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Recently, cationic phosphinegold(l) complexes have been re- catalyst increased the yield (70%) of cyclized products, however,
ported to catalyze a variety of transformations involving alkynes. as a mixture of enol ethe2a and ketone3.5> Surmising that the
While back-bonding from gold(l) into a cationic intermediate may ketone arose from hydrolysis of the enol ether with adventitious
be essential to some of these transformaticansyore conventional water, addition of activated molecular sieves produced enol ether
reaction pathway relies on tha-acidity of cationic gold(l) 2ain 81% yield (Table 1, entry 19.
complexes to induce rans-addition of a nucleophile generating With optimal conditions in hand, we examined the scope of the
a vinylgold intermediateA).? Trapping of this intermediate with ~ gold(l)-catalyzed carboalkoxylation. We were pleased to find that
carbon-based electrophiles is challenging, as it undergoes rapidthe reaction proceeded in high yields with alkyl, phenyl, and ester
protonation to regenerate the cationic gold(l) catalyst. We hypoth- substituents on the alkyne (entries-#). As predicted by the
esized that protonation of the vinylgold intermediate might be proposed mechanism, the presence of electron-withdrawing groups
circumvented through intramolecular reaction with an in situ on the phenyl rings considerably slowed the conversioh tof 2
generated electrophile. Toward this goal, we envisioned that a (entries 5 and 7), while functionalization of the latter with electron-
benzylic cation B), a potent electrophile, could be generated by donating substituents increased the rate and the yield of the reaction
cyclization-induced fragmentation of a<X bond (eq 1) (entries 6 and 8). Additionally, allylic ethers also participated in

this gold(l)-catalyzed cyclization (entries-21).

. Ty On the basis of the requirement for a carbocation-stabilizing
/ R GERCU ~]:\\§ substituent at the benzylic position, we reasoned that a carboxonium
,mi I A Ay o ion might also be a viable intermediate in this reactien. Accordingly,
c\.;,r\\\\ ey ! { ketal4 reacted smoothly to furnish the protected 1-indenone adduct
Ayl o . 5 in 84% yield (eq 2). Moreover, the gold(l)-catalyzed reaction
R:alkyl\ {;‘@x—ﬂ_» {:"’ | was readily extended to the formation of cyclohexé&nim 72%
I N T G yield from acyclic benzyl ethe8 (eq 3).
B [Au] XR
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On the basis of this hypothesis, the reaction of gold(l) complexes Me 2% (p-CF3-CoHa)sPAUCI, 2% AgBFy O‘ COMe (o)
with benzyl methyl ethetawas examined. While no reaction was N 5A MS, CHzCly, 0 °C Ved “OMe
observed on treatment with neutralsPAuCI, 1a was completely 4 COMe Bave 5
consumed on exposure to 2 mol % obPAUBF,, affording a 32% COsMe COMe
yield of a mixture of enol ethe2a and indanoné&.# The use of a ovell 5% (p-CFa-CaHalsPAUCH, 5% AgBF4 Ph oMe (3
more electrophilic gold(l) complexp{CF;—CsH4):PAUBF,,% as a o ¢ 5A Ms,7g;zolz, t
6 7

Table 1. Scope of the Gold(l)-Catalyzed Carboalkoxylation
OMe

« « Ry Ph We envisioned two potential mechanisms for these transforma-
Ry 2/o(P'CF3'CsH433PAuCI R2 Ve tions both proceeding through an intermediate carbocation (eq 4).
Y X 2% AgBF4, 5AMS Y As hypothesized in eq 1, alkyne activation followed by @ bond
1ak Ro CHaCla, 1t 2ak OMe 3

scission would generate carbocat®which would be trapped by
enty cmpd X Y Ry Ro time (h)  vield (%)? the vinylgold(l) intermediate to give the observed indene adduct.
Alternatively, typical Lewis acid activation of the benzylic ether

