Synthesis of the marine epoxy sterol 9α , 11α -epoxy- 5α -cholest-7-ene- 3β , 5, 6β -triol

Anna Migliuolo, Giacomo Notaro, Vincenzo Piccialli, and Donato Sica

Dipartimento di Chimica Organica e Biologica, Università di Napoli, Napoli, Italy

The synthesis of 9α , 11α -epoxy- 5α -cholest-7-ene- 3β , 5, 6β -triol (1), a highly oxygenated marine sterol containing a 9, 11-epoxide moiety in the nucleus, is described. Epoxy sterol 1 was synthesized from cholesta-5, 7-dien- 3β -ol. Oxidation of this sterol with m-chloroperbenzoic acid followed by hydrolysis and acetylation furnished 5α -cholest-7-ene- 3β , 5, 6α -triol 3, 6-diacetate (2). Mercuric acetate dehydroge-nation of diacetate 2, followed by oxidation with manganese dioxide and epoxidation with m-chloroperbenzoic acid, afforded 9α , 11α -epoxy- 3β , 5-dihydroxy- 5α -cholest-7-ene-6-one (5). Reduction of 5 with lithium aluminum hydride gave the desired compound 1. The structures of all synthetic intermediates were confirmed by 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy. A reassignment of resonances for carbons 1, 8, and 15 in the 13 C NMR spectrum of 1, based on 2D-NMR correlation spectroscopy, has been accomplished. (Steroids 56:154–158, 1991)

Keywords: 9α , 11α -epoxy- 5α -cholest-7-ene- 3β , 5.6β -triol; synthesis; 2D-NMR; sterols; 9.11-epoxy marine sterol; 9α , 11α -epoxy- 5α -cholest-7-ene- 3β , 5.6α -triol; 5α -cholesta-7.9(11)-diene- 3β , 5.6α -triol; 5α -2(11)-diene- 3β , 5.6α -2(1

Introduction

A polyhydroxylated epoxy sterol has been recently isolated from the marine gastropod *Planaxis sulcatus* and has been assigned the structure 9α , 11α -epoxy- 5α -cholest-7-ene- 3β , $5,6\beta$ -triol.¹ This sterol may be an intermediate in the biosynthesis of some highly oxygenated Δ^7 -sterols, all having a common 3β , 5α , 6β -hydroxylation pattern, recently found in marine organisms²⁻⁶ and, likely, the immediate precursor of 5α -cholest-7ene- 3β , $5,6\beta$, 9α -tetrol, a sterol that we recently isolated from the sponge *Spongia officinalis*.⁷ To verify such a hypothesis, radioactively labeled **1** is needed. We report here a synthesis of **1** that lends itself to the incorporation of radiolabels in the nucleus.

Experimental

Proton nuclear magnetic resonance (¹H NMR) and ¹³C NMR spectra were recorded on Bruker Instrument Inc. WM 200, WM 270, and WM 400 spectrometers in $CDCl_3$, CD_3OD , or C_5D_5N solutions. ¹H Nuclear mag-

Received April 23, 1990; accepted October 9, 1990.

netic resonance spectra were recorded at 270 MHz unless otherwise mentioned. Proton chemical shifts were referenced to the residual CHCl₃, CH₃OH, and C₄H₅N signals (7.26, 3.31, and 8.71 ppm, respectively). Coupling constants are given in Hz. ¹³C Nuclear magnetic resonance chemical shifts were referenced to the solvents (CDCl₃: 77.0 ppm; C₅D₅N: 135.5 ppm).

The multiplicity of ¹³C NMR resonances was determined by DEPT experiments⁸ that were performed using polarization transfer pulses of 90 and 135 degrees; in the first case, only signals for CH groups were obtained and, in the second case, positive signals for CH and CH₃ and negative signals for CH₂ were obtained. Bruker Aspect 3000 2D-NMR programs have been used for recording the 2D spectra. The ¹H-¹H shift correlation experiment was performed with a COSY 45 sequence.^{9,10} The ¹H-¹³C shift correlation experiment via ¹J coupling¹¹ was carried out, adjusting the time for the development of the polarization transfer to give maximum enhancement for J_{CH} = 135 Hz.

