b−3h). Worth noting is that the substrates with
high steric hindrance exemplified as 3c and 3e served well
under the reaction conditions. Halo groups like fluoro, chloro
and bromo groups were compatible, facilitating further
functionalization of the products via cross coupling (3i−3o).
The electron-deficient phenols also proved to be the right
substrates, furnishing the desired products in excellent yields
(3p−3t). Under the reaction conditions, 1,1,1,3,3,3-hexafluor-
opropan-2-ol could also give the coupling product 3u in 28%
yield. However, 2-phenylethan-1-ol was not applicable to this
reaction (3v). As for the scope of sodium arenesulfinates,
derivatives bearing Me, F, Cl, Br, and CN all served well as the
substrates. It is worth mentioning that heteroaromatic cyclic
sodium 2-thiophene sulfinate and aliphatic sodium ethyl
sulfinate could also give the corresponding arylsulfonate esters
3ab and 3ac in good yields under the current reaction
conditions.
Notably, this reaction was applicable to the modification of

bioactive phenols (Scheme 2). Hordenine, raspberry ketone,
eugenol, salicylaldehyde, anuvex, methyl vanillate, and estrone
all coupled with sodium benzenesulfinate to produce the
corresponding arylsulfonate esters (3ad−3ak). Regarding the
high reactivity of arylsulfonate esters in coupling chemistry,
this reaction provided a reliable indirect method for the
modification of those bioactive and medicinal phenols.
Practically, this reaction could be scaled up. As shown in

Scheme 3, phenol (1a, 12 mmol) coupled readily with sodium
benzenesulfinate (2a, 18 mmol) under the optimal reaction
conditions (the electricity amount was also increased in 60
times by increasing the time and (or) electric current). After
evaporation and passing of the reaction residue through a short
SiO2 chromatographic column, the analytically pure 3a was
obtained in high yields.

Table 1. Optimization of Reaction Parametersa

entry variation from the standard conditions yieldb (%)

1 none >99
2 15 mA, 1 h 66
3 KBr instead of nBu4NBr 97
4 KCl instead of nBu4NBr 76
5c nBu4NBF4 instead of nBu4NBr 45

6c nBu4NI instead of nBu4NBr 18

7c KI instead of nBu4NBr 12
8 without nBu4NBr 35
9 30 mA, 1 h 96
10 7.5 mA, 4 h 86
11 without H2O 43
12 without CH3CN 9
13 THF instead of CH3CN 82
14 MeOH instead of CH3CN 40
15 add to 2 equiv of NaOH 74
16 add to 2 equiv of HOAc 3
17 Pt(+)|Pt(−) 82
18 Pt(+)|C(−) 59
19 under N2 89
20 no electric current n.d.

aReaction conditions: graphite rod anode (Φ 6 mm), platinum plate
cathode (15 mm × 15 mm × 0.1 mm), constant current = 15 mA, 1a
(0.20 mmol), 2a (0.30 mmol), nBu4NBr (2.0 equiv), CH3CN (7.0
mL), H2O (0.50 mL), room temperature, 2 h, undivided cell. bThe
yield of 3a was determined by GC using tridecane as the internal
standard, nd = not detected. cThe surface of graphite rod was
damaged.
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In order to gain insight into the reaction mechanism, several
control experiments were conducted. When electron-rich 1d
and electron-deficient 1r were allowed to couple with 2a

competitively, the product from electron-rich phenol was more
favored (Scheme 4, eq 1). By addition of 2 equiv of TEMPO
(2,2,6,6-tetramethyl-1-piperidinyloxy, a radical scavenger), the

Table 2. Electro-Oxidative Sulfonylation of Phenols with Sodium Sulfinatesa

aReaction conditions: graphite rod anode, platinum plate cathode, constant current = 15 mA, 1 (0.20 mmol), 2 (0.30 mmol), nBu4NBr (2.0 equiv),
CH3CN (7.0 mL), H2O (0.50 mL), room temperature, air, 2 h. Isolated yields.
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Scheme 2. Modification of Bioactive Phenolsa

aReaction conditions: graphite rod anode, platinum plate cathode, constant current = 15 mA, 1 (0.20 mmol), 2 (0.30 mmol), nBu4NBr (2.0 equiv),
CH3CN (7.0 mL), H2O (0.50 mL), room temperature, air, 2 h. Isolated yields.

Scheme 3. Gram-Scale Synthesis

Scheme 4. Control Experiments
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electro-oxidative coupling reaction of 1a with 2a was
suppressed almost completely (Scheme 4, eq 2). The result
indicated that this reaction might take place through a radical
process. The hypothesis was further supported by a control
experiment. When 2 equiv of 1,1-diphenylethylene was added
under the standard reactions, the coupling product 4 was
obtained in 21% GC yield, implying the generation of a
sulfonyl radical in the reaction (Scheme 4, eq 3). Meanwhile, it
is possible that Br− might be oxidized under the reaction
conditions, and the resulting oxidative product would further
react with PhSO2Na or its radical to produce benzenesulfonyl
bromide (PhSO2Br),

16 which might act as an active
intermediate in this reaction. Thus, we synthesized PhSO2Br
and allowed it to react with phenol (Scheme 4, eq 4);17,18

however, no 3a was detected with or without electric current.
This result might be ascribed to the absence of phenolate
anion under the reaction conditions. Indeed, by addition of 2
equiv NaOH, the yield of 3a was 90%. Using PhONa instead

of PhOH, 3a was produced in 56% yield under similar reaction
conditions.
The cyclic voltammetric (CV) measure was also performed

(Figure 1). In the absence of electrolyte, 2a has a peak at 0.85
V (Figure 1A, wine) (the CV measure of 1a was also
conducted, but no useful signs were obtained probably due to
the low conductivity), the mixture of 1a+2a has two peaks at
0.84 and 2.20 V (Figure 1A, navy). In the presence of
electrolyte nBu4NBF4, 1a has a peak at 1.59 V (Figure 1C, red),
2a has a peak at 0.81 V (Figure 1C, green), the mixture of 1a
+2a has two peaks at 0.81 and 1.59 V (Figure 1C, blue). When
nBu4NBr was used as the electrolyte, it has two oxidation peaks
of its own at 1.34 and 1.88 V (Figure 1B, black).19 Compound
1a has a weak peak at 1.39 V (0.02 M) (Figure 1B, red), 2a has
two peaks at 0.84 and 1.86 V (Figure 1B, green), the mixture
of 1a+2a has two peaks at 0.82 and 1.62 V (Figure 1B, blue),
and 3a has almost the same curve as nBu4NBr (Figure 1B,
cyan). Those data indicate that 2a was first oxidized to
produce radical under these reaction conditions. The oxidative

Figure 1. Cyclic voltammograms of reactants using a glassy carbon working electrode, a platinum plate counter electrode and a SCE electrode
submerged in saturated KCl solution as the reference. (A) Cyclic voltammograms in CH3CN and H2O, 1a (0.01 M), 2a (0.01 M), 3a (0.01 M).
(B) Cyclic voltammograms in CH3CN and H2O with 0.01 M nBu4NBr, 1a (0.01 M), 2a (0.01 M), 3a (0.01 M). (C) Cyclic voltammograms in
CH3CN and H2O with 0.01 M nBu4NBF4, 1a (0.01 M), 2a (0.01 M), 3a (0.01 M).

