

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 60 (2004) 11011-11027

Nitroalkylation and nitroalkenylation reactions of γ -lactone enolates. A facile ring switch from polysubstituted γ -lactones to polysubstituted γ -lactams

C. Forzato,^a P. Nitti,^{a,*} G. Pitacco,^a E. Valentin,^{a,*} S. Morganti,^b E. Rizzato,^b D. Spinelli,^b C. Dell'Erba,^c G. Petrillo^c and C. Tavani^c

^aDipartimento di Scienze Chimiche, Università di Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy

^bDipartimento di Chimica Organica 'A. Mangini', Università di Bologna, via San Donato 15, I-40127 Bologna, Italy ^cDipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31, I-16146 Genova, Italy

Received 11 June 2004; revised 5 July 2004; accepted 28 July 2004

Available online 7 October 2004

Abstract—Michael addition of lithium enolates of γ -butyrolactone 1 and α -methyl- γ -butyrolactone 1' to (E)-1-nitropropene 2, (E)- β nitrostyrene 3 and (E)-2-nitro-1-phenylpropene 4 is described. Reactions of the lithium enolate of 1' with 2 and 4 occurred with high diasteroselectivity (80 and 92% d.e., respectively). Reactions of the zinc enolate of 1' with two β -nitroenamines and two methylthiosubstituted 1-amino-2-nitro-1,3-dienes were also examined. Catalytic reduction of the nitroalkylated and nitroalkenylated products allowed the achievement of functionalized γ -lactams and/or cyclic hydroxamic acids.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Polyfunctionalized γ -lactones are frequently encountered in the literature,¹ owing to the fact that many natural products, in particular those belonging to the sesquiterpene series, contain the γ -lactone ring in their structure. Many examples of α -functionalization and α, α -difunctionalization of γ lactone rings are present in the literature³ and among them a new class of anticonvulsant drugs can be mentioned.⁴ α -Nitroalkenylation reactions were extensively studied,⁵ with the aim of preparing compounds possessing quaternary stereocentres,⁶ whereas no examples of nitroalkylation reactions of γ -lactones can be found. On the contrary, Enders and co-workers⁷ obtained excellent results in the diastereo- and enantio-selective Michael additions of enolates of γ -lactams to aliphatic and aromatic nitroolefins. Seebach and coworkers⁸ investigated the nitroalkylation reactions of lithium enolates of other five-membered ring heterocycles, such as chiral non-racemic 2-t-butyl-1,3dioxolan-4-ones, 2-t-butylimidazolidin-4-ones and 2-tbutyloxazolidin-5-ones, to verify the 1,3 asymmetric induction on the reaction products. In all cases examined the diastereoselectivity was high, depending however on

whether the position α to the carbonyl group was substituted or not.

In this paper we describe the nitroalkylation reactions of the lithium enolates of γ -butyrolactone 1 and α -methyl- γ butyrolactone $\mathbf{1}'$ with a few conjugated nitroolefins, such as (E)-1-nitropropene 2, (E)- β -nitrostyrene 3 and (E)-2-nitro-1-phenylpropene 4. Nitroalkenylation reactions have also been carried out, by reacting the zinc enolate of compound 1' with the β -nitroenamines **5**⁹ and **6**¹⁰ as well as with the nitrodienes **7**, ^{11,12} and **7**'¹² (Fig. 1).

2. Results and discussion

2.1. Nitroalkylation reactions

The butanolides 1 and 1' were enolized with lithium diisopropylamide in THF at -78 °C to the corresponding lithium enolates 8 and 8', which reacted with the nitroolefins 2, 3, and 4, to provide the corresponding nitronate salts 9–14 (Scheme 1).

No attempt to isolate the lithium nitronate intermediates 9-14 was undertaken. Treatment of the crude reaction mixtures with a weak acid afforded the corresponding nitroalkylated lactones 15-20. The nitroalkylated lactones 15, 16, 17 and 18, for which $R^2 = H$, were mixtures of syn/

Keywords: Substituted nitroalkenes; Substituted nitroalkadienes; y-Lactams; Cyclic hydroxamic acids.

^{*} Corresponding authors. Tel.: +39-040-5583917; fax: +39-040-5583903; e-mail: valentin@dsch.univ.trieste.it

^{0040-4020/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.07.084

Figure 1.

anti diastereomers, **a** and **b** respectively, owing to the presence of two adjacent chiral centres, while **19** was a mixture of four diastereomers and **20** was a mixture of three diastereomers out of the four possible ones. In order to evaluate the diastereoselectivity of the reaction, the *syn* and *anti* descriptors were also used for **19** and **20**, to indicate the relative configurations of the two stereocentres of the newly formed C–C bond.

Since for the nitroalkylated γ -lactones 15–20 the syn/anti stereochemical assignments were not straightforward, a stereochemical correlation was desirable: therefore, such lactones were converted into the corresponding trans and cis lactam derivatives 21-26 to take advantage of the more rigid polysubstituted lactams to determine the configurations of the stereocentres. On the other hand, γ -lactams themselves are attractive targets because they possess a variety of biological activities¹³ and have been used to produce γ -aminobutyric acid (GABA) analogues by hydrolysis.¹⁴ Thus, reduction of the nitro group of compounds 15–20 with hydrogen on Raney Ni and subsequent cyclization¹⁵ of the corresponding aminoalkyl lactone intermediates, which were not isolated, afforded the corresponding lactam derivatives 21–26 (Scheme 1). In this manner, the stereochemical assignments were made on the lactam derivatives 21–26 either by a comparison of their ¹³C NMR spectra or by means of NOE measurements. When this latter method was unsatisfactory, the nitroalkylated γ -lactones 15–19 were transformed into the corresponding cyclic hydroxamic

acids **27–31**,¹⁶ using 10% Pd/C as the catalyst. The latter compounds proved better substrates for NOE measurements, which supported the stereochemical assignments previously made on the lactam derivatives. All resonances of each compound were identified by means of 2D correlated experiments.

2.2. Reactions of enolates 8 and 8' with (E)-1-nitropropene 2

The reaction of lithium enolate 8 with (E)-1-nitropropene 2 led, after acidification with aqueous satd. NH₄Cl, to the formation of two diastereomeric (nitroalkyl)lactones 15a and 15b in 2:3 ratio, which were separated by flash chromatography (Scheme 2). They were assigned the syn and anti configuration, respectively, after transformation into the corresponding lactams 21a and 21b whose geometries were demonstrated to be trans and cis, respectively. In fact the ¹³C NMR spectrum of **21b** showed an upfield shift for the methyl group with respect to the same resonance in **21a**, thus demonstrating its *cis* relationship with the hydroxyethyl chain (Table 1). The same *trans/cis* assignment was made for the corresponding cyclic hydroxamic acids 27a and 27b that were obtained in admixture with the corresponding lactams 21a and 21b when the reduction was performed using Pd on carbon as the catalyst.