High resolution electron impact mass spectra (MS) were recorded on a Kratos Analytical Instruments AEI MS 902 spectrometer. Fourier transform infrared (FTIR) spectra were obtained with a Perkin-Elmer Corp. 1760-X FTIR spectrophotometer and were taken as films. Ultraviolet (UV) spectra were recorded with a

Address reprint requests to Dr. Donato Sica, Dipartimento di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone 16, I-80134, Napoli, Italy.

Perkin-Elmer Model 550S spectrophotometer in CHCl₃ solutions.

High-performance liquid chromatography (HPLC) analyses were performed using a Varian Associates Inc. 2510 pump equipped with a Waters Associates dual cell refractometer using Hibar LiChrosorb Si-60 (250 × 10 mm) and Hibar Superspher RP-18 (250 × 4 mm) columns. Melting points were determined on a Reichert Thermovar type 300429 Kofler hot stage melting apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer Model 141 polarimeter in CHCl₃ solutions. Column chromatography was carried out on Merck Silica gel 40 (70-230 mesh) and 60 230-400 mesh). Thin-layer chromatography (TLC) analyses were carried out on precoated silica gel F_{254} plates (0.25 thick, Merck). Cholesta-5,7-dien-3 β -ol was purchased from Fluka AG (Buchs, Switzerland).

5α -Cholest-7-ene- 3β , $5, 6\alpha$ -triol 3, 6-diacetate (2)

Cholesta-5,7-diene-3 β -ol (9.0 g) was treated with mchloroperbenzoic acid (6.0 g) in chloroform (180 ml) at 4 C for 2 hours. The reaction mixture was washed with a saturated aqueous solution of NaHCO₃ and brine, dried over Na_2SO_4 , and evaporated. The crude residue was hydrolyzed by heating under reflux in 5% methanolic potassium hydroxide (150 ml) for 1 hour. The crystalline material, obtained after the work-up, was chromatographed on a silica gel column using increasing amounts of methanol in chloroform as the eluent. Chloroform/methanol (96:4 v/v) eluted 5α -cholest-7ene-3 β ,5,6 α -triol (4.0 g): mp, 231 to 232 C (MeOH); $[\alpha]_D^{20} = +33.3^\circ$ (c = 0.5) (reported¹²: mp, 231 to 232 C; $[\alpha]_D^{20} = +26.4^\circ$ [CHCl₃]); FTIR, ν_{max} 3,390 cm⁻¹; ¹H NMR (C₅D₅N) δ 0.62 (3H, s, 18-CH₃), 0.87 (6H, d, J = 6.8 Hz, 26-CH₃ and 27-CH₃), 0.96 (3H, d, J = 6.4Hz, 21-CH₃), 1.10 (3H, s, 19-CH₃), 2.98 (1H, dd, J =12.8 and 4.7 Hz, 4-H_{eq}), 4.36 (1H, bs, $W_{1/2} = 7.7$ Hz, 6β-H), 4.64 (1H, m, 3α -H), and 5.41 (1H, bs, W_{1/2} = 5.1 Hz, 7-H).

5α-Cholest-7-ene-3β,5,6α-triol (4.0 g) was acetylated overnight at room temperature with pyridine/ acetic anhydride (2:1 v/v). The usual work-up and purification on a silica gel column with light petroleum/ ethyl acetate (86:14 v/v) as eluent gave pure 2 (4.1 g): mp, 196 to 198 C (MeOH); $[\alpha]_D^{20} = +57.7^\circ$ (c = 1.0) (reported¹²: mp, 188 to 189 C [MeOH]; $[\alpha_D^{20} = +58.0^\circ$ [CHCl₃]); FTIR, ν_{max} 3,456, 1,725, 1,709, 1,258, and 1,240 cm⁻¹; ¹H NMR (CDCl₃) δ 0.54 (3H, s, 18-CH₃), 0.86 (6H, d, J = 6.4 Hz, 26-CH₃ and 27-CH₃), 0.92 (3H, d, J = 6.0 Hz, 21-CH₃), 1.02 (3H, s, 19-CH₃), 2.02 (3H, s, acetate), 2.12 (3H, s, acetate), 4.82 (1H, bs, W_{1/2} = 5.5 Hz, 6β-H), 5.09 (1H, m, 3α-H), and 5.24 (1H, bs, W_{1/2} = 5.5 Hz, 7-H).