Scheme 5. Proposed Mechanism
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potential of 1a might also be 1.39 V when using nBu4NBr as
the electrolyte; however, at present, it is difficult to distinguish
the peak at 1.62 V in the curve of the mixture of 1a+2a in the
presence of nBu4NBr to be the oxidative peak of 2a or Br−.
On the basis of these control experiments, previous

literatures10 and cyclic voltammetric (CV) results, we
proposed that this reaction might take place through different
processes under different reaction conditions (Scheme 5).
Under all these reaction conditions, cathodic reduction of
phenol with the generation of phenolate anion C and
dihydrogen would take place. In the absence of external
electrolyte, sodium phenylsulfinates 2 were oxidized to give a
sulfonyl radical A at the anode, which then reacted with C to
produce the intermediate B. The intermediate B was oxidized
to produce the product 3 at the anode. Due to the inefficient
migration through the solution of unstable radical anion B, the
yield was low under the reaction conditions. When nBu4NBF4
was used as the electrolyte, it would be a radical/radical
coupling process that sulfonyl radical A coupled with phenoxy
radical generated at the anode to produce the corresponding
product. When nBu4NBr was used as the electrolyte, we
proposed that sulfonyl radical A might couple with Br radical
to produce arenesulfonyl bromide, which then reacted with
phenolate anion C to produce the product. It should be noted
the radical/radical coupling cannot be excluded out completely
in the absence of external electrolyte or with nBu4NBr at
present.

■ CONCLUSIONS
In conclusion, we have disclosed an electro-oxidative
sulfonylation of phenols with sodium arenesulfinates under
mild reaction conditions. This reaction avoided the use of
external stoichiometric oxidant, and showed wide substrate
scope and high functional group tolerance. The scale-up
(gram-scale) experiment also demonstrated its potential
practicality in organic synthesis. This reaction provided a
clean and general method for the synthesis of arylsulfonate
esters.

■ EXPERIMENTAL SECTION
General Information. The reactions were carried out in an oven-

dried undivided three-necked bottle (25 mL) stirred at room
temperature. For reactions that require heating, a heating mantle
was used as the heat source. Phenols were used as received. Sodium
sulfinates except sodium 4-cyanobenzenesulfinate (2aa) and sodium
2-thiophenesulfinate (2ab) were purchased for direct use. Other
reagents such as electrolytes, acids, and base were also used as
received. Solvents were purified according to standard operation
procedures. The instrument for electrolysis is a dual-display
potentiostat (DJS-292B) (made in China). The anodic electrode
was a graphite rod (Ø 6 mm), and the cathodic electrode was
platinum plate (15 mm × 15 mm × 0.1 mm). Column
chromatography was performed using silica gel 60 (200−300
mesh). The reactions were monitored by GC and GC−MS. GC−
MS results were recorded on a GC−MS QP2010, and GC analysis
was performed on GC 2014. The 1H and 13C NMR spectra were
recorded on a Bruker ADVANCE III spectrometer at 400 and 100
MHz, respectively, and chemical shifts were reported in parts per
million (ppm). The electron ionization (EI) method was used as the
ionization method for the HRMS measurement, and the mass
analyzer type is TOF for EI. All solvents and reagents purchased were
from Energy Chemical, Alfa Aesar, and Aladdin.
General Experimental Procedure for the Electro-oxidative

Esterification of Phenols with Sodium Benzensulfinates to
Access Arylsulfonate Esters. An oven-dried undivided three-

necked bottle (25 mL) was charged with phenols 1 (0.2 mmol),
sodium benzenesulfinates 2 (0.3 mmol, 1.5 equiv), and nBu4NBr (0.4
mmol, 2.0 equiv). The bottle was then equipped with graphite rod (Ø
6 mm, about 15 mm immersion depth in solution) as the anode and
platinum plate (15 mm × 15 mm × 0.1 mm) as the cathode.
Subsequently, acetonitrile (7 mL) and deionized water (0.5 mL) were
added under air. Then the electrolysis system was stirred at a constant
current of 15 mA under room temperature for 2 h. After completion
of the reaction, the reaction mixture was extracted with EtOAc (3 ×
10 mL) and H2O (3 × 10 mL), dried over Na2SO4, and concentrated
under vacuum. The desired product was isolated by column
chromatography over silica gel (200−300 mesh) using ethyl
acetate−petroleum ether as the eluent (1:5).

Procedure for the Synthesis of Sodium Sulfinates (2aa and
2ab).11 Sodium 4-cyanobenzenesulfinate (2aa) was prepared by
heating 2.01 g of 4-cyanobenzenesulfonyl chloride with a heating
mantle, 1.68 g of sodium bicarbonate, and 2.5 g of sodium sulfite in 9
mL of water at 80 °C for 6 h. Water was removed under vacuum after
cooling to room temperature. The residue was extracted by ethanol.
The pure product (white solid) was obtained in 55% yield (1.04 g) via
recrystallization. Similarly, sodium 2-thiophenesulfinate (2ab) was
prepared from the corresponding sulfonyl chloride. Sodium 4-
cyanobenzenesulfinate (2aa). 1H NMR (400 MHz, CD3OD): δ 7.80
(d, J = 1.2 Hz, 4 H); 13C{1H} NMR (100 MHz, CDCl3):δ 162.3,
133.5, 128.9, 126.3, 125.4, 119.5, 113.9. HRMS (ESI-TOF) m/z: [M
+ Na]+ Calcd for C7H4NNa2O2S 211.9753; Found 211.9748.
Sodium 2-thiophenesulfinate (2ab). 1H NMR (400 MHz,
CD3OD): δ 7.47 (dd, J1 = 4.8 Hz, J2 = 1.2 Hz, 2H), 7.24 (dd, J1 =
3.6 Hz, J2 = 1.2 Hz, 2H), 7.01 (dd, J1 = 4.8 Hz, J2 = 3.6 Hz, 2H);
13C{1H} NMR (100 MHz, CD3OD):δ 162.7, 128.2, 127.9, 126.3.
HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C4H3Na2O2S2
192.9364; Found 192.9368.