Similarly, the reaction between the enolate 8' and 2 afforded the corresponding nitroalkylated products **16a** and **16b** in

Scheme 2.

1:9 ratio, as determined by HRGC analysis of the crude reaction mixture. However, since in this case the two diastereomers were not separable by flash chromatography, the subsequent reductions of the nitro group were performed on the mixture. When Raney Ni was used as the catalyst, a 1:9 mixture of the corresponding lactams **22a** and **22b** was isolated. They were assigned the $(3R^*, 4R^*)$ and $(3R^*, 4S^*)$ configurations, respectively, by comparison of their ¹³C NMR spectra (Table 1): an upfield shift was always observed for those carbon atoms which suffered from steric effects.¹⁷ Thus, the methyl group at C-3 resonated at 15.1 ppm in **22a** and at 20.5 ppm in **22b**, as a consequence of a less constrained situation in the latter diastereomer.

When the reduction of 16a,b was performed using Pd on carbon, two cyclic hydroxamic acids, namely 28a and 28b, were obtained in 1:9 ratio (Scheme 2). The relevant configurations were assigned on the basis of NOE measurements performed on the major product 28b, which was separated in pure form by fractional crystallization. Irradiation of its methyl singlet at 1.18 ppm enhanced the signal of H-4 (5%), while irradiation of the α -methylene hydrogens of the hydroxyethyl chain at 1.74 and 1.50 ppm produced enhancement of the methyl doublet at 1.04 ppm (2%). The NOE enhancement values were low, however this assignment was supported by a comparison of the ¹³C NMR spectra of the two isomers, whose significant digits are reported in Table 1. Again an upfield shift was observed for those carbon atoms which suffered from steric effects. Thus the methyl group at C-3 is shifted to higher field in 28a, being cis to the methyl group at C-4. The same trend was observed for the α -methylene hydrogens of the hydroxyethyl chain in 28b. As a consequence, the configuration of the chiral centres in compounds 22a and 28a is $(3R^*, 4R^* \text{ or }$ like¹⁸) and that of **22b** and **28b** is $(3R^*, 4S^* \text{ or unlike}^{18})$. The same configurations can be assigned to the corresponding parent lactones 16a and 16b, whose relative configurations are therefore *syn* and *anti* respectively.

2.3. Reactions of enolates 8 and 8' with (E)- β -nitrostyrene 3

The reactions between the nitroalkene 3 and the enolates 8

			γ -Lactams						Cyc	lic hydroxamic ac	ids		
Entry	Me at C-3	Me at C-4	CH ₂ CH ₂ OH	C-3	C-4	C-5	Entry	Me at C-3	Me at C-4	CH ₂ CH ₂ OH	C-3	C-4	C-5
21a		17.3	32.4	49.7	37.1	48.7	27a		17.6	33.0	47.8	31.5	55.2
21b	I	14.6	28.5	45.5	33.5	48.6	27b	I	14.9	28.8	43.4	28.4	55.5
22a	15.1	11.4	38.2	45.9	39.7	47.0	28a	16.0	11.5	38.5	44.7	33.8	53.6
22b	20.5	12.6	34.0	44.6	42.0	46.6	28b	21.3	12.0	35.0	43.6	37.3	53.6
23a			32.4	49.0	48.4	48.9	29a			34.1	46.4	43.5	56.3
23b			29.9	45.3	44.3	48.0	29b			30.5	42.6	40.0	55.8
24a	17.4		38.5	47.5	51.3	44.5	30a	19.5		40.1	47.1	45.0	52.5
24b	21.4		35.7	46.5	53.6	44.4	30b	23.3		37.0	46.5	45.0	52.4

Scheme 3.

and 8' were poorly diastereoselective, as the former reaction afforded a ca. 1:1 mixture of diastereomers 17a and 17b (Scheme 3), and the latter reaction gave a ca. 2:1 mixture of 18a and 18b (Scheme 4). In both cases the diastereomers could not be completely separated: anyway, for an easier stereochemical assignment, different mixtures of 17a,b or 18a,b, enriched in either diastereomer, were converted into the corresponding lactams (23a,b or 24a,b) or cyclic hydroxamic acids (29a,b or 30a,b).

The *trans* and *cis* stereochemical assignments for the γ -lactams **23a** and **23b** and for the cyclic hydroxamic acids **29a** and **29b** were based on ¹³C NMR spectra (Table 1). The carbon resonances for the *cis* diastereomers **23b** and **29b** were shifted upfield with respect to those for the *trans* diastereomers **23a** and **29a**. Furthermore, NOE measurements carried out on **29a** and **29b** confirmed the previous assignments. Irradiation of the H-3 signal at 2.71 ppm in **29a** produced enhancement (4%) of the *ortho* hydrogens of the phenyl ring, while irradiation of the H-3 signal at 2.95 ppm in **29b** enhanced the H-4 signal at 3.64 ppm (5%). Therefore, since the configuration of **23a** and **29a** is $(3R^*, 4S^*)$ and that of **23b** and **29b** is $(3R^*, 4R^*)$, the relative configurations of lactones **17a** and **17b**, from which they are derived, are *syn* and *anti*, respectively.

In a similar manner, the NOE experiments performed on the diastereomeric cyclic hydroxamic acids **30a** and **30b**, allowed the correct *syn* and *anti* attributions to the parent lactones **18a** and **18b** to be made. Thus, the configuration of the cyclic hydroxamic acid **30a**, derived from **18a**, was proved to be $(3R^*, 4R^*)$ and that of **30b**, derived from **18b**, was $(3R^*, 4S^*)$. In fact, upon irradiation of the methyl group at 1.30 ppm in **30b**, the H-4 signal was enhanced (10%). On the other hand, irradiation of the M-4 signal at 3.63 ppm in **30a** caused enhancement of the α -methylene protons of the chain (5%), while irradiation of the methyl group at 0.74 ppm enhanced the aromatic *o*-hydrogens (6%). All these assignments were also supported by a comparison of the ¹³C NMR spectra of each pair of diastereomers, as shown in Table 1.

It should be noted that in spite of the fact that the geometries of the products are the same as those observed for the products of the reaction between 8 or 8' with 1-nitropropene, the descriptors are different, owing to a different priority of the groups.