5α -Cholesta-7,9(11)-diene-3 β ,5,6 α -triol (3)

 5α -Cholest-7-ene- 3β , $5, 6\alpha$ -triol 3, 6-diacetate 2 (2.0 g), dissolved in chloroform (17 ml), was added to a solution of mercuric acetate (3.0 g) in acetic acid (32 ml); the mixture was stirred for 22 hours at room temperature. The mixture was filtered, and the filtrate was concen-

trated to a small volume at reduced pressure, dissolved in ether, washed with saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), and evaporated. The crude product was hydrolyzed by treatment with 5% methanolic potassium hydroxide (100 ml) under reflux for 1 hour and worked up in the usual manner to give a product that was purified by chromatography on a silica gel column under a slight N₂ pressure with chloroform/methanol (9:1 v/v) as the eluent to give 5α -cholesta-7,9(11)-diene- 3β ,5,6 α -triol (3) (475 mg): mp, 199 to 200 C (acetone); $[\alpha]_D^{20} = +90.0^\circ$ (c = 0.4) (reported¹²: mp, 201 to 202 \tilde{C} ; $[\alpha]_D^{20} = +100.0^{\circ} [CHCl_3]$; FTIR, ν_{max} 3,400 cm⁻¹; UV, λ_{max} 237 (ε 14,800), 243 (ε 16,100), and 252 nm (ε 9,025); ¹H NMR (CDCl₃) δ $0.53 (3H, s, 18-CH_3), 0.86 (6H, d, J = 6.4 Hz, 26-CH_3)$ and 27-CH₃), 0.91 (3H, d, J = 6.4 Hz, 21-CH₃), 1.10 $(3H, s, 19-CH_3)$, 2.15 (1H, bd, J = 17.5 Hz, 12-H_a), 2.37 (1H, dd, J = 17.5 and 6.4 Hz, 12-H_b), 4.00 (2H, overlapping multiplets, 3α -H and 6β -H), 5.16 (1H, bs, $W_{1/2} = 5.1$ Hz, 7-H), and 5.67 (1H, bd, J = 6.4 Hz, 11-H); MS m/z 416.3299 (M⁺, calculated for C₂₇H₄₄O₃ 416.3279, 78%), 398.3225 (C₂₇H₄₂O₂, M⁺-H₂O, 100%), 383.2909 (C₂₆H₃₉O₂, M⁺-H₂O-CH₃, 13%), 380.3044 $(C_{27}H_{40}O, M^+ - 2H_2O, 62\%), 267.1723 (C_{19}H_{23}O, M^+ - 2H_2O, 62\%), 267.1723 (C_{19}H_{23}O, M^+ - 2H_2O, M^+ - 2H_2O), 267.1723 (C_{19}H_{23}O, M^+ - 2H_2O), 267.1723 (C_{19}H_{23}O), 267.1720 (C_{19$ $2H_2O-C_8H_{17}$, 24%), and 249.1624 ($C_{19}H_{21}$, M⁺-3H₂O-C₈H₁₇, 33%).

3β ,5-Dihydroxy- 5α -cholesta-7,9(11)-dien-6one (4)

 5α -Cholesta-7,9(11)-diene- 3β ,5, 6α -triol **3** (500 mg) was stirred with a suspension of manganese dioxide (3.75 g) in chloroform (40 ml) at room temperature for 4 hours. The mixture was filtered, and the filtrate was washed with brine, dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by chromatography on a silica gel column with chloroform/methanol (99:1 v/v) as the eluent to give 3β ,5dihydroxy- 5α -cholesta-7,9(11)-dien-6-one (4) (76.1 mg): mp, 179 to 181 C (CHCl₃/MeOH 1:1); $[\alpha]_D^{20} =$ +148.4° (c = 0.5); FTIR, ν_{max} 3,390, 1,674, and 1,622 cm⁻¹; UV λ_{max} 292 nm (ε 23,700); ¹H NMR (CDCl₃) δ 0.61 (3H, s, 18-CH₃), 0.87 (6H, d, J = 6.8 Hz, 26-CH₃ and 27 CH₃), 0.93 (3H, d, J = 6.0 Hz, 21-CH₃), 1.13 $(3H, s, 19-CH_3), 2.25 (1H, bd, J = 18.3 Hz, 12-H_a),$ 2.54 (1H, dd, J = 18.3 and 7.7 Hz, 12-H_b), 4.07 (1H, m, 3α -H), 5.67 (1H, bs, $W_{1/2} = 5.1$ Hz, 7-H), and 6.05 $(1H, bd, J = 7.3 Hz, 11-H); MS m/z 414.3064 (M^+)$ calculated for C₂₇H₄₂O₃ 414.3123, 49%), 386.3218 $(C_{26}H_{42}O_2, M^+-CO, 100\%), 378.2944 (C_{27}H_{38}O, M^+-CO, 100\%)$ $2H_2O$, 4%), 371.2928 (C₂₅H₃₉O₂, M⁺-CO-CH₃, 44%), 368.3068 (C₂₆H₄₀O, M⁺-CO-H₂O, 31%), 353.2842 (C₂₅H₃₇O, M⁺⁻CO-H₂O-CH₃, 2%), 273.1832 (C₁₈H₂₅O₂, M^+ -CO-C₈H₁₇, 4%), and 255.1669 (C₁₈H₂₃O, M^+ -CO-H₂O-C₈H₁₇, 9%).