Procedure for the Synthesis of Benzenesulfonyl Bromide from
Sodium Benzensulfinate.16 A 25 mL Schlenk tube was charged with
sodium benzenesulfinate (164 mg, 1.0 mmol), NBS (267 mg, 1.5
mmol), and DCM (6 mL). The mixture was stirred at room
temperature for 12 h. After completion of the reaction, the reaction
mixture was extracted with ethyl acetate (3 × 5 mL), and the
combined organic layer was dried over anhydrous Na2SO4 and
evaporated under reduced pressure. The crude product obtained was
purified by column chromatography over silica gel (200−300 mesh).

Procedure for Gram-Scale Synthesis of 3a. An oven-dried
undivided three-necked bottle (250 mL) was charged with phenol 1a
(1129.3 mg, 12 mmol), sodium benzenesulfinates 2a (3939.8 mg, 18
mmol, 1.5 equiv), and nBu4NBr (7736.9 mg, 24 mmol, 2.0 equiv).
The bottle was equipped with graphite rod (Ø 6 mm, about 15 mm
immersion depth in solution) as the anode and platinum plate (15
mm × 15 mm × 0.1 mm) as the cathode. Subsequently, acetonitrile
(150 mL) and deionized water (15 mL) were added under air. Then
the electrolysis system was stirred at a constant current of 60 mA (15
mA) at room temperature for 30 h (120 h). After completion of the
reaction, the reaction mixture was extracted with EtOAc (3 × 40 mL)
and H2O (3 × 40 mL), dried over Na2SO4, and concentrated under
vacuum. The desired product was isolated by column chromatography
over silica gel (200−300 mesh) using ethyl acetate/petroleum ether
as eluent. Compound 3a was obtained in 93% (94%) yield.

Procedure for the Control Experiment (Scheme 4, eq 1). An
oven-dried undivided three-necked bottle (25 mL) was charged with
4-tert-butylphenol 1d (15.0 mg, 0.1 mmol), 4-hydroxybenzonitrile 1r
(11.9 mg, 0.1 mmol), sodium benzenesulfinate 2a (49.2 mg, 0.3
mmol), and nBu4NBr (129 mg, 0.4 mmol). The bottle was equipped
with graphite rod as the anode and platinum plate as the cathode.
Acetonitrile (7 mL) and deionized water (0.5 mL) were added under
air. Then the electrolysis system was stirred at a constant current of 15
mA under room temperature for 2 h. 61% yield of 3d and 38% yield
of 3r were detected by GC.

Procedure for the Control Experiment (Scheme 4, eq 2). An
oven-dried undivided three-necked bottle (25 mL) was charged with
phenol 1a (18.8 mg, 0.2 mmol), sodium benzenesulfinate 2a (49.2
mg, 0.3 mmol, 1.5 equiv), TEMPO (0.4 mmol, 2.0 equiv), and
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nBu4NBr (129 mg, 0.4 mmol, 2.0 equiv). The bottle was equipped
with a graphite rod as the anode and platinum plate as the cathode.
Acetonitrile (7 mL) and deionized water (0.5 mL) were added under
air. Then the electrolysis system was stirred at a constant current of 15
mA under room temperature for 2 h. Only a trace amount of 3a was
detected by GC.
Procedure for the Control Experiment (Scheme 4, eq 3). An

oven-dried undivided three-necked bottle (25 mL) was charged with
phenol 1a (18.8 mg, 0.2 mmol), sodium benzenesulfinate 2a (49.2
mg, 0.3 mmol, 1.5 equiv), 1,1-diphenylethylene (0.4 mmol, 2.0
equiv), and nBu4NBr (129 mg, 0.4 mmol, 2.0 equiv). The bottle was
equipped with a graphite rod as the anode and platinum plate as the
cathode. Acetonitrile (7 mL) and deionized water (0.5 mL) were
added under air. Then the electrolysis system was stirred at a constant
current of 15 mA under room temperature for 2 h. Vinyl sulfone 4
was produced in 21% isolated yield.
Procedures for the Control Experiment (Scheme 4, eq 4).

(1) An oven-dried undivided three-necked bottle (25 mL) was
charged with phenol 1a (18.8 mg, 0.2 mmol), benzenesulfonyl
bromide (0.3 mmol, 1.5 equiv), and nBu4NBr (129 mg, 0.4 mmol, 2.0
equiv). The bottle was equipped with a graphite rod as the anode and
platinum plate as the cathode. Acetonitrile (7 mL) and deionized
water (0.5 mL) were added under air. Then the electrolysis system
was stirred at a constant current of 15 mA under room temperature
for 2 h. No 3a was detected. (2) An oven-dried undivided three-
necked bottle (25 mL) was charged with phenol 1a (18.8 mg, 0.2
mmol), benzenesulfonyl bromide (0.3 mmol, 1.5 equiv), and nBu4NBr
(129 mg, 0.4 mmol, 2.0 equiv). The bottle was equipped with
graphite rod as the anode and platinum plate as the cathode.
Acetonitrile (7 mL) and deionized water (0.5 mL) was added under
air. Then the electrolysis system was stirred at room temperature for 2
h (electric current was zero). No 3a was detected. (3) An oven-dried
undivided three-necked bottle (25 mL) was charged with phenol 1a
(18.8 mg, 0.2 mmol), benzenesulfonyl bromide (0.3 mmol, 1.5
equiv), nBu4NBr (129 mg, 0.4 mmol, 2.0 equiv), NaOH (0.4 mmol,
2.0 equiv), and PhONa (0.2 mmol). The bottle was equipped with a
graphite rod as the anode and platinum plate as the cathode.
Acetonitrile (7 mL) and deionized water (0.5 mL) were added under
air. Then the electrolysis system was stirred at room temperature for 2
h (electric current was zero), 90% yield of 3a was detected. (4) An
oven-dried undivided three-necked bottle (25 mL) was charged with
PhONa (0.2 mmol), benzenesulfonyl bromide (0.3 mmol, 1.5 equiv),
and nBu4NBr (0.4 mmol, 2.0 equiv). The bottle was equipped with a
graphite rod as the anode and platinum plate as the cathode.
Acetonitrile (7 mL) and deionized water (0.5 mL) were added under
air. Then the electrolysis system was stirred room temperature for 2 h
(electric current was zero), 56% yield of 3a was detected by GC.
Procedure for Cyclic Voltammetry (CV). Cyclic voltammetry