2.4. Reactions of enolates 8 and 8' with (E)-2-nitro-1-phenylpropene 4

In the reaction between the enolate **8** and (E)-2-nitro-1phenylpropene **4** four diastereomers, namely **19a**, **19b**, **19c**, and **19d** were formed, in 53:22:14:11 relative ratio (Scheme 5), as determined by HRGC analysis of the crude reaction mixture. Their separation on chromatographic column allowed the isolation of all stereoisomers as pure compounds with the exception of **19c** which was isolated in admixture with **19a**. Treatment under basic conditions (DBU in chloroform) of the pure diastereomer **19a** afforded a 1:1 mixture of **19a** and **19b**, thus demonstrating that they differed in the configuration of the nitromethine carbon atom. The same was proved for compounds **19c** and **19d**.

As above, the stereochemical assignments for **19a** and **19b** were made on the corresponding lactam **25a** and on the cyclic hydroxamic acid **31b**, respectively. Reduction of **19a** with hydrogen on Raney Ni afforded lactam **25a** as a single

Scheme 5.

diastereomer, while reduction of 19b using 10% Pd/C as the catalyst afforded a mixture of lactam 25b and cyclic hydroxamic acid **31b** in the 1:3 ratio. The stereochemistry of 25a was established by means of NOE measurements. In fact, irradiation of the H-4 signal enhanced the signals of H-3 (4%) and H-5 (5%). Compound **31b** was less soluble than the corresponding lactam 25b in ethyl acetate and therefore it could be separated from the mixture in pure state. The NOE experiment carried out on 31b revealed that the hydroxyalkyl chain was cis to the phenyl group which in turn was trans to the methyl group. In fact, irradiation of the methyl group enhanced the signal of H-4 (6%) as well as that of H-3 (3%), while irradiation of H-4 enhanced the signals of H-3 (8%) and that of the methyl group (6%). Its configuration was therefore $(3R^*, 4R^*, 5R^*)$ and, accordingly, the relative configuration of 19b was assigned as anti, anti. Since the stereochemical relationship between 19a and 19b was known from the previous equilibration reaction, the configuration of 19a must be anti, syn.

The reaction between the enolate 8' and the nitroolefin 4 was somewhat more complicated by the fact that acidification of the nitronate salt intermediate 14 (Scheme 1) required strictly controlled conditions and the use of a weak acid (see Section 4) in order to obtain the nitroalkylated lactones 20. When glacial acetic acid in THF was used, a 61:35:4 mixture of 20a, 20b and 20c was obtained (Scheme 6), which were isolated by flash chromatography. Equilibration of **20a**, carried out under basic conditions with DBU at room temperature, partially converted it into **20b**, thus demonstrating that **20a** and **20b** differed in the configuration of the nitromethine carbon atom.

Reduction of a 1:1 mixture of lactones 20a and 20b using Raney Ni as catalyst furnished a 1:1 mixture of lactams 26a and 26b. The stereochemistry of lactam 26a was assigned by means of NOE measurements: irradiation of the α -methylene hydrogens of the hydroxyethyl chain at 1.90 ppm produced enhancement of the signal of H-4 (5%) as well as that of H-5 (8%) indicating that the hydroxyalkyl chain was *trans* to the phenyl group, which in turn was *cis* to the methyl group at C-5. Its configuration was therefore $(3R^*, 4R^*, 5R^*)$ and that of **26b** was $(3R^*, 4R^*, 5S^*)$. Accordingly, the relative configuration of 20a was assigned as syn, syn and that of 20b as syn, anti, both deriving from the same type of attack of the enolate onto the nitroolefin. The diastereoselective excess of the reaction, with reference to the syn configuration around the newly formed C-C bond, was 92%.

2.5. Products of the Nef reaction

The nitronate salt intermediates 13 (R=H) and 14 (R=Me) (Scheme 1) were treated with 3 N HCl,¹⁹ with the aim of obtaining the corresponding Nef products.²⁰ Thus, a 75:25 diastereomeric mixture of 13 furnished 32a (isolated in19%)

yield) and **32b** in a ca. 3:2 ratio, in admixture with the oxime **34** (isolated in 15% yield), the latter most likely resulting from the autoxidation-reduction of the not detected nitronic acid intermediate 36^{21} Acidic equilibration of the 3:2 mixture of 32a and 32b changed its composition to 3:1. The thermodynamically more stable 32a was tentatively assigned the $(3R^*, 1'R^*)$ configuration, by a comparison of the values of the ${}^{3}J$ coupling constants between H-3 and the benzylic proton in the two isomers: 7.7 and 5.1 Hz for 32a and **32b**, respectively.²² In the ¹³C NMR spectra, the only significant difference between the two diastereomers was the resonance value of C-3, 42.8 ppm for 32b and 41.3 ppm for 32a, suggesting a slightly more crowded situation for the latter compound.

From the nitronic salt intermediates 14 (96:4 diastereomeric ratio) a single Nef product 33 (isolated in 17% yield) and a single oxime **35** (isolated in 10% yield) were obtained by the same acid treatment as above.

Remarkably, when acidification of the crude reaction mixture was performed with a saturated solution of ammonium chloride, followed by separation of the organic phase, the subsequent treatment of the mother liquors with 3 N HCl afforded the nitronic acid 37 (isolated in 10%) yield). This latter compound was separated as a white solid, stable at -20 °C. It must be underlined that reduction of the nitronic acid 37 with Raney Ni afforded the same lactams 26a and 26b, in the ratio of 7:3, as previously obtained from 20a and 20b, thus demonstrating their stereochemistry. The relative configuration reported in Figure 2 for the products of the Nef reaction are correlated with the diastereomeric values of the nitronate lithium salt formation.

2.6. Mechanism of the nitroalkylation reactions

The results relating to the geometry of the products are summarized in Table 2 (the syn and anti descriptors are also used for 19 and 20, to indicate the relative configurations of the two stereocentres of the newly formed C–C bond). The diastereoselectivity observed is generally low except for

Table 2. Diastereomeric ratios and yields for the nitroalkylated lactones 15 - 20

Entry	Product	syn/anti	Yield (%)
1	15	40/60	70
2	16	10/90	60
3	17	45/55	62
4	18	65/35	80
5	19	25/75	64
6	20	96/4	45

32a.b

compounds 16, for which the *anti* diastereomer largely prevailed, and for compound 20, for which the syn diastereomer was formed almost exclusively.

