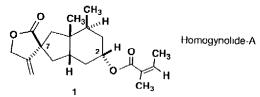
Stereoselective Synthesis of Homogynolide-A, A Bakkane from Homogyne alpina

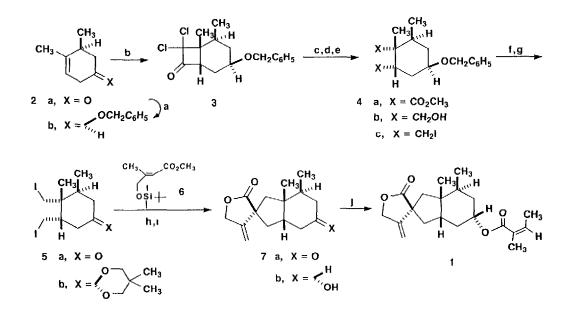

Benoît Hartmann, Alice M Kanazawa, Jean-Pierre Deprés, and Andrew E Greene*

Université Joseph Fourier, LEDSS BP 53X, 38041 Grenoble Cedex, France

Abstract Homogynolide-A, an antifeedant sesquiterpene, has been stereoselectively prepared from benzoquinone

The bakkanes, a class of naturally occurring spiro β -methylene- γ -butyrolactones, have been isolated from several genera of the *Senecioneae* tribe (Compositae) ¹ The antifeedant effect of several of these novel hydrindanes on stored grain and seed pests is noteworthy homogynolides A and B and bakkenolide-A, for example, show moderate to excellent protectant activity against beetle adults (*Sitophilus granarius, Tribolium confusum*) ²

In view of the dearth of synthetic activity in this area, we began a few years ago a study of possible approaches to the bakkanes, which culminated in the first syntheses of (+)-bakkenolide- A^3 and (±)-homogynolide- B^4 In this communication, we wish to record the first preparation of homogynolide-A (1) ⁵ This racemic synthesis, which required a number of modifications of our basic bakkane approach, permits good to excellent stereocontrol at all 5 stereogenic centers ⁶



4,5-Dimethyl-3-cyclohexenone (2a), easily prepared from benzoquinone,⁷ was stereoselectively (\geq 98 2) converted with lithium aluminum hydride to the cis alcohol, which could be benzylated under standard conditions to give 2b (97% overall). The reaction of 2b with dichloroketene, using the Hassner protocol,⁸ produced with excellent face selectivity (\geq 95 5) the desired cycloadduct 3. In that large material loss attended chromatographic purification of this non-crystalline substance, it was immediately subjected to enol acetate formation, and then ozonolytic cleavage and in situ esterification⁴ to afford the stereochemically homogeneous diester 4a in 44% overall yield from 2b (81%/step). Hydride reduction of this diester gave diol 4b, which could be cleanly converted to diodide 4c via the corresponding ditrifiate (54% overall). Numerous other potential methods for accomplishing this problematical conversion failed entirely due to competing elimination and/or tetrahydrofuran formation.

As preliminary studies had indicated that a C-2 (bakkane numbering) acetal would provide the best C-7 natepi stereochemical ratio in the upcoming cycloalkylation reaction, the benzyl ether of 4c was cleaved with TMSI and the resulting alcohol (mp 113-114°C) was oxidized to give 5 a (mp 105-106°C), which was acetalprotected to provide 5b (mp 87-88°C) in 73% overall yield ⁹ This adjustment concomitantly served toward the introduction of the required configuration at C-2 (see below)

Cycloalkylation and double deprotection-lactonization⁴ generated in 50% yield an easily separated, ca 3 1 favorable mixture of C-7 epimeric ketones, the major of which ($7a^{10}$) on hydride reduction produced highly stereoselectively (\geq 95 5) in 83% yield alcohol 7b ¹⁰ Esterification of this alcohol could be effected with angelic acid, without detectable $Z \rightarrow E$ isomerization, by using a slight modification of Yamaguch's procedure¹¹ to give in 70% yield homogynolide-A, whose identity was confirmed through spectroscopic comparison

In summary, racemic homogynolide-A has been obtained from ketone 2 a in 16 steps with an overall yield of 4% Additional work in the bakkane area is in progress