was performed in a three-electrode cell at room temperature. The
working electrode was a glassy carbon and the counter electrode a
platinum plate. The reference was an SCE electrode submerged in
saturated KCl solution. Ten milliliters of CH3CN (9.5 mL) and H2O
(0.5 mL) containing 0.01 M nBu4NBr (

nBu4NBF4) was poured into
the electrochemical cell in all experiments. The CV of all substrates
was measured at the concentration of 0.01 M. The scan rate is 0.1 V/
s, ranging from 0 to 3.0 V. In the absence of electrolyte, 2a has a peak
at 0.85 V (the CV measure of 1a was also conducted, but no useful
signs were obtained probably due to the low conductivity) and the
mixture of 1a+2a has two peaks at 0.84 and 2.20 V. In the presence of
electrolyte nBu4NBF4, 1a has a peak at 1.59 V, 2a has a peak at 0.81 V,
and the mixture of 1a+2a has two peaks at 0.81 and 1.59 V. When
nBu4NBr was used as the electrolyte, it has two oxidation peaks of its
own at 1.34 and 1.88 V (black line). Compound 1a has a weak peak at
1.39 V (0.02 M), 2a has two peaks at 0.84 and 1.86 V, the mixture of
1a+2a has two peaks at 0.82 and 1.62 V, and 3a has almost the same
curve as nBu4NBr. Those data indicate that 2a was first oxidized to
produce radical under these reaction conditions. The oxidative
potential of 1a might also be 1.39 V when using nBu4NBr as the
electrolyte; however, at present, it is difficult to distinguish the peak at

1.62 V in the curve of the mixture of 1a+2a in the presence of
nBu4NBr to be the oxidative peak of 2a or Br−.

Phenyl Benzenesulfonate (3a).20 The title compound was
prepared according to the general procedure using phenol 1a (18.8
mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3 mmol,
1.5 equiv), purified by column chromatography on silica gel, and
eluted with petroleum ether to afford 3a (45.4 mg, 97% yield) as a
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.87(d, J = 7.2 Hz, 2H),
7.7 (t, J = 7.6 Hz, 1H), 7.56 (dd, J1 = J2 = 7.6 Hz, 2H), 7.34−7.26(m,
3H), 7.01(d, J = 7.2 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3):δ
149.6, 135.4, 134.1, 129.6, 129.1, 128.4, 127.1, 122.3. This compound
is known.

p-Tolyl Benzenesulfonate (3b).20 The title compound was
prepared according to the general procedure using p-cresol 1b
(21.6 mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3
mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3b (49.1 mg, 99% yield) as
a pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.83 (d, J = 7.2 Hz,
2H), 7.66 (t, J = 7.6 Hz, 1H), 7.52 (dd, J1 = J2 = 7.6 Hz, 2H), 7.06 (d,
J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 2.30 (s, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 147.3, 137.0, 135.3, 134.0, 130.0, 129.0,
128.3, 121.8, 20.7. This compound is known.

O-Tolyl Benzenesulfonate (3c).20 The title compound was
prepared according to the general procedure using o-cresol 1c (21.6
mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3 mmol,
1.5 equiv), purified by column chromatography on silica gel, and
eluted with petroleum ether to afford 3c (49.1 mg, 99% yield) as a
pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.87 (d, J = 7.6 Hz,
2H), 7.68 (t, J = 7.6 Hz, 1H), 7.54 (dd, J1 = J2 = 7.6 Hz, 2H), 7.17−
7.09 (m, 3H), 6.99 (d, J = 7.2 Hz, 1H), 2.06 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 148.3, 136.1, 134.1, 131.6, 131.5, 129.1, 128.3,
127.0, 126.9, 122.2, 16.2. This compound is known.

4-tert-Butyl Phenyl Benzenesulfonate (3d).21 The title compound
was prepared according to the general procedure using 4-tert-butyl
phenol 1d (30.0 mg, 0.2 mmol) and sodium benzenesulfinate 2a
(49.2 mg, 0.3 mmol, 1.5 equiv), purified by column chromatography
on silica gel, and eluted with petroleum ether to afford 3d (54.5 mg,
94% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.90 (d,
J = 7.2 Hz, 2H), 7.71 (t, J = 7.6 Hz, 1H), 7.58 (dd, J1 = J2 = 7.6 Hz,
2H), 7.33 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 1.32 (s, 9H);
13C{1H} NMR (100 MHz, CDCl3) δ 150.2, 147.2, 135.7, 134.1,
129.1, 128.5, 126.6, 121.6, 34.6, 33.3. This compound is known.

[1,1′-Biphenyl]-2-yl Benzenesulfonate (3e).22 The title compound
was prepared according to the general procedure using [1,1′-
biphenyl]-2-ol 1e (34.0 mg, 0.2 mmol) and sodium benzenesulfinate
2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by column
chromatography on silica gel, and eluted with petroleum ether to
afford 3e (61.4 mg, 99% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 7.55 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H),
7.45−7.35 (m, 4H), 7.31−7.26 (m, 4H), 7.22 (dd, J1 = J2 = 8.0 Hz,
2H), 7.17−7.15 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 146.3,
136.4, 135.4, 135.0, 133.5, 131.0, 129.2, 128.6, 128.5, 128.0, 127.9,
127.4, 127.2, 123.8. This compound is known.

4-Methoxyphenyl Benzenesulfonate (3f).20 The title compound
was prepared according to the general procedure using 4-
methoxyphenol 1f (24.8 mg, 0.2 mmol) and sodium benzenesulfinate
2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by column
chromatography on silica gel, and eluted with petroleum ether to
afford 3f (42.2 mg, 80% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 7.81 (d, J = 7.2 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H),
7.51 (dd, J1 = J2 = 7.6 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.76 (t, J =
8.8 Hz, 2H), 3.75 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
158.2, 142.9, 135.3, 134.1, 129.0, 128.5, 123.3, 114.4, 55.5. This
compound is known.