Formation of the syn and anti diastereomers would involve a different topological approach of the donor and acceptor.²³ Thus the Re^*, Re^* (like) approach of the enolate to the nitroolefin would lead to the syn products, while the Re*,Si* (unlike) one would give the anti products. It appears that the unlike approach was slightly preferred over the like one when the lactone enolate was unsubstituted (R = H) (entries 1, 3, 5). When R was methyl (entries 2, 4, 6) the reactions showed the opposite diastereoselection, with the exception of the reaction of 1-nitropropene. The following simplified model transition states A and B (Fig. 3), in which the pyramidalization of the reacting carbon atoms is ignored as are the role of the solvent and the state of aggregation of the lithium enolates,²⁴ would account for the different selectivity observed. When R and R^2 are hydrogens no remarkable differences in the transition states exist, and the resulting products syn and anti 15 and syn and anti 17 are formed in almost equal amount. Substitution of a hydrogen for a methyl group ($R^2 = Me$) slightly disfavours the like approach of the reactants and in fact compound anti-19 was formed with 50% d.e. When the lactone bears a methyl group at the α -position, the steric situation seems to be dominated by the presence of the phenyl group $(R^1 = Ph)$, which disfavours the unlike approach and consequently favours the formation of the syn products (30% d.e. for 18 and 92% d.e. for 20).

The prevalent formation of compound 16 in anti configuration from 1-nitropropene is not in accordance with the results found for the Michael addition of cyclohexanone lithium enolate to the same nitroolefin²⁵ which always afforded the syn-product under several reaction conditions. Probably this is due to the fact that in our case the presence of the heterocyclic oxygen atom allows the unlike or endo orientation of the nitroolefin.

2.7. Nitroolefination and nitrodienylation reactions

The reactivity of lithium enolates of γ - and δ -lactones bearing no substituent at α -position with a few β nitroenamines has already been reported²⁶ to lead to the corresponding Nef products²⁰ and not to the desired nitroolefinated lactones. On the contrary, when the lactone bears a substituent at the α -position, nitroolefination of the lithium enolate by β -nitroenamines proceeds diastereo- and enantio-selectively, as proved by Severin and coworkers.^{5a,27} An exchange of the counter ion from lithium to zinc had the

Figure 3.

effect of increasing the reactivity and the enantioselectivity of the reactions when a chiral non-racemic β -nitroenamine derived from (*S*)-prolinol was used.²⁸ In particular, when the zinc enolate²⁹ of lactone **1**['] reacted with (*E*)-1-(1-morpholinyl)-2-nitroethene and (*E*)-1-(1-morpholinyl)-2-nitropropene^{5c} the corresponding addition–elimination products in (*E*) configuration were obtained.

Herein an analogous reaction has been carried out on the lithium enolate **8**' with the nitroenamines (*E*)-1-(1-morpho-linyl)-2-nitro-2-phenylethene **5** and (*E*)-1-(1-pyrrolidinyl)-2-nitro-2-[2-(methylthio)phenyl]ethene **6** (Scheme 7). The corresponding products, **38** and **39**, were obtained as 85:15 and 65:35 *E/Z* mixtures, respectively, as determined by ¹H NMR analysis of the crude reaction mixtures. In fact, when the vinyl proton was *cis* to the nitro group, it resonated at lower field (7.75 ppm for **38** and 7.81 ppm for **39**) than in the case it was *trans* to it (6.43 ppm for **38** and 7.73 ppm for **39**). ^{12,30}

The E/Z mixtures **38** and **39** were reduced under different conditions. When Pd on carbon was used as the catalyst, lactones **38** afforded a 4:1 mixture of *cis* and *trans* diastereomers of lactam derivatives **40a** and **40b**. Differently from the cases previously reported for the nitroalkylated γ -lactones, no traces of the corresponding cyclic hydroxamic acid derivatives were detected. The geometry of the lactams **40a** and **40b** was established by NOE measurements. Irradiation of the methyl group signal at 1.33 ppm in **40a** caused enhancement of the H-5 signal at 4.75 ppm (6%). On the contrary, under the same conditions, the nitroalkenylated lactones **39** furnished the corresponding oxime **41**. Using Raney Ni as the catalyst, both mixtures **38** and **39** afforded the same diastereomeric mixture of lactams **40a** and **40b**, as a result of the concomitant hydrogenolysis of the methylthio group in **39**. Reduction with sodium borohydride was not satisfactory, even using the reagent supported on Amberlyst[®] A 26, which is known to reduce regioselectively the carbon–carbon double bond of the nitrovinyl moiety to the corresponding nitroalkane.³¹

The same conditions as above were used for the nitroalkenvlation reaction of the enolate 8' with the dienes 7 and 7' to afford the corresponding addition–elimination products 42 and 43, isolated from the respective reaction mixtures in 52 and 70% yield, the former as the (*E*,*Z*) diastereomer, the latter as the (*E*) isomer (Scheme 8).

Interestingly, in deuteriated chloroform, compound 42 slowly equilibrated into a 4:1 mixture of (E,Z) and (Z,Z)-diastereomers. This equilibration did not occur in the parent nitrodienamine 7'. In the major isomer the H-1 vinyl proton resonated at 7.24 ppm, while in the minor isomer it absorbed at 6.29 ppm, values which are consistent with the *cis* and *trans* relationship of the same proton with the nitro group. DIFNOE measurements supported the Z geometry for the

Scheme 8.

C(3)–C(4) double bond, as it was originally in the reagent. On the contrary, an analogous equilibration between the (E) and (Z) forms was not observed for compound **43**, under the same conditions.

Reductions with hydrogen and metal, as a catalyst, were unsatisfactory as furnished complex mixtures of products not identified as yet. Treatment of compound **43** with polymer-supported borohydride resulted in the reduction of the sole C(1)–C(2) double bond,³¹ affording a 3:2 **44a**,**b** diastereomeric mixture which was assigned the structure indicated in Scheme 8. These compounds however were not stable in CDCl₃ solution and were converted into the fully conjugated system **45** in (*E*) configuration. In this manner a conjugated ketene *S*,*S*-acetal was obtained whose reactivity as a precursor of an acyl anion³² will be further investigated.

3. Conclusions

Differently from the cases of lithium enolates and enamines from cycloalkanones, for which the Michael addition of nitroolefins proceeded with high diastereoselectivity,^{24,33} in general the lactone lithium enolates 1 and 1' showed low to moderate diastereoselectivity, with the exception of the case in which both reactants were substituted by bulky groups. The stereochemical assignments were made either on the lactam derivatives or on the cyclic hydroxamic acids formed by reduction of the nitro group under different reaction conditions. The reduction with Raney Ni however needed milder conditions than those reported in the literature for other heterocyclic nitroalkylated compounds.^{8b,15}

The nitroolefination reaction proceeded smoothly and quantitatively on the zinc enolates of $\mathbf{1}'$ and afforded new α,β -unsaturated nitroderivatives in *E* and *Z* configurations, the percentage of the latter increasing with the size of the substituent on the carbon bearing the nitro group.