1 H H Ph M 2 81b . . .
@ ° generates carbocatidhand a gold(l)-alkoxide. Trapping of the
2 bAoA Ph mBu ! % cation with the acetylene and (concerted or stepwise) addition of
8 c HooH Ph Ph 5 % the gold(l)-alkoxide to the alkyne would afford the indenyl ether.
4 d H H Ph CO.Me 4 93
5 e CFs H Ph COsMe 24 66° i ]
. 0-R
6 f H  MeO Ph COMe 2 90 (ArsP)Au {
/ —
7 g H H 3-CFgPh  COpMe 24 41be alkyne activation i’ g
8 h H H 4-MeOPh  COMe 15 99 CQR - - >_ @
. N * OR
9 i H H N Ph 2 % (APAG* C&)
10 i H H ;\/ COMe 4 83 ether activation f \\
RO-[AU] 9
1 Kk H H §~p, COMe 1 99 L d

a|solated yieldsP Conversion by*H NMR. ¢ With 5 mol % of catalyst,

40°C A double label crossover experiment was conducted in order to

probe these mechanistic possibilities (eq 5). The lack of observed
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crossover is consistent with a mechanism involving alkyne activa- geferences

tion rather than ionization of the benzylic ether; however, a mechan-
ism proceeding through a tight ion pair®tould not be excluded.

To examine this possibility, enantioenrich&kl was subjected to
the conditions of the gold(l)-catalyzed reactfolt 30% conversion,

1k was recovered with identical enantiomeric excess further
disfavoring a pathway that proceeds through ionization of the
methoxy group. Furthermore, we were surprised to find that indene
2k was also isolated with excellent chirality transtek number

of allylic ethers underwent the gold(l)-catalyzed rearrangement with
only modest deterioration of enantiomeric excess (e¥ 6).

0OCD3 Ph
Ph Ph
A 2% (p-CF3-CgHa)sPAUCI, 2% AgBF, OCD,
d1c Ph 6 (p-CF3-CeHa)aPAUCI, 2% AgBF, d2c 3 ©
OCHg 5A MS, CHoClp, 1t Ph
"
X
A
1b 2b OCHs
R1
OR® =/
N gt 2% (p-CFa-CgHa)aPAUCI, 2% AgBF 4 {
. Cp= o
S 5A MS, CHoCly, 1t
Nge OR®

1k R'=Ph, R? = CO,CH3, R%= CHg (82% ee)
ent1iR'=H, R2 = Ph, R®= CHg (99% ee)
11 R" = Ph, R% = CO,CHg, R® = allyl (73% ee)

2k (99%, 81% ee)
ent-2i (92%, 95% ee)
21 (92%, 59% ee)

Given these results, a proposed mechanism is outlined in eq 7.
Gold(l)-promoted intramolecular nucleophilic addition of the ben-
zylic ether generates cationic intermediafelonization of the G-O
proceeds through a transition statd)(that maximizes overlap of
the forming carbocation with the aromaticsystem and avoids
interaction of the benzylic substituent'jRvith the forming enol
ether. This pathway allows for the central chirality of the-@
bond to be retained in the axial chirality of carbocation intermediate
12. Intramolecular addition of the vinylgold(l) moiety to the
carbocation, via transition stale, transfers the axial chirality to
the C-C bond central chirality of the product indene with overall
inversion of the stereocent®r.
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In conclusion, we have reported a gold-catalyzed process ending
with the capture of the vinylgold intermediate by a carbon-based
electrophile?2 The gold(l)-catalyzed carboalkoxylation of alkynes
proceeds with chirality transfer, providing a rapid entry into func-
tionalized enantioenriched indenyl ethers from readily available ben-
zylic etherst® The resulting enol ethers are well suited for further
manipulation, as demonstrated by the diastereoselective formation
of a quaternary carbon center via a gold(l)-catalyzed carboalkoxyla-
tion/Claisen rearrangement sequeheerther applications and studies
on the mechanism of the gold(l)-catalyzed carboalkoxylation reac-
tion are ongoing in our laboratories and will be reported in due course.
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