4-(Methylthio)phenyl Benzenesulfonate (3g). The title com-
pound was prepared according to the general procedure using 4-
(methylthio)phenol 1g (28.0 mg, 0.2 mmol) and sodium
benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by
column chromatography on silica gel, and eluted with petroleum ether
to afford 3g (52.1 mg, 93% yield) as a pale-yellow oil. 1H NMR (400
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MHz, CDCl3): δ 7.83 (d, J = 7.2 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H),
7.57 (dd, J1 = J2 = 7.6 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 6.88 (d, J =
8.8 Hz, 2H), 2.44 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
146.9, 137.8, 135.2, 134.2, 129.1, 128.5, 127.2, 122.8, 15.8. HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C13H13O3S2 281.0301; Found
281.0308.
4-(Trifluoromethoxy)phenyl Benzenesulfonate (3h). The title

compound was prepared according to the general procedure using 4-
(trifluoromethoxy)phenol 1h (35.6 mg, 0.2 mmol) and sodium
benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by
column chromatography on silica gel, and eluted with petroleum ether
to afford 3h (63.0 mg, 99% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 7.86−7.83 (m, 2H), 7.72−7.67 (m, 1H), 7.57−7.52
(m, 2H), 7.15−7.12 (m, 2H), 7.03−6.99 (m, 1H); 13C{1H} NMR
(100 MHz, CDCl3) δ 147.6 (q, J = 2.0 Hz), 147.5, 135.0, 134.5,
129.3, 128.5, 123.8, 122.1, 120.2 (q, J = 256.4 Hz).
4-Fluorophenyl Benzenesulfonate (3i).23 The title compound was

prepared according to the general procedure using 4-fluorophenol 1i
(22.4 mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3
mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3i (49.4 mg, 98% yield) as a
pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.82 (d, J = 7.2 Hz,
2H), 7.68 (t, J = 7.6 Hz, 1H), 7.54 (dd, J1 = J2 = 7.6 Hz, 2H), 6.99−
6.92 (m, 4H); 13C{1H} NMR (100 MHz, CDCl3) δ 161.0 (C−F,
1JC−F = 245.3 Hz), 145.3, 135.0, 134.4, 129.2, 128.5, 124.0 (C−F,
3JC−F = 8.7 Hz), 116.4 (C−F, 2JC−F = 23.6 Hz). This compound is
known.
3-Fluorophenyl Benzenesulfonate (3j). The title compound was

prepared according to the general procedure using 3-fluorophenol 1j
(22.4 mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3
mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3j (48.9 mg, 97% yield) as a
pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.89 (d, J = 7.2, 2H),
7.74 (t, J = 7.6 Hz, 1H), 7.59 (dd, J1 = J2 = 8.0 Hz, 2H), 7.33−7.27
(m, 1H), 7.02 (ddd, J1 = J2 = 8.4 Hz, J3 = 2.4 Hz, 1H), 6.86−6.78 (m,
2H); 13C{1H} NMR (100 MHz, CDCl3) δ 162.6 (C−F, 1JC−F = 247.8
Hz), 150.1 (C−F, 4JC−F = 10.6 Hz), 135.0, 134.5, 130.4 (C−F, 5JC−F
= 9.2 Hz), 129.2, 128.4, 118.1 (C−F, 6JC−F = 3.4 Hz), 114.4 (C−F,
3JC−F = 20.9 Hz), 110.4 (C−F, 2JC−F = 24.5 Hz). HRMS (ESI-TOF)
m/z: [M − H]− Calcd for C12H8FO3S 251.0184; Found 251.0185.
2,3,5,6-Tetrafluorophenyl Benzenesulfonate (3k). The title

compound was prepared according to the general procedure using
2,3,5,6-tetrafluorophenol 1k (33.2 mg, 0.2 mmol) and sodium
benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by
column chromatography on silica gel, and eluted with petroleum ether
to afford 3k (54.5 mg, 89% yield) as a pale-yellow solid. mp: 64−66
°C. 1H NMR (400 MHz, CDCl3): δ 7.99 (m, 2H), 7.77 (m, 1H),
7.64−7.59 (m, 2H), 7.04 (m, 1H); 13C{1H} NMR (100 MHz,
CDCl3) δ 146.0 (m), 141.6 (m), 135.2, 135.0, 129.5, 128.5, 104.6
(m). HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C12H6F4O3SNa
328.9866; Found 328.9863.
4-Chlorophenyl Benzenesulfonate (3l).20 The title compound was

prepared according to the general procedure using 4-chlorophenol 1l
(25.7 mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3
mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3l (50.9 mg, 95% yield) as a
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.88−7.85 (m, 2H),
7.73 (t, J = 7.6 Hz, 1H), 7.58 (dd, J1 = J2 = 7.6 Hz, 2H), 7.29 (d, J =
8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H); 13C{1H} NMR (100 MHz,
CDCl3) δ 147.9, 135.0, 134.4, 132.8, 129.7, 129.2, 128.4, 123.7. This
compound is known.
4-Bromophenyl Benzenesulfonate (3m).20 The title compound

was prepared according to the general procedure using 4-
bromophenol 1m (34.6 mg, 0.2 mmol) and sodium benzenesulfinate
2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by column
chromatography on silica gel, and eluted with petroleum ether to
afford 3m (61.3 mg, 98% yield) as a colorless oil. 1H NMR (400
MHz, CDCl3): δ 7.83−7.81 (m, 2H), 7.68 (t, J = 7.6 Hz, 1H), 7.54
(dd, J1 = J2 = 8.0 Hz, 2H), 7.40 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8

Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 148.5, 135.0, 134.4,
132.7, 129.2, 128.4, 124.1, 120.7. This compound is known.

2,4,6-Tribromophenyl Benzenesulfonate (3n). The title com-
pound was prepared according to the general procedure using 2,4,6-
tribromophenol 1n (66.1 mg, 0.2 mmol) and sodium benzenesulfinate
2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by column
chromatography on silica gel, and eluted with petroleum ether to
afford 3n (71.4 mg, 76% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 8.02 (d, J = 8.0 Hz, 2H), 7.73−7.68 (m, 3H), 7.58
(t, J = 8.0 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 145.3,
137.4, 135.6, 134.6, 129.2, 128.6, 120.8, 119.4. HRMS (ESI-TOF) m/
z: [M + Na]+ Calcd for C12H7Br3O3SNa 494.7517; Found 494.7522.

3-(Trifluoromethyl)phenyl Benzenesulfonate (3o).24 The title
compound was prepared according to the general procedure using 3-
(trifluoromethyl) phenol 1o (32.4 mg, 0.2 mmol) and sodium
benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by
column chromatography on silica gel, and eluted with petroleum ether
to afford 3o (59.8 mg, 99% yield) as yellow oil. 1H NMR (400 MHz,
CDCl3): δ 7.84−7.82 (m, 2H), 7.70 (t, J = 7.6 Hz, 1H), 7.57−7.52
(m, 3H), 7.45 (dd, J1 = J2 = 8.0 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H),
7.17 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 149.5, 134.8,
134.6, 132.2 (q, J = 33.2 Hz), 130.4, 129.3, 128.5, 126.0, 124.0 (J =
3.6 Hz), 123.1 (q, J = 270.9 Hz), 119.7(q, J = 3.7 Hz). This
compound is known.