4. Experimental

4.1. General

FT-IR spectrometer. ¹H NMR and ¹³C NMR spectra were run on a Jeol EX-400 spectrometer (400 MHz for proton, 100.5 MHz for carbon) and on a Jeol EX-270 (270 MHz for proton, 67.9 MHz for carbon), using deuteriochloroform as a solvent and tetramethylsilane as the internal standard. Coupling constants are given in Hz. Mass spectra were recorded on a VG 7070 (70 eV) spectrometer and on an ion trap instrument Finnigan GCQ (70 eV). GLC analyses were run on a Carlo Erba GC 8000 instrument, the capillary columns being OV 1701 (25 m×0.32 mm) (carrier gas He, 40 KPa, split 1:50). TLC's were performed on Polygram[®] Sil G/UV₂₅₄ silica gel pre-coated plastic sheets (eluant: light petroleum-ethyl acetate). CHN analyses were run on a Carlo Erba 1106 Elemental Analyser. Flash chromatography was run on silica gel 230-400 mesh ASTM (Kieselgel 60, Merck). Light petroleum refers to the fraction with bp 40-70 °C and ether to diethyl ether. y-Butyrolactone 1, α -methyl- γ -butyrolactone 1' and (E)-2-nitrostyrene **3** were purchased from Aldrich. (E)-1-Nitropropene **2**,³⁴ (*E*)-2-nitro-1-phenylpropene **4**,³⁵ (*E*)-1-(2-methylthio-phenyl)-1-nitro-2-pyrrolidinoethene **6**,¹⁰ (1*E*,3*Z*)-4methylthio-2-nitro-1-pyrrolidino-1,3-butadiene 7¹¹ and 4,4bis(methylthio)-2-nitro-1-pyrrolidino-1,3-butadiene 7^{12} were prepared according to the literature.

4.1.1. (*E*)-2-Morpholinyl-1-nitro-1-phenylethene 5.⁹ The synthesis was accomplished in accordance with a literature procedure,³⁶ using phenylnitromethane³⁷ as the nitroaliphatic component. Thus phenylnitromethane (0.09 mol, 12.3 ml), triethyl orthoformate (0.1 mol, 17 ml), morpholine (0.09 mol, 7.8 ml) and *p*-toluenesulfonic acid (0.09 g, 0.5 mmol) were heated under reflux for 1 h. Then the solvent was evaporated, the residue diluted with dichloromethane and purified through an alumina column (30 \times 2.5 cm) using dichloromethane as eluting agent. Although the crude reaction mixture contained both diastereomers, the nitroenamine 5 was isolated as pure E-isomer and crystallized from ethanol. 21% Yield, mp 150–152 °C, [lit. for a 1:1 mixture of E- and Z-isomers, mp 125 °C]; IR (cm⁻ nujol): 3056 (=CH), 1626, 1592, 1573, 785, 772, 725, 696 (Ph), 1488, 1377 (NO₂); ¹H NMR (δ , ppm): 8.41 (1H, s, H-C=C), 7.42 (3H, m, Ph), 7.26 (2H, m, Ph) 3.59 (4H, s, CH₂–O), 3.14 (4H, s, CH₂–N).

4.2. General procedure for the Michael addition of nitroalkenes to lactone enolates

To a solution of lithium diisopropylamide (3.5 mmol, 2.3 ml of a 1.5 M solution in THF) in THF (16 ml), a solution of the γ -lactone (2.9 mmol) in 2.5 ml of THF was slowly added, at -78 °C. The mixture was stirred at -78 °C for 1 h and the appropriate nitroalkene (3.5 mmol) dissolved in 2.5 ml of THF was added dropwise. The mixture was stirred at -78 °C for 2 h, the temperature was allowed to raise to -40 °C and the reaction mixture was quenched by addition of a saturated aqueous solution of NH₄Cl. The aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was analysed by HRGC and purified by flash chromatography (light petroleum/ethyl acetate).

4.2.1. Reaction of the lactone 1 with (*E*)-1-nitropropene **2.** syn- and anti-4,5-Dihydro-3-(1-methyl-2-nitroethyl)-**2(3H)-furanone 15a and 15b.** The isomers **15a** and **15b** (70% yield) were only partially separable by column chromatography, yellow oil, IR (cm⁻¹, neat): 1760 (OC=O), 1550, 1380 (NO₂); MS (*m*/*z*): 126 (7), 86 (56), 83 (10), 82 (16), 81 (10), 69 (14), 68 (16), 67 (34), 55 (100). Anal. Calcd for $C_7H_{11}NO_4$: C, 48.55; H, 6.40; N, 8.09. Found: C, 48.4; H, 6.20; N, 7.89.

Compound **15a.** ¹H NMR (δ , ppm): 4.73 (1H, dd, J_1 = 6.6 Hz, J_2 =12.8 Hz, CHNO₂), 4.48 (1H, dd, J_1 =7.1 Hz, J_2 =12.8 Hz, CHNO₂), 4.39 (1H, dt, J_1 =2.4 Hz, J_2 = J_3 = 9.0 Hz, H-5), 4.24 (1H, dt, J_1 =6.9 Hz, J_2 = J_3 =9.0 Hz, H-5), 2.74 (2H, m, H-3 and CHCH₃), 2.42 (1H, m, H-4), 2.14 (1H, m, H-4), 1.15 (3H, d, J=6.6 Hz, CH₃); ¹³C NMR (δ , ppm): 176.7 (s), 78.5 (t, CH₂NO₂), 66.5 (t, C-5), 41.2 (d, C-3), 32.4 (d, CHCH₃), 26.2 (t, C-4), 13.3 (q, CH₃).

Compound **15b.** ¹H NMR (δ , ppm): 4.71 (1H, dd, J_1 = 6.2 Hz, J_2 =12.4 Hz, CHNO₂), 4.51 (1H, dd, J_1 =7.1 Hz, J_2 =12.4 Hz, CHNO₂), 4.38 (1H, dt, J_1 =1.8 Hz, J_2 = J_3 = 9.0 Hz, H-5), 4.21 (1H, dt, J_1 =6.7 Hz, J_2 = J_3 =9.0 Hz, H-5), 2.79 (1H, sept, J=6.9 Hz, CHCH₃), 2.69 (1H, ddd, J_1 =11.3 Hz, J_2 =8.4 Hz, J_3 =6.9 Hz, H-3), 2.36 (1H, m, H-4), 2.10 (1H, m, H-4), 1.08 (3H, d, J=6.9 Hz, CH₃); ¹³C NMR (δ , ppm): 177.1 (s), 78.9 (t, CH₂NO₂), 66.3 (t, C-5), 41.2 (d, C-3), 32.5 (d, CHCH₃), 25.3 (t, C-4), 14.5 (q, CH₃).