^a LiAlH₄, THF, -78°C, NaH, C₆H₅CH₂Cl, (C₄H₉)₄NI(cat), THF, reflux ^b CCl₃COCl, POCl₃, Zn-Cu, ether, reflux ^c (CH₃)₂CuLi, ether, -50°C, then (CH₃CO)₂O, -50 \rightarrow 20°C, O₃, CH₂Cl₂-CH₃OH, -78°C, then CH₃SCH₃, -78 \rightarrow 20°C, aq NaOH, CH₃I, HMPA, 20°C ^d LiAlH₄, THF, 20°C ^e (CF₃SO₂)₂O, 2,6-di-t-butylpyridine, CH₂Cl₂, -30°C, (C₄H₉)₄NI, C₆H₅CH₃, 20 °C ^f TMSI, CH₂Cl₂, 20°C, PCC, CH₂Cl₂, 20°C ^g (CH₃)₂C(CH₂OH)₂, BF₃ \rightarrow O(C₂H₅)₂, CH₂Cl₂, 0°C ^h 6, (TMS)₂NLi (2x), DME-THF-HMPA (3 2 1), -58°C, aq HF CH₃CN, 20°C, separation ^tLiAl(Ot-C₄H₉)₃H, THF, 0°C ^f Angelic acid, Cl₃C₆H₂COCl, (C₂H₅)₃N, THF, 20°C, fultration, evaporation, addition of 7b in C₆H₅CH₃, 60°C

Acknowledgment We thank Profs J Lhomme and T J Brocksom and Dr J L Luche for their interest in our work and Prof F Bohlmann for a copy of the NMR spectrum of 1 Financial support from the CNRS (UA 332) and fellowship awards from Rhône-Poulenc Agro (to B H) and the CNPq (to A M K) are gratefully acknowledged

Notes and References

1 See Fischer, N.H., Olivier, E.J., Fischer, H.D. In Progress in the Chemistry of Organic Natural Products. Herz W., Grisebach, H. Kirby, G.W. Eds., Springer-Verlag. New York 1979. Vol. 38, Chapter 2, and references cited therein.

2 Nawrot, J, Bloszyk E, Harmatha, J, Novotny, L. Drozdz B. Acta Entomol Bohemoslov 1986, 83, 327-335 Nawrot, J, Harmatha, J, Bloszyk E, presented in part at the 4th International Conference on Stored Product Protection, Tel-Aviv Sept 1986 3 Greene, A. E., Coelho, F. Deprés, J - P. Brocksom, T. J. Tetrahedron Lett 1988, 29 5661-5662 For syntheses of (±)-

bakkenolide-A, see references cited therein

4 Coelho, F, Depres J -P, Brocksom, T J, Greene, A E Tetrahedron Lett, 1989, 30, 565-566

5 Harmatha, J. Samek, Z., Synackova, M., Novotny L. Herout, V., Sorm, F. Collect Czech Chem Commun 1976, 41, 2047-2058 Jakupovic, J., Grenz M. Bohlmann, F. Planta Med. 1989. 55 571-572

6 The structural resemblance of homogynolide-A with homogynolide-B belies the differences encountered in their syntheses. These differences will be discussed in the full paper on our bakkane work.

7 Benzoquinone was transformed to 4 hydroxy-4 5-dimethyl 2 cyclohexenone (see Solomon M Jamison, W C L, McCormick M Liotta, D Cherry, D A Mills J E Shah, R D, Rodgers J D, Maryanoff C A J Am Chem Soc 1988, 110 3702-3704), which was converted to 2a with zinc in acetic acid. We thank Prof Liotta for providing experimental details for the first part of this transformation 8 Krepski, L R, Hassner, A J Org Chem 1978, 43, 2879-2882.

9 The acetal of 2a undergoes dichloroketene cycloaddition on the β -face and, therefore icannot be used at the outset to obtain 5b 10. This material provided NMR data in excellent agreement with the literature values for the natural product-derived compound

11 Inanaga, J. Hirata K., Saeki, H., Katsuki, T. Yamaguchi, M. Bull. Chem. Soc. Jpn 1979 52 1989 1993

(Received in France 11 December 1990)