3-Acetylphenyl Benzenesulfonate (3p).20 The title compound was
prepared according to the general procedure 3-acetylphenol 1p (27.2
mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3 mmol,
1.5 equiv), purified by column chromatography on silica gel, and
eluted with petroleum ether to afford 3p (36.4 mg, 66% yield) as a
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.85−7.83 (m, 3H),
7.69 (t, J = 7.6 Hz, 3H), 7.54 (dd, J1 = J2 = 8.0 Hz, 2H), 7.49 (dd, J1 =
J2 = 8.0 Hz, 1H), 7.41 (dd, J1 = J2 = 8.0 Hz, 1H), 7.23 (ddd, J1 = 8.0
Hz, J2 = 2.4 Hz, J3 = 0.8 Hz, 1H), 2.51(s, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 196.3, 149.7, 138.6, 135.1, 134.5, 130.0, 129.3, 128.5,
127.0, 126.9, 122.1, 26.6. This compound is known.

Ethyl 4-((Phenylsulfonyl)oxy)benzoate (3q).25 The title com-
pound was prepared according to the general procedure using ethyl 4-
hydroxybenzoate 1q (33.2 mg, 0.2 mmol) and sodium benzenesulfi-
nate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by column
chromatography on silica gel, and eluted with petroleum ether to
afford 3q (56.9 mg, 93% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 7.97 (d, J = 8.8 Hz, 2H), 7.83−7.81 (m, 2H), 7.67
(t, J = 7.6 Hz, 1H), 7.52 (dd, J1 = J2 = 7.6 Hz, 2H), 7.04 (d, J = 8.8
Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 165.4, 152.7, 135.0, 134.4, 131.2, 129.3,
129.2, 128.4, 122.2, 61.3, 14.2. This compound is known.

4-Cyanophenyl Benzenesulfonate (3r).26 The title compound was
prepared according to the general procedure using 4-hydroxybenzoni-
trile 1r (23.8 mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2
mg, 0.3 mmol, 1.5 equiv), purified by column chromatography on
silica gel, and eluted with petroleum ether to afford 3r (50.8 mg, 98%
yield) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.84 (d, J =
7.2 Hz, 2H), 7.71 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.56
(dd, J1 = J2 = 7.6 Hz, 2H), 7.13 (ddd, J1 = 8.8 Hz, J2 = J3 = 2.0 Hz,
2H); 13C{1H} NMR (100 MHz, CDCl3) δ 152.4, 134.8, 133.9, 129.4,
128.4, 123.4, 117.6, 111.3. This compound is known.

4-Nitrophenyl Benzenesulfonate (3s).20 The title compound was
prepared according to the general procedure using 4-nitrophenol 1s
(27.8 mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3
mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3s (35.2 mg, 63% yield) as a
yellow oil. 1H NMR (400 MHz, CDCl3): δ 8.20−8.16 (m, 2H), 7.85
(d, J = 7.2 Hz, 2H), 7.72 (t, J = 7.6 Hz, 1H), 7.57 (dd, J1 = J2 = 8.0
Hz, 2H), 7.26−7.17 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ
153.8, 146.2, 134.9, 134.8, 129.5, 128.4, 125.4, 123.2. This compound
is known.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl Benzene-
sulfonate (3t). The title compound was prepared according to the
general procedure using 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenol 1t (44.0 mg, 0.2 mmol) and sodium benzenesulfinate 2a
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(49.2 mg, 0.3 mmol, 1.5 equiv), purified by column chromatography
on silica gel, and eluted with petroleum ether to afford 3t (43.9 mg,
61% yield) as a white solid. mp: 106−108 °C. 1H NMR (400 MHz,
CDCl3): δ 7.82 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.65 (t, J
= 7.2 Hz, 1H), 7.51 (dd, J1 = J2 = 8.0 Hz, 2H), 6.97 (d, J = 7.6 Hz,
2H), 1.32 (s, 12H); 13C{1H} NMR (100 MHz, CDCl3) δ 151.9,
136.3, 135.3, 134.3, 129.1, 128.5, 121.6, 84.1, 29.7, 24.8. HRMS (ESI-
TOF) m/z: [M + Na]+ Calcd for C18H21BO5SNa 383.1095; Found
383.1084.
1,1,1,3,3,3-Hexafluoropropan-2-yl Benzenesulfonate (3v).27 The

title compound was prepared according to the general procedure
using 1,1,1,3,3,3-hexafluoropropan-2-ol 1v (33.6 mg, 0.2 mmol) and
sodium benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified
by column chromatography on silica gel, and eluted with petroleum
ether to afford 3v (17.2 mg, 28% yield) as a colorless oil. 1H NMR
(400 MHz, CDCl3): δ 7.95 (d, J = 7.2 Hz, 2H), 7.75 (t, J = 7.6 Hz,
1H), 7.61 (dd, J = 8.0 Hz, 2H), 5.34−5.26 (m, 1H); 13C{1H} NMR
(100 MHz, CDCl3) δ 135.2, 135.0, 129.6, 128.1, 119.8 (C−F, 1JC−F =
281.5 Hz), 72.0 (C−F, 2JC−F = 35.3 Hz). This compound is known.
Phenyl 4-Methylbenzenesulfonate (3w).11 The title compound

was prepared according to the general procedure using phenol 1a
(18.8 mg, 0.2 mmol) and sodium 4-methylbenzenesulfinate 2w (53.4
mg, 0.3 mmol, 1.5 equiv), purified by column chromatography on
silica gel, and eluted with petroleum ether to afford 3w (36.2 mg, 73%
yield) as a white solid. Mp: 94.6−94.9 °C. 1H NMR (400 MHz,
CDCl3): δ 7.74 (d, J = 8.4 Hz, 2H), 7.36−7.26 (m, 5H), 7.03−7.01
(m, 2H), 2.49(s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 149.6,
145.3, 132.4, 129.7, 129.6, 128.5, 127.0, 122.3, 21.7. This compound
is known.
Phenyl 4-Fluorobenzenesulfonate (3x).9 The title compound was

prepared according to the general procedure phenol 1a (18.8 mg, 0.2
mmol) and sodium 4-fluorobenzenesulfinate 2x (54.6 mg, 0.3 mmol,
1.5 equiv), purified by column chromatography on silica gel, and
eluted with petroleum ether to afford 3x (47.9 mg, 95% yield) as a
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.88−7.84 (m, 2H),
7.34−7.28 (m, 3H), 7.22 (dd, J = 8.4 Hz, 2H), 7.01−6.99 (m, 2H);
13C{1H} NMR (100 MHz, CDCl3) δ 166.0 (C−F, 1JC−F = 255.8 Hz),
149.4, 131.4, 131.3 (C−F, 3JC−F = 9.6 Hz), 129.7, 127.3, 122.3, 116.5
(C−F, 2JC−F = 22.7 Hz). This compound is known.
Phenyl 4-Chlorobenzenesulfonate (3y).28 The title compound