4.2.2. Reaction of the lactone 1' with (*E*)-1-nitropropene **2.** *syn-* and *anti-*4,5-Dihydro-3-methyl-3-(1-methyl-2nitroethyl)-2(3*H*)-furanone 16a and 16b. The isomers 16a and 16b (60% yield) were obtained as a 1:9 inseparable mixture, yellow oil, IR (cm⁻¹, neat): 1764 (OC=O), 1550, 1380 (NO₂); MS (*m*/*z*): 140 (3), 100 (35), 97 (8), 96 (18), 83 (10), 82 (16), 81 (34), 71 (10), 69 (29), 67 (24), 57 (20), 55 (100). Anal. Calcd for C₈H₁₃NO₄: C, 51.33; H, 7.00; N, 7.48. Found: C, 51.4; H, 6.92; N, 7.19.

For clarity sake the NMR values are given separately for each isomer.

Compound **16a**. ¹H NMR (δ , ppm): 4.93 (1H, dd, J_1 = 4.0 Hz, J_2 = 12.4 Hz, CHNO₂), 4.19 (1H, dd, J_1 = 9.9 Hz,

 J_2 =12.4 Hz, CHNO₂), 1.22 (3H, s, CH₃), 1.05 (3H, d, J= 7.0 Hz, CH₃); ¹³C NMR (δ , ppm): 180.0 (s), 77.6 (t, CH₂NO₂), 64.8 (t, C-5), 44.5 (s, C-3), 36.9 (d, CHCH₃), 32.8 (t, C-4), 18.7 (q, CH₃ at C-3), 13.5 (q, CH₃ of the chain).

Compound **16b.** ¹H NMR (δ , ppm): 4.53 (1H, dd, J_1 = 4.0 Hz, J_2 =12.1 Hz, CHNO₂), 4.33 (1H, dd, J_1 =10.4 Hz, J_2 =12.1 Hz, CHNO₂), 4.26 (2H, m, 2H-5), 2.63 (1H, m, CHCH₃), 2.22 (1H, dt, J_1 =13.2 Hz, J_2 = J_3 =8.8 Hz, H-4), 1.98 (1H, ddd, J_1 =4.0 Hz, J_2 =7.3 Hz, J_3 =13.2 Hz, H-4), 1.31 (3H, s, CH₃), 1.10 (3H, d, J=7.0 Hz, CH₃); ¹³C NMR (δ , ppm): 179.5 (s), 78.2 (t, CH₂NO₂), 65.0 (t, C-5), 44.6 (s, C-3), 37.6 (d, CHCH₃), 32.5 (t, C-4), 21.5 (q, CH₃ at C-3), 13.1 (q, CH₃ of the chain).

4.2.3. Reaction of lactone 1 with (*E*)-2-nitrostyrene 3. syn and *anti*-4,5-Dihydro-3-(2-nitro-1-phenylethyl)-2(3*H*)-furanone 17a and 17b. The isomers 17a and 17b (62% yield) were obtained as a 45:55 inseparable mixture, white solid, mp 65–69 °C, IR (cm⁻¹, nujol): 1762 (OC=O), 1603 (Ph), 1552, 1378 (NO₂); ¹³C NMR (δ , ppm): 176.9 (s), 176.8 (s), 136.7 (s), 135.4 (s), 129.2 (d), 129.1 (d), 128.5 (d), 128.4 (d), 128.3 (d), 127.7 (d), and for 17a: 77.7 (t, CH₂NO₂), 66.3 (t, C-5), 44.3 (d, CHPh), 41.3 (d, C-3), 27.6 (t, C-4), and for 17b: 76.6 (t, CH₂NO₂), 66.7 (t, C-5), 43.8 (d, CHPh), 41.7 (d, C-3), 26.1 (t, C-4). MS (*m*/*z*): 235 (M⁺, 2), 217 (8), 189 (21), 188 (66), 160 (23), 145 (51), 143 (22), 131 (18), 130 (100), 128 (19), 118 (34), 116 (34), 106 (26), 105 (90), 103 (33), 91 (85), 86 (13), 78 (18), 77 (30). Anal. Calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.95. Found: C, 61.3; H, 5.50; N, 6.04.

For clarity sake the NMR values are given separately for each isomer.

Compound **17a.** ¹H NMR (δ , ppm): 7.30 (5H, m, Ph), 5.44 (1H, dd, J_1 =5.5 Hz, J_2 =13.2 Hz, CHNO₂), 4.80 (1H, dd, J_1 =9.9 Hz, J_2 =13.2 Hz, CHNO₂), 4.25 (1H, dt, J_1 = 2.8 Hz, J_2 = J_3 =8.8 Hz, H-5), 4.12 (1H, m, H-5), 3.80 (1H, m, CHPh), 2.92 (1H, q, J=9.8 Hz, H-3), 1.98 (2H, m, 2H-4); ¹H NMR (δ , ppm, CDCl₃+drops of C₆D₆): 7.20 (5H, m, Ph), 5.33 (1H, dd, J_1 =5.3 Hz, J_2 =12.9 Hz, CHNO₂), 4.67 (1H, dd, J_1 =9.9 Hz, J_2 =12.9 Hz, CHNO₂), 4.06 (1H, dt, J_1 =2.5 Hz, J_2 = J_3 =8.8 Hz, H-5), 3.93 (1H, m, H-5), 3.63 (1H, m, CHPh), 2.69 (1H, dt, J_1 =8.8 Hz, J_2 = J_3 =10.2 Hz, H-3), 1.84 (1H, m, H-4), 1.71 (1H, m, H-4).

Compound **17b.** ¹H NMR (δ , ppm): 7.30 (5H, m, Ph), 5.20 (1H, dd, $J_1 = 7.3$ Hz, $J_2 = 13.5$ Hz, CHNO₂), 5.05 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 13.5$ Hz, CHNO₂), 4.12 (1H, m, H-5), 3.80 (2H, m, CHPh, H-5), 3.06 (1H, dt, $J_1 = 4.6$ Hz, $J_2 = J_3 = 9.4$ Hz, H-3), 2.38 (1H, m, H-4), 1.98 (1H, m, H-4); ¹H NMR (δ , ppm, CDCl₃+drops of C₆D₆): 7.20 (5H, m, Ph), 5.07 (1H, dd, $J_1 = 6.9$ Hz, $J_2 = 13.4$ Hz, CHNO₂), 4.93 (1H, dd, $J_1 = 8.0$ Hz, $J_2 = 13.4$ Hz, CHNO₂), 3.93 (1H, m, H-5), 3.71 (1H, dt, $J_1 = 4.5$ Hz, $J_2 = J_3 = 8.0$ Hz, CHPh), 3.63 (1H, m, H-5), 2.85 (1H, dt, $J_1 = 4.5$ Hz, $J_2 = J_3 = 9.3$ Hz, H-3), 2.10 (1H, m, H-4), 1.84 (1H, m, H-4).