9α , 11α -Epoxy- 3β , 5-dihydroxy- 5α -cholest-7en-6-one (5)

A solution of *m*-chloroperbenzoic acid (65 mg) in chloroform was added to a solution of 3β ,5-dihydroxy- 5α -cholesta-7,9(11)-dien-6-one (4) (90 mg) in CDCl₃ (25

Papers

ml) in an ice bath, and the mixture was stirred at 0 C. When the starting product disappeared (after approximately 6 hours, ¹H NMR monitoring), the reaction mixture was taken to dryness and washed with a saturated aqueous NaHCO₃ solution and brine. After drying over Na₂SO₄, the solvent was removed under reduced pressure and the residue was purified by chromatography on a silica gel column using chloroform/methanol (99.5: 0.5 v/v) as the eluent, to give 9α , 11α -epoxy- 3β , $5-\beta$ dihydroxy-5 α -cholest-7-en-6-one (5) (70 mg): mp, 201 to 202 C; $[\alpha]_D^{20} = +121.5^\circ$ (c = 0.3); FTIR, ν_{max} 3,510, 3,450, 3,350, 3,250, 1,681, and 1,632 cm $^{-1}$: UV, λ_{max} 252 (ε 12,040), 244 (ε 12,320), and 238 nm (ε 14,440); ¹H NMR (CD₃OD) δ 0.67 (3H, s, 18-CH₃), 0.88 (6H, d, J = 6.8 Hz, 26-CH₃ and 27-CH₃), 0.95 (3H, d, J = 6.0Hz, 21-CH₃), 1.13 (3H, s, 19-CH₃), 1.52 (1H, dd, J =14.1 and 11.5 Hz, 4-H_{ax}), 1.82 (1H, bd, J = 14.1 Hz, $2-H_{eq}$, 1.88 (1H, d, J = 14.9 Hz, 12- H_{ax}), 2.05 (1H, ddd, J = 14.1, 14.1, and 4.3 Hz, 1-H_{ax}), 2.13 (1H, ddd, $J = 14.1, 5.1, and 2.1 Hz, 4-H_{eq}$, 2.27 (1H, dd, J =14.9 and 6.0 Hz, 12-H_{eq}), 2.57 (1H, ddd, J = 8.1, 8.1, and 1.7 Hz, 14-H), 3.33(1H, d, J = 6.0 Hz, 11-H), 3.91 $(1H, m, 3\alpha - H)$, and 5.85 (1H, d, J = 1.7 Hz, 7 - H); MS m/z 430.3080 (M⁺, calculated for C₂₇H₄₂O₄ 430.3072, 100%), 369.2840 ($C_{25}H_{37}O_2$, M⁺-CO-H₂O-CH₃, 4%), and 317.1760 ($C_{19}H_{25}O_4$, $M^+-C_8H_{17}$, 18%).