was prepared according to the general procedure using phenol 1a
(18.8 mg, 0.2 mmol) and sodium 4-chlorobenzenesulfinate 2y (59.6
mg, 0.3 mmol, 1.5 equiv), purified by column chromatography on
silica gel, and eluted with petroleum ether to afford 3y (52.5 mg, 98%
yield) as a white solid. Mp: 92.4−92.9 °C. 1H NMR (400 MHz,
CDCl3): δ 7.68 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.33−
7.26 (m, 3H), 7.00−6.97 (m, 2H); 13C{1H} NMR (100 MHz,
CDCl3) δ 149.4, 141.0, 133.7, 129.9, 129.8, 129.5, 127.4, 122.3. This
compound is known.
Phenyl 4-Bromobenzenesulfonate (3z).28 The title compound

was prepared according to the general procedure using phenol 1a
(18.8 mg, 0.2 mmol) and sodium 4-bromobenzenesulfinate 2x (72.9
mg, 0.3 mmol, 1.5 equiv), purified by column chromatography on
silica gel, and eluted with petroleum ether to afford 3z (61.3 mg, 98%
yield) as a white solid. Mp: 115.5−116.8 °C. 1H NMR (400 MHz,
CDCl3): δ 7.62−7.59 (m, 4H), 7.24−7.20 (m, 3H), 6.93−6.90 (m,
2H); 13C{1H} NMR (100 MHz, CDCl3) δ 149.4, 134.3, 132.5, 129.9,
129.8, 129.6, 127.4, 122.2. This compound is known.
Phenyl 4-Cyanobenzenesulfonate (3aa).29 The title compound

was prepared according to the general procedure phenol 1a (18.8 mg,
0.2 mmol) and sodium 4-cynaobenzenesulfinate 2aa (56.7 mg, 0.3
mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3aa (37.3 mg, 72% yield) as
a colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.95 (d, J = 8.8 Hz,
2H), 7.83 (d, J = 8.4 Hz, 2H), 7.35−7.28 (m, 3H), 7.00−6.97 (m,
2H); 13C{1H} NMR (100 MHz, CDCl3) δ 149.2, 139.4, 132.8, 129.9,
129.1, 127.6, 122.2, 117.9, 116.8. This compound is known.
Phenyl Thiophene-2-sulfonate (3ab).30 The title compound was

prepared according to the general procedure using phenol 1a (18.8
mg, 0.2 mmol) and sodium thiophene-2-sulfinate 2ab (51.1 mg, 0.3

mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3ab (25.5 mg, 53% yield) as
a pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.71 (dd, J = 5.2
Hz, 1H), 7.57 (dd, J = 3.6 Hz, 1H), 7.32−7.27 (m, 3H), 7.09 (dd, J =
4.2 Hz, 1H), 7.05−7.03 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3)
δ 149.6, 135.4, 134.5, 129.7, 127.5, 127.4, 122.2. This compound is
known.

Phenyl Ethanesulfonate (3ac).31 The title compound was
prepared according to the general procedure using phenol 1a (18.8
mg, 0.2 mmol) and sodium 4-bromobenzenesulfinate 2ac (34.8 mg,
0.3 mmol, 1.5 equiv), purified by column chromatography on silica
gel, and eluted with petroleum ether to afford 3ac (24.6 mg, 66%
yield) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.41 (d, J =
7.6 Hz, 2H), 7.33−7.27(m, 3H), 3.27 (q, J = 7.6 Hz, 2H), 1.54 (t, J =
7.6 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 149.1, 129.9,
127.1, 121.9, 44.9, 8.2. This compound is known.

2-Formylphenyl Benzenesulfonate (3ad). The title compound
was prepared according to the general procedure using 2-
hydroxybenzaldehyde 1ad (24.4 mg, 0.2 mmol) and sodium
benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by
column chromatography on silica gel, and eluted with petroleum ether
to afford 3ad (48.2 mg, 92% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 10.00 (s, 1H), 7.89−7.84 (m, 3H), 7.72 (d, J = 7.2
Hz, 1H), 7.59−7.54 (m, 3H), 7.41 (t, J = 7.2 Hz, 1H), 7.20 (d, J = 8.0
Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 187.2, 151.1, 135.4,
134.9, 134.4, 129.6, 129.3, 128.8, 128.5, 127.7, 123.7. HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C13H11O4S 263.0373; Found
263.0374.

4-(2-(Dimethylamino)ethyl)phenyl Benzenesulfonate (3ae). The
title compound was prepared according to the general procedure 4-
(2-(dimethylamino)ethyl)phenol 1ae (33.0 mg, 0.2 mmol) and
sodium benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified
by column chromatography on silica gel, and eluted with petroleum
ether to afford 3ae (51.9 mg, 85% yield) as a colorless oil. 1H NMR
(400 MHz, CDCl3): δ 7.83 (d, J = 7.6 Hz, 2H), 7.65 (t, J = 7.6 Hz,
1H), 7.51 (dd, J1 = J2 = 8.0 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.87 (d,
J = 8.8 Hz, 2H), 2.72 (t, J = 7.6 Hz, 2H), 2.47 (t, J = 7.6 Hz, 2H),
2.26 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 147.8, 139.5,
135.5, 134.1, 129.7, 129.1, 128.4, 122.1, 61.1, 45.3, 33.6. HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C16H20NO3S 306.1158; Found
306.1153.

4-Allyl-2-methoxyphenyl Benzenesulfonate (3af). The title
compound was prepared according to the general procedure using
4-allyl-2-methoxyphenol 1af (32.8 mg, 0.2 mmol) and sodium
benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by
column chromatography on silica gel, and eluted with petroleum ether
to afford 3af (37.1 mg, 61% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 7.88−7.86 (m, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.50
(dd, J1 = J2 = 8.0 Hz, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.71(dd, J1 = 8.0
Hz, J2 = 2.0 Hz, 1H), 6.64 (d, J = 2.0 Hz, 1H), 5.91 (ddt, J1 = 16.8 Hz,
J2 = 10.4 Hz, J3 = 6.4 Hz, 1H), 5.09−5.04(m, 2H), 3.50 (s, 3H), 3.33
(d, J = 6.4 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 151.5,
140.4, 136.61, 136.57, 136.3, 133.8, 128.6, 128.5, 123.8, 120.6, 116.4,
112.8, 55.4, 40.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C16H17O4S 305.0842; Found 305.0847.

