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Abstract: o~-Alkynal ester 3, prepared from (S)-propylene oxide 4, yields the macrocyclic (6R)-allylic 
alcohol 2 (60% yield, 83% d.e.) in one operation via monohydroboration, boron/zinc-transmetalation and (-)- 
DAIB "catalyzed" intramolecular alkenylzinc/aldehyde addition. Introduction of the C(2)-C(3) double bond 
by selenoxide elimination (2 ---> 8), hydroxy-directed epoxidation (8 ---) 9), acetate assisted ot-epoxide 
opening (10 -+12) and acidic methanolysis provides pure (+)-aspicilin (1) in 22% overall yield from 4. 

As part of a recent synthesis of the macrocyclic odorant (R)-(-)-muscone we presented the asymmetric 

macrocyclization A --~ B ~ C (X = CH 2, Scheme 1). 2) 
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Thus, one synthetic operation, comprising hydroboration of an to-alkynal A, boron/zinc-transmetalation 

and dimethylaminoisoborneol "catalyzed" intramolecular addition of the alkenylzinc intermediate B to the 

aldehyde group, furnished a 15-membered carbocyclic (S)-allyl alcohol C in 75% yield and in high 

enantiomeric purity. 

Analogous ring closure of t~-alkynal esters A, containing an ester group X as part of the tether, should 

offer an interesting approach to macrolides. To prove this idea, we envisaged its application towards a 

synthesis of (+)-aspicilin, a macrocyclic lactone, isolated from various lichens of the Lecanoraceae family 

(Scheme 2). 3, 5a) 
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The structure 1, follows from degradational/spectroscopic data 4a), an X-ray diffraction analysis 4b, 5a) 

and from several total syntheses of 1 and its antipode reported by the laboratories of Quinkert 5), 

Zwanenburg 6), Solladi6 7) and most recently, by the Sinha-Keinan team 8) Our, very different, strategy 

(Scheme 2) foresees the formation of the C(5)-C(6) bond in the key macrocyclization process 3 ~ 2. 9) The 

(6R, E)-allyl alcohol 2 should then allow the introduction of the hydroxy groups at C(4) and C(5) with 

control of the developing stereogenic centers by the existing allylic center C(6). 

Starting from pure (S)-propylene oxide 4, epoxide opening with 10-(2-tetrahydropyranyloxy)decyl- 

magnesium bromide/Cu(COD)C1 5a), esterification of the resulting alcohol with 4-pentynoic acid, acetal 

cleavage and "Swern-oxidation" furnished the key o~-alkynal ester 3 in 76% overall yield (Scheme 3). 
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Now the stage was set for the crucial ring closure. (17S)-co-Alkynal ester 3 was added to a solution of 

freshly prepared dicyclohexylborane-SMe 2 complex (1 mol equiv.) in degassed hexane under Ar at -20 ° and 

the mixture was warmed to 0 ° over 1 h and then stirred at r.t. for 0.5 h. The resulting solution of 

alkenylborane was diluted with degassed hexane to 0.05 M and added over 2.5 h at 0 ° to a 0.05 M solution of 

diethylzinc (1.5 mol equiv.) in degassed hexane containing (IR)-(-)-dimethylaminoisoborneol [(-)-DAm, 

0.01 mol equiv.]. Workup with aq. NH4C1 provided the expected 18-membered (6R)-lactone in 60% 

chemical yield and in 82% diastereomeric excess. 10) We then tested the influence of the pre-existing center 

C(17) on the cyclization topicity. Analogous ring closure of the achiral 0~-alkynal ester 6 11), which means 

solely under the control of (-)-DAIB, proceeded with a slightly diminished stereoselection yielding the (6R)- 

macrolide 7 in 79% enantiomeric excess. 10) More clearly, when we cyclized the (17S)-o)-alkynal ester 3 in 

the presence of (+)-DAm we obtained the (6S)-lactone 5 in only 70% diastereomeric excess 10) which 

indicates a mismatching of the dominant catalyst bias and the opposing C(17) substituent effect. It thus 

follows that the (6R,17S)-lactone 2, our presumed key intermediate for the (+)-aspicilin synthesis, was 

formed under the matching of both stereodirecting effects. 
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To convert the macrocyclic (6R)-allylic alcohol 2 into aspicilin (1), we chose to introduce the missing 

C(2)-C(3) double bond prior to the two hydroxy groups (Scheme 4). 

Scheme  4 
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O-Silylation of the alcohol 2 and chromatography, silylation of the lactone group, phenylselenation of 

the O-silylketene acetal, selenide oxidation (magnesium monoperoxyphthalate), selenoxide elimination and 

fluoride mediated O-desilylation furnished the pure (E,E)-dienol 8 in 82% overall yield. 12) 

Addressing, finally, the bis-hydroxylation of the C(4)-C(5) double bond we envisaged a hydroxy- 

directed epoxidation, which has already been studied by Quinkert et a/..5c, 13) Oxidation of the dienol 8 with 

vanadyl acetyl acetonate and t-butyl hydroperoxide at 0 ° led to regioselective epoxidation of the allylic 

double bond, affording a 92:8-stereoisomer mixture which, after flash chromatography and crystallization, 

provided the major (4R,5R)-epoxide 9 (m.p. 143.5-145 °) in 77% yield. 

To open the epoxide regioselectively at the C(5) position with inversion of configuration, alcohol 9 was 

acetylated and the ~-acetoxyepoxide 10 (m.p. I 11-112 °) treated with boron trifluoride etherate (7 mol 

equiv.) in dry Et20 for 3h at r.t.. Subsequent aqueous workup furnished a l : l-mixture of C(6)- and C(5)- 

monoacetates 12a/12b in 81% yield. 14) This result is consistent with a neighboring group assisted c~-specific 

epoxide opening to give a single cyclic oxonium ion 11, which hydrolysed in both possible directions. 

Finally, mild acidic methanolysis of the non-separated acetate mixture 12a/12b (0.08 N HC1/MeOH, r.t., 

27 h) gave almost quantitively (+)-aspicilin (1), m.p. 151.5-153°; lit. 5c) 152_153 o, [0t] D = +39.6 (c = 0.24, 

CHCI3) ; lit. 5c) [~]D = +40.7 (c = 0.4, CHC13) showing the same IR, IH-NMR, 13C-NMR and MS data as 

those previously reported.4a, 5a) 

In summary, we have obtained optically pure (+)-aspicilin (1) from (S)-propylene oxide 4 via a 12-step 

sequence in 22% overall yield which compares very favorably with other elegant syntheses of 1 5-8) and thus 

exemplifies the potential of intramolecular alkenylzinc/aldehyde additions in the synthesis of chiral 

macrolides. 
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