9α , 11α -Epoxy- 5α -cholest-7-ene- 3β , 5, 6β -triol (1) and its 6α -epimer (6)

 9α , 11α -Epoxy- 3β , 5-dihydroxy- 5α -cholest-7-en-6-one 5 (11.3 mg) in anhydrous ether (5 ml) was treated with excess lithium aluminum hydride at room temperature. When no starting material remained (5 minutes, TLC monitoring), water was added cautiously until a white precipitate was formed. The ether layer was decanted, washed with brine, dried (Na₂SO₄), and evaporated under reduced pressure. Fractionation by HPLC on a Hibar LiChrosorb Si-60 (250 \times 10 mm) column using chloroform/methanol (96 : 4 v/v) as eluent gave 9α , 11 α epoxy-5 α -cholest-7-ene-3 β ,5,6 β -triol (1) (5.5 mg) and its 6α -epimer (6, 1.5 mg). Compound 1 had the following values: mp, 237 to 239 C (acetone) (reported¹: mp, 250 to 252 C [CHCl₃/hexane 1 : 2]); $[\alpha]_D^{20} = -29.1^\circ$ (c = 0.3, CHCl₃); FTIR, ν_{max} 3,390 cm⁻¹; ¹H NMR (C₅D₅N) see Table 1; ¹H NMR (CDCl₃) δ 0.63 (3H, s, 18-CH₃), $0.86(6H, d, J = 6.4 Hz, 26-CH_3 and 27-CH_3), 0.90(3H,$ $d, J = 6.4 Hz, 21-CH_3$, 1.31 (3H, s, 19-CH₃), 2.19 (1H, dd, J = 11.9 and 5.5 Hz, 12β -H), 2.33 (1H, dddd, J = 9.8, 9.8, 2.1, and 2.1 Hz, 14-H), 3.16 (1H, d, J = 5.5Hz, 11-H), 3.91 (1H, ddd, J = 5.5, 5.5, and 2.1 Hz, 6α -H), 4.10 (1H, m, 3α -H), and 5.73 (1H, dd, J = 4.7 and 2.1 Hz, 7-H); δ^{-13} C NMR (C₅D₅N) see Table 1; MS m/z 432.3305 (M⁺, calculated for C₂₇H₄₄O₄ 432.3269, 100%), 417.3006 ($C_{26}H_{41}O_4$, M⁺-CH₃, 3%), 414.3143 $(C_{27}H_{42}O_3, M^+-H_2O, 8\%), 399.2985 (C_{26}H_{39}O_3, M^+ H_2O-CH_3, 7\%$), 398.3175 ($C_{27}H_{42}O_2, M^+-O-H_2O, 3\%$), 396.3100° (C₂₇H₄₀O₂, M⁺-2H₂O, 3%), 380.2995 $(C_{27}H_{40}O, M^+-O-2H_2O, 2\%), 378.2865 (C_{27}H_{38}O, M^+ 3H_2O$, 2%), 362.3029 ($C_{27}H_{38}$, M^+-O-3H_2O , 2%), 301.1840 ($C_{19}H_{25}O_3$, $M^+-\bar{C_8}H_{17}-H_2O$, 3%), 283.1721

 6α -Epimer (6) had the following values: mp, 216 to 218 C (H₂O-acetone); $[\alpha]_D^{20} = +21.8^\circ$ (c = 0.4); FT1R, ν_{max} 3,430 cm⁻¹: ¹H NMR (CDCl₃) δ 0.58 (3H, s, 18- CH_3), 0.86 (6H, d, J = 6.8 Hz, 26-CH₃ and 27-CH₃), $0.89(3H, d, J = 6.8 Hz, 21-CH_3), 1.19(3H, s, 19-CH_3),$ 1.85 (1H, d, J = 14.9 Hz, 12-Hax), 2.17 (1H, dd, J =14.9 and 5.5 Hz, 12-Heq), 2.31 (1H, dddd, J = 10.2, 10.2, 1.7, and 1.7 Hz, 14-H), 3.19 (1H, d, J = 5.5 Hz), 11-H), 4.00 (2H, overlapped multiplets, 3α -H and 6β -H), and 5.48 (1H, dd, J = 1.7 and 1.7 Hz, 7-H); MS m/z 432.3252 (M⁺, calculated for C₂₇H₄₄O₄ 432.3269, 100%), 417.3030 ($C_{26}H_{41}O_4$, M⁺-CH₃, 5%), 414.3221 $(C_{27}H_{42}O_3, M^+-H_2O, 13\%), 398.3214 (C_{27}H_{42}O_2, M^+ H_{2}O-O, 3\%$), 396.3020 ($C_{27}H_{40}O_2, M^+-2H_2O, 5\%$), 380.3088 ($C_{27}H_{40}O$, M⁺-2H₂O-O, 2%), 378.2906 $(C_{17}H_{38}O, M^+-3H_2O, 3\%), 363.2765 (C_{26}H_{35}O, M^+ 3H_2O-CH_3$, 2%), 301.1844 ($C_{19}H_{25}O_3$, $M^+-C_8H_{17}-H_2O_5$. 5%), 283.1678 ($C_{19}H_{23}O_2$, M⁺- C_8H_{17} -2H₂O, 3%), and 265.1497 ($C_{19}H_{21}O, M^{-}-C_{8}H_{17}-3H_{2}O, 4\%$).