2-Benzoyl-5-methoxyphenyl Benzenesulfonate (3ag). The title
compound was prepared according to the general procedure using (2-
hydroxy-4-methoxyphenyl)(phenyl)methanone 1ag (45.6 mg, 0.2
mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5
equiv), purified by column chromatography on silica gel, and eluted
with petroleum ether to afford 3ag (67.0 mg, 91% yield) as a pale-
yellow solid. Mp: 75−77 °C. 1H NMR (400 MHz, CDCl3): δ 7.62−
7.58 (m, 4H), 7.55−7.51(m, 2H), 7.44−7.36 (m, 5H), 3.85 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 192.8, 162.6, 147.8, 137.4,
134.9, 134.2, 132.8, 132.3, 129.9, 129.0, 128.4, 128.1, 117.2, 112.9,
109.2, 55.8. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C20H17O5S
369.0797; Found 369.0794.

2-Allylphenyl Benzenesulfonate (3ah). The title compound was
prepared according to the general procedure using 2-allylphenyl 1ah
(26.8 mg, 0.2 mmol) and sodium benzenesulfinate 2a (49.2 mg, 0.3
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mmol, 1.5 equiv), purified by column chromatography on silica gel,
and eluted with petroleum ether to afford 3ah (45.5 mg, 83% yield) as
a colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.89 (d, J = 7.6 Hz,
2H), 7.69 (t, J = 7.6 Hz, 1H), 7.55 (dd, J1 = J2 = 7.6 Hz, 2H), 7.20−
7.13 (m, 3H), 7.04 (d, J = 8.0 Hz, 1H), 5.75 (ddt, J1 = 16.8 Hz, J2 =
10.0 Hz, J3 = 6.8 Hz, 1H), 5.05−4.97 (m, 2H), 3.22 (d, J = 6.8 Hz,
2H); 13C{1H} NMR (100 MHz, CDCl3) δ 147.8, 136.1, 135.4, 134.2,
133.4, 130.7, 129.2, 128.4, 127.4, 127.2, 122.2, 116.7, 33.8. HRMS
(ESI-TOF) m/z: [M − H]− Calcd for C15H13O5S 273.0591; Found
273.0592.
Methyl 3-Methoxy-4-((phenylsulfonyl)oxy)benzoate (3ai).32 The

title compound was prepared according to the general procedure
using methyl 4-hydroxy 3-methoxybenzoate 1ai (36.4 mg, 0.2 mmol)
and sodium benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv),
purified by column chromatography on silica gel, and eluted with
petroleum ether to afford 3ai (53.5 mg, 83% yield) as a pale-yellow
oil. 1H NMR (400 MHz, CDCl3): δ 7.85 (d, J = 7.2 Hz, 2H), 7.65 (t,
J = 7.2 Hz, 1H), 7.59 (dd, J1 = 8.4 Hz, J2 = 2.0 Hz, 1H), 7.54−7.48
(m, 3H), 7.23 (d, J = 8.4 Hz, 1H), 3.89 (s, 3H), 3.56 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 165.9, 151.5, 141.7, 135.9,
134.1, 129.8, 128.8, 128.5, 123.9, 122.2, 113.5, 55.6, 52.3. This
compound is known.
4-(3-Oxobutyl)phenyl Benzenesulfonate (3aj). The title com-

pound was prepared according to the general procedure using 4-(4-
hydroxyphenyl)butan-2-one 1aj (32.8 mg, 0.2 mmol) and sodium
benzenesulfinate 2a (49.2 mg, 0.3 mmol, 1.5 equiv), purified by
column chromatography on silica gel, and eluted with petroleum ether
to afford 3aj (43.8 mg, 72% yield) as a pale-yellow oil. 1H NMR (400
MHz, CDCl3): δ 7.82 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H),
7.52 (dd, J1 = J2 = 7.6 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 6.87 (d, J =
8.4 Hz, 2H), 2.84 (t, J = 7.6 Hz, 2H), 2.71 (t, J = 7.6 Hz, 2H), 2.11 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 207.4, 147.8, 140.1, 135.4,
134.1, 129.4, 129.0, 128.4, 122.2, 44.7, 30.0, 28.8. HRMS (ESI-TOF)
m/z: [M + H]+ Calcd for C16H17O4S 305.0842; Found 305.0836.
(8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-3-yl benzenesulfonate
(3ak). The title compound was prepared according to the general
procedure using (8R,9S,13S,14S)-3-hydroxy-13-methyl-6,7,8,9,-
11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one
1ak (32.8 mg, 0.2 mmol) and sodium benzenesulfinate 2a (54.1 mg,
0.3 mmol, 1.5 equiv), purified by column chromatography on silica
gel, and eluted with petroleum ether to afford 3ak (50.3 mg, 61%
yield) as a white solid. mp: 148−150 °C. 1H NMR (400 MHz,
CDCl3): δ 7.86 (d, J = 8.0 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.54 (d, J
= 8.0 Hz, 2H), 7.16 (d, J = 8.8 Hz, 1H), 6.76 (s, 1H), 6.66 (d, J = 8.4
Hz, 1H), 2.82 (t, J = 4.8 Hz, 2H), 2.53−2.47 (m, 1H), 2.35−2.33 (m,
2H), 2.11−1.93 (m, 4H), 1.61−1.38 (m, 6H), 0.90 (s, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 220.7, 147.3, 138.8, 138.4, 135.6, 134.0,
129.0, 128.4, 126.4, 122.3, 119.1, 50.3, 47.8, 44.0, 37.7, 35.7, 31.4,
29.2, 26.1, 25.6, 21.5, 13.7. HRMS (ESI-TOF) m/z: [M + H]+ Calcd
for C24H27O4S 411.1625; Found 411.1625.
(2-(Phenylsulfonyl)ethene-1,1-diyl)dibenzene (4).33 The title

compound was prepared according to the general procedure, purified
by column chromatography on silica gel, and eluted with petroleum
ether to afford 4 (13.5 mg, 21% yield) as a white solid. 1H NMR (400
MHz, CDCl3): δ 7.62 (dd, J1 = 7.6 Hz, 2H), 7.52 (dt, J1 = 7.6 Hz,
2H), 7.41−7.31 (m, 8H), 7.31 (d, J1 = 7.2 Hz, 1H), 7.12 (d, J1 = 7.2
Hz, 2H), 7.06 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 155.2,
141.4, 139.1, 135.4, 132.8, 130.3, 129.7, 128.9, 128.7, 128.65, 128.64,
128.64, 128.57, 128.2, 127.8, 127.6. This compound is known.
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