4.2.4. Reaction of lactone 1' with (*E*)-2-nitrostyrene 3. syn- and anti-4,5-Dihydro-3-methyl-3-(2-nitro-1-phenyl-ethyl)-2(3*H*)-furanone 18a and 18b. The isomers 18a and

18b (80% yield), obtained in the ratio of 65:35 were not separable by flash chromatography, white solid, mp 99–101 °C; IR (cm⁻¹, nujol): 1756 (OC=O), 1602 (Ph), 1548, 1339 (NO₂); MS (*m*/*z*): 250 (MH⁺, 1), 204 (4), 203 (13), 143 (16), 129 (13),128 (10), 116 (14), 114 (13), 106 (26), 105 (100), 104 (18), 101 (85), 100 (10), 98 (10), 92 (40), 85 (15), 83 (11), 78 (13), 77 (26), 71 (23), 69 (20), 57 (40), 56 (12), 55 (34). Anal. Calcd for $C_{13}H_{15}NO_4$: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.5; H, 6.17; N, 5.81.

For clarity sake the NMR values are given separately for each isomer.

Compound **18a**. ¹H NMR (δ , ppm): 7.28 (5H, m, Ph), 5.28 (1H, dd, J_1 =4.0 Hz, J_2 =13.4 Hz, CHNO₂), 4.93 (1H, dd, J_1 =11.5 Hz, J_2 =13.4 Hz, CHNO₂), 4.17 (1H, m, H-5), 4.08 (1H, m, H-5), 3.82 (1H, dd, J_1 =4.0 Hz, J_2 =11.5 Hz, CHPh), 2.28 (1H, m, H-4), 1.72 (1H, ddd, J_1 =5.5 Hz, J_2 = 7.3 Hz, J_3 =13.2 Hz, H-4), 1.29 (3H, s, CH₃); ¹³C NMR (δ , ppm): 179.8 (s), 135.0 (s), 128.8 (d), 128.5 (d), 128.3 (d), 75.2 (t, CH₂–NO₂), 64.8 (t, C-5), 47.3 (d, CHPh), 44.6 (s, C-3), 34.0 (t, C-4), 19.6 (q, CH₃).

Compound **18b.** ¹H NMR (δ , ppm): 7.28 (5H, m, Ph), 5.09 (1H, dd, J_1 =11.2 Hz, J_2 =13.2 Hz, CHNO₂), 4.89 (1H, dd, J_1 =4.2 Hz, J_2 =13.2 Hz, CHNO₂), 4.08 (1H, m, H-5), 3.70 (1H, dd, J_1 =4.2 Hz, J_2 =11.2 Hz, CHPh), 3.59 (1H, dt, J_1 = J_2 =9.0 Hz, J_3 =4.8 Hz, H-5), 2.28 (1H, m, H-4), 1.98 (1H, ddd, J_1 =4.8 Hz, J_2 =8.1 Hz, J_3 =12.8 Hz, H-4), 1.36 (3H, s, CH₃); ¹³C NMR (δ , ppm): 179.9 (s), 135.8 (s) 129.0 (d), 128.4 (d), 128.3 (d), 76.5 (t, CH₂–NO₂), 65.5 (t, C-5), 50.2 (d, CHPh), 45.5 (s, C-3), 33.3 (t, C-4), 23.4 (q, CH₃).

4.2.5. Reaction of the lactone 1 with (*E*)-2-nitro-1phenylpropene **4. 4,5-Dihydro-3-(2-nitro-1-phenylpro**pyl)-2(3*H*)-furanone 19a,b,c,d. Four isomers 19a, 19b, 19c and 19d in 53:22:14:11 ratio were identified in the ¹H NMR spectrum of the crude reaction mixture. They were separated by flash chromatography.

Compound 19a. 30% Yield, white solid, mp 125-126 °C, from ether; IR (cm⁻¹, nujol): 1756, (OC=O), 1546, 1377 (NO₂); ¹H NMR (δ, ppm): 7.28 (5H, m, Ph), 5.72 (1H, dq, $J_1 = 11.0 \text{ Hz}, J_2 = J_3 = J_4 = 6.6 \text{ Hz}, \text{ CHNO}_2), 4.09 (1H, q)$ J = 8.2 Hz, H-5), 3.64 (1H, dt, $J_1 = 4.8$ Hz, $J_2 = J_3 = 8.2$ Hz, H-5), 3.45 (1H, dd, $J_1 = 4.8$ Hz, $J_2 = 11.0$ Hz, CHPh), 3.12 (1H, dt, J_1 =4.8 Hz, J_2 = J_3 =8.2 Hz, H-3), 2.38 (1H, m, H-4), 1.92 (1H, dq, $J_1 = 13.0$ Hz, $J_2 = J_3 = J_4 = 8.2$ Hz, H-4), 1.82 (3H, d, J = 6.6 Hz, CH₃), ¹³C NMR (δ , ppm): 177.0 (s), 135.6 (s), 128.9 (d), 128.5 (d), 128.4 (d), 85.4 (d, CHNO₂), 66.8 (t, C-5), 50.0 (d, CHPh), 39.9 (d, C-3), 26.1 (t, C-4), 18.6 (q, CH₃); MS (*m*/*z*): 250 (MH⁺, 4), 203 (26), 202 (31), 144 (25), 143 (63), 142 (38), 131 (29), 129 (21), 118 (100), 116 (27), 106 (19), 103 (31), 102 (29), 91 (57), 79 (13), 77 (19). Anal. Calcd for C13H15NO4: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.5; H, 5.87; N, 5.28.

Compound **19b.** 17% Yield; white solid, mp 95–97 °C, IR (cm⁻¹, nujol): 1762, (OC=O), 1600 (Ph), 1550, 1388 (NO₂); ¹H NMR (δ , ppm): 7.36 (3H, m, Ph), 7.26 (2H, m, Ph), 5.89 (1H, dq, J_1 =11.1 Hz, J_2 = J_3 = J_4 =6.7 Hz, CHNO₂), 4.06 (1H, q, J=8.5 Hz, H-5), 3.70 (1H, dt, J_1 = 4.3 Hz, J_2 = J_3 =8.5 Hz, H-5), 3.44 (1H, dd, J_1 =4.2 Hz,

 J_2 =11.1 Hz, CHPh), 2.88 (1H, dt, J_1 =4.2 Hz, J_2 = J_3 = 8.5 Hz, H-3), 2.46 (1H, m, H-4), 1.91 (1H, dq, J_1 =12.8 Hz, J_2 = J_3 = J_4 =8.5 Hz, H-4), 1.33 (3H, d, J=6.7 Hz, CH₃); ¹³C NMR (δ , ppm): 176.8 (s), 135.0 (s), 129.4 (d), 129.3 (d), 128.6 (d), 83.5 (d, CHNO₂), 66.6 (t, C-5), 50.6 (d, CHPh), 40.5 (d, C-3), 26.5 (t, H-4), 19.5 (q, CH₃); MS (m/z): 249 (M⁺, 3), 203 (26), 202 (36), 143 (14), 131 (37), 129 (27), 118 (38), 117 (100), 115 (29), 105 (15), 91 (67), 84 (13), 77 (14). Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.9; H, 6.23; N, 5.33.