Results and discussion

The synthesis of 1 was achieved as outlined in Scheme 1. 5α -Cholest-7-ene- 3β .5. 6α -triol was prepared by per-

a. Hg(OAc)_{er} CHCl₂/HOAc; b. KOH/McOH, e. MnO.; d. mCPBA; e. LiAHI₄

Scheme 1

Synthesis of a 9,11-epoxy marine sterol: Migliuolo et al.

Table 1	¹³ C nuclear magnetic resonance data for compounds 1	through 5 ^a and natural 1 and	¹ H nuclear magnetic resonance data for
compou	nd 1 ^b		

	δ _C								
Position	2 (B==H)	3 (CDCl ₃)	4 (CDCl ₃)	5 (C ₅ D ₅ N)	1 (CDCl ₃)	Natural 1º (CDCl ₃)	1 (C ₅ D ₅ N)	δ _H (m, J)	
	(C_5D_5N)								1 (C ₅ D ₅ N)
1	32.3 ^d	30.1 ⁷	29.0 [/]	24 .1 [/]	25.9	36.0	26.9	$\begin{cases} H_{ax} \\ H_{eq} \end{cases}$	2.64 (ddd, 14.0, 14.0, 3.7) 1.21 ^q
2	32.6 ^d	30.6 [/]	30.0 [/]	31.0	30.2	31.9	31.9	∫ H _{ax} H _{eo}	2.04 (m) 2.27 (bd, 12.2)
3	67.2	67.0	67.1	66.6	67.2	67.3	67.2		4.80 (m)
4	41.0	42.4	42.4	37.3	40.1	41.15	41.2	{H _{ax} {H _{eα}	2.92 (dd, 12.8, 12.8) 2.56 (dd, 12.8, 4.3)
5 6 7 8 9	75.9 70.6 125.6 141.1 43.7	76.2 70.5 124.1 ^g 137.2 ^h 139.3 ^h	77.1 199.1 118.0 145.5 140.8	77.1 199.5 125.0 158.6 63.8	76.2 72.8 125.0 138.7 62.7	76.33 73.41 126.49 135.61 64.01	76.3 73.4 127.2 137.3 64.0	ι ση	4.52 (dd, 4.9, 1.9) 6.08 (dd, 4.9, 1.7)
10	39.2	41.0	41.6	40.5	38.3	39.7	39.3		
11	21.7	121.2 ^g	131.2	55.6	54.6	54.1	54.1		3.27 (d, 5.5)
12	40.0	37.5	34.8	40.2	39.4	40.8	40.8	$\left\{ \begin{matrix} \mathbf{H}_{ax} \\ \mathbf{H}_{ea} \end{matrix} ight.$	1.88 (d, 14.6) 2.14 (dd, 14.6, 5.5)
13	43.9	42.6	43.4	45.5	43.4	43.9	43.9	•	
14	55.1	51.0	52.2	48.0	46.7	47.2	47.2		2.51 (bdd, 11.0, 11.0)
15	23.2	23.1	22.7	22.0	22.5	24.2	22.8	H _a , H _b	1.5~1.65 (m) ⁴
16	28.3	28.3	28.0	27.9	27.9	28.2	28.2	{Η _a {Η _b	1.77 (m) 1.15 ⁹
17	56.4	56.2	56.3	56.8	56.5	56.8	56.8		1.15 ^q
18	12.3	11.3	11.4	14.2	13.7	13.9	13.9		0.69 (s)
19	17.9	24.3	23.9	20.3	21.5	22.0	22.0		1.72 (s)
20	36.49	35.9	35.8	35.8	35.7	36.0	36.0		1.29%
21	19.1	18.4	18.4	18.5	18.4	18.6	18.6	211	0.88 (0, 6.7)
22	36.55	36.0	35.9	36.0	35.8	36.20	36.2	⊓ª {H₀	0.95 (m)
23	24.4	23.9	23.9	24.7 [/]	23.8	24.17	24.2	∫Ha }H _b	1.28 ⁴ 1.13 ⁴
24	39.8	39.4	39.4	39.6	38.4	39.72	39.7	н̀", ́Нь	1.10 ⁹
25	28.3	28.0	27.9	28.2	28.0	28.2	28.2	- 6	1.49 (m)
26	23.0 ^e	22.5 [/]	22.5 [*]	22.6 ^m	22.4"	22.7°	22.7 ^p		0.85 (d, 6.7)
27	22.8 ^e	22.8 ⁱ	22.8 [*]	22.9 ^m	22.8 ⁿ	23.0°	23.0 ^p		0.85 (d, 6.7)

^a ¹³C nuclear magnetic resonance spectra were recorded for compounds **2** and **4** at 67.9 MHz, for **3** at 50.3 MHz, and for **5** and **1** at 100.1 MHz. Assignment of nuclear carbons for compound **2** is based on comparison with its 6β -epimer⁵; nuclear carbon assignments for **3**, **4**, and **5** are aided by literature data.^{17,18} Side chain carbon assignments for compounds **2** through **5** are by analogy with cholesta-5en-3β-ol.¹⁷ The assignment of all protonated carbons in the ¹³C NMR spectrum of compound **1** recorded in C₅D₆N is based on the 2D heterocorrelated spectrum via ¹J_{C-H}, whereas quaternary carbons are assigned on comparison with (22E,24R)-24-methyl-5α-cholesta-7,22-diene-3β,5,6β-triol⁵ (C-5, C-10, C-13) and literature data^{17,18} (C-9). Assignments of carbons in the ¹³C NMR spectrum of **1** recorded in C₅D₆N.

^b The ¹H NMR spectrum of **1** was recorded at 400 MHz. Assignments are based on the ¹H-¹H COSY spectrum and decoupling experiments. ^c Values reported in ref. 1.

^{d-p} Values with identical superscripts within each column may be interchanged.

⁹ Overlapped with other signals.

acid oxidation of commercially available cholesta-5,7dien-3 β -ol followed by hydrolysis as described for its Δ^{22} C-24 methyl homolog.^{13,14} Subsequent acetylation with acetic anhydride in pyridine at room temperature overnight gave 5 α -cholest-7-ene-3 β ,5,6 α -triol 3,6-diacetate (2). Mercuric acetate dehydrogenation of diacetate 2 in chloroform/acetic acid for 22 hours at room temperature¹⁵ produced 5 α -cholesta-7,9(11)-diene-3 β ,5,6 α -triol 3,6-diacetate (3; 3,6-diacetate). Hydrolysis at reflux temperature with methanolic potassium hydroxide, followed by oxidation with a suspension of manganese dioxide at room temperature,¹⁶ afforded

 3β ,5-dihydroxy- 5α -cholesta-7,9(11)-dien-6-one (4). Treatment of 4 in chloroform with *m*-chloroperbenzoic acid in an ice bath gave the keto epoxide 5. Subsequent reaction of this product with LiAlH₄ at room temperature for 5 minutes gave compound 1 and its 5α -epimer 6 in the ratio of 4:1; these compounds were separated by HPLC. Compound 1 labeled with tritium at C-6 could be obtained from the LiAlT₄ reduction of the keto epoxide 5.

The structures of compounds 1 through 6 were determined on the basis of high-resolution mass spectrometry, infrared, ¹H NMR, and ¹³C NMR spectra. Further-

Papers

more, the structure of 1 was unambiguously confirmed through 2D (¹H-¹H COSY and HETCOR via ¹J_{CH}) and homonuclear spin decoupling experiments. A complete assignment of both ¹H and ¹³C NMR spectra for compound 1, accomplished on the basis of the above experiments, is presented in Table 1, which also shows a comparative picture of ¹³C NMR data of synthetic compounds 2 through 5 along with the ¹³C NMR values reported¹ for the natural compound 1.* The ¹H NMR values for synthetic 1 agree with those reported for the natural compound.¹ We recorded the ¹³C NMR spectrum of 1 both in CDCl₃ and C₅D₅N solutions. Surprisingly, our ¹³C NMR values from the spectrum recorded in C₅D₅N are in good agreement with those reported¹ for the ¹³C NMR spectrum of 1 recorded in CDCl₃, except for carbons 1, 8, and 15. On the contrary, greater differences are observed when comparing the ¹³C NMR spectra of synthetic and natural 1, both recorded in $CDCl_3$ (see Table 1 for comparison). These observations can be rationalized only by assuming that the ¹³C NMR values reported for natural 1 refer to a spectrum recorded in C₅D₅N solution and not in $CDCl_3$.

Acknowledgments

This work was supported by Ministero della Pubblica Istruzione (Italy). Mass spectral data were provided by Servizio di Spettrometria di Massa del CNR e dell'Università di Napoli. The assistance of the staff is gratefully acknowledged.

References

1. Alam M, Sanduja R, Weinheimer AJ (1988). Isolation and structure of a cytotoxic epoxy sterol from the marine mollusc *Planaxis sulcatus*. *Steroids* **52:**45–50.

- Gunasekera SP, Schmitz FJ (1983). Marine natural products: 9α,11α-epoxycholest-7-ene-3β.5α,6β,19-tetrol 6-acetate from a sponge, *Dysidea* sp. J Org Chem 48:885–886.
- 3. West RR, Cardellina JH II (1988). Isolation and identification of eight new polyhydroxylated sterols from the sponge *Dysidea etheria*. J Org Chem **53**:2782–2787.
- Cafieri F, Fattorusso E, Gavagnin M, Santacroce C (1985). 3β,5α.6β-Trihydroxysterols from the Mediterranean bryozoan Myriapora truncata. J Nat Prod 48:944–947.
- 5. Piccialli V. Sica D (1987). Four new trihydroxylated sterols from the sponge *Spongionella gracilis*. J Nat Prod **50:915**–920.
- Madaio A, Piccialli, V Sica D, Corriero G (1989). New polyhydroxysterols from the Dictyoceratid sponges *Hippospongia* communis, Spongia officinalis, Ircinia variabilis, and Spongionella gracilis, J Nat Prod 52:952–961.
- Migliuolo A, Notaro G, Piccialli V, Sica D. New tetrahydroxylated sterols from the marine sponge Spongia officinalis. J Nat Prod (in press).
- 8. Bendall MR, Doddrell DM, Pegg DT, Hull WE (1982). *DEPT-Bruker-Information Bulletin*. Bruker Analytshe Masstechnik, Karlsruhe.
- Nagayama K, Kumar A, Wuethrich K, Ernst RR (1980). Experimental techniques of two-dimensional correlated spectroscopy. J Magn Reson 40:321–334.
- Bax A, Freeman R. Morris GA (1981). Correlation of proton chemical shifts by two-dimensional Fourier transform NMR. J Magn Reson 42:164–168.
- Bax A, Morris GA (1981). An improved method for heteronuclear chemical shift correlation by two-dimensional NMR. J Magn Reson 42:501-505.
- 12. Anastasia M, Galli GC, Allevi P (1979). Synthesis of 14β,17β(H)-cholest-5-en-3β-ol. J Org Chem 44:4983–4986.
- Windaus A, Luttringhaus A (1930). Über die Einwirkung von Benzopersaure auf Ergosterin und einige seiner Derivate. Ann Chem 481:119–131.
- Fieser M, Quilico A, Nickon A, Rosen WE, Tarlton EJ, Fieser LF (1953). Permanganate oxidation of ergosterol. J Am Chem Soc 75:4066–4071.
- 15. Fieser LF. Fieser M (1967). *Reagents for Organic Synthesis*, vol. 1. Wiley, New York, p. 644.
- Rasmusson GH, Arth GE (1971). Selective oxidation of hydroxy steroids. In: Fried J, Edwards JA (eds), Organic Reactions in Steroid Chemistry, vol. 1. Van Nostrand Reinhold, New York, pp. 222–264.
- 17. Blunt JW, Stothers JB (1977). ¹³C-NMR spectra of steroids. A survey and commentary. *Org Magn Reson* **9**:439–464.
- Weherli FW, Nishida T (1979). The use of carbon-13 nuclear magnetic resonance spectroscopy in natural products chemistry. In: Herz W, Grisebach H, Kirby GW (eds). Progress in the Chemistry of Organic Natural Products, vol. 36. Springer-Verlag, New York, pp. 1–229.

^{*} We could not perform a comparison with the natural product since we were unsuccessful in our efforts to reach Dr. Alam. Therefore, our comparison is based on reported data.¹