Compound **19c** (in admixture with **19a**). ¹H NMR (δ , ppm): 7.21 (5H, m, Ph), 5.68 (1H, dq, J_1 =5.5 Hz, J_2 = J_3 = J_4 = 6.6 Hz, CHNO₂), 4.13 (2H, m, 2H-5), 3.40 (2H, m, CHPh and H-3), 2.12 (1H, m, H-4), 1.85 (1H, m, H-4), 1.54 (3H, d, J=6.6 Hz, CH₃); ¹³C NMR (δ , ppm): 177.5 (s), 134.6 (s), 128.7 (d), 128.6 (d), 128.2 (d), 82.5 (d, CHNO₂), 66.2 (t, C-5), 50.1 (d, CHPh), 39.7 (d, C-3), 27.2 (t, H-4), 17.5 (q, CH₃).

Compound **19d.** Oil, 6% yield; IR (cm⁻¹, neat): 1766, 1712 (OC=O), 1602 (Ph), 1550, 1390 (NO₂); ¹H NMR (δ , ppm): 7.34 (3H, m, Ph), 7.16 (2H, m, Ph), 5.31 (1H, dq, J_1 = 9.1 Hz, J_2 = J_3 = J_4 =6.6 Hz, CHNO₂), 4.13 (2H, m, 2H-5), 3.87 (1H, dd, J_1 =6.2 Hz, J_2 =9.1 Hz, CHPh), 2.84 (1H, dt, J_1 =6.2 Hz, J_2 = J_3 =9.6 Hz, H-3), 2.34 (1H, m, H-4), 2.09 (1H, m, H-4), 1.45 (3H, d, J=6.6 Hz, CH₃); MS,(m/z): 203 (15), 202 (34), 176 (19), 148 (28), 143 (15), 131 (46), 130 (47), 129 (36), 118 (35), 117 (100), 116 (20), 115 (42), 105 (18), 104 (14), 103 (10), 91 (95), 77 (22).

4.2.6. Reaction of the lactone 1' with (E)-2-nitro-1phenylpropene 4. 4,5-Dihydro-3-methyl-3-(2-nitro-1phenylpropyl)-2(3H)-furanone 20a,b,c. The isomers 20a, 20b and 20c (61%, 35% and 4% relative ratio) were obtained acidifying the reaction mixture with 0.43 ml (7 mmol) of glacial acetic acid in 1.5 ml of THF, at -78 °C. The temperature was allowed to raise to -40 °C and, after 15 min, 25 ml of water was added. The aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄. After removal of the solvent, the crude reaction mixture was purified by flash chromatography (light petroleum/ethyl acetate) to give the mixture of lactones **20a,b,c** (45% yield) which could not be separated. White solid, mp 89-92 °C, IR $(cm^{-1}, nujol)$: 1755 (OC=O), 1602 (Ph), 1545, 1334 (NO₂); MS (*m*/*z*): 263 (M⁺, 0.8), 221 (10), 206 (44), 145 (14), 131 (18), 129 (13), 119 (100), 118 (39), 116 (21), 106 (42), 102 (13), 101 (75), 99 (10), 91 (48), 77 (20), 69 (14), 57 (36), 56 (16), 55 (43). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 64.0; H, 6.74; N, 5.31.

For clarity sake the NMR values are given separately for each isomer.

Compound **20a**. ¹H NMR (δ , ppm): 7.31 (3H, m, Ph), 7.23 (2H, m, Ph), 5.31 (1H, quintet, J_1 =6.6 Hz, CHNO₂), 4.18 (1H, dt, J_1 =8.0 Hz, J_2 =9.2 Hz, H-5), 4.02 (1H, dd, J_1 = 4.8 Hz, J_2 =8.0 Hz, J_3 =9.2 Hz, H-5), 3.44 (1H, d, J= 6.6 Hz, CHPh), 2.44 (1H, dt, J_1 =8.0 Hz, J_2 =13.2 Hz, H-4), 2.08 (1H, ddd, J_1 =4.8 Hz, J_2 =8.0 Hz, J_3 =13.2 Hz, H-4), 1.59 (3H, d, J=6.6 Hz, CH₃), 1.50 (3H, s, CH₃); ¹³C NMR (δ , ppm): 180.2 (s), 135.6 (s), 130.0 (d), 128.7 (d),

11021

128.1 (d), 83.2 (d, CHNO₂), 64.8 (t, C-5), 54.3 (d, CHPh), 45.7 (s, C-3), 33.3 (t, C-4), 22.2 (q, CH₃), 19.9 (q, CH₃).

Compound **20b.** ¹H NMR (δ , ppm): 7.33 (5H, m, Ph), 5.22 (1H, dq, J_1 =9.5 Hz, J_2 = J_3 =6.6 Hz, CHNO₂), 4.18 (1H, m, H-5), 4.10 (1H, ddd, J_1 =4.8 Hz, J_2 =8.4 Hz, J_3 = 9.5 Hz, H-5), 3.62 (1H, d, J=9.5 Hz, CHPh), 2.47 (1H, m, H-4), 2.05 (1H, m, H-4), 1.34 (3H, d, J=6.6 Hz, CH₃), 1.26 (3H, s, CH₃); ¹³C NMR (δ , ppm): 179.4 (s), 135.3 (s), 129.8 (d), 128.6 (d), 128.2 (d), 83.6 (d, CHNO₂), 65.1 (t, H-5), 53.4 (d, CHPh), 45.7 (s, C-3), 33.4 (t, H-4), 22.2 (q, CH₃), 19.9 (q, CH₃).

Compound **20c.** Only a few signals were identified: ¹H NMR (δ , ppm): 5.45 (1H, dq, J_1 =6.6 Hz, J_2 =9.5 Hz, CHNO₂), 3.89 (1H, dt, J_1 =3.9 Hz, J_2 =9.2 Hz, H-5), 3.61 (1H, d, J=9.5 Hz, CHPh), 2.63 (1H, m, H-4), 1.93 (1H, m, H-4), 1.29 (3H, d, J=6.6 Hz, CH₃); ¹³C NMR (δ , ppm): 129.1 (d), 82.5 (d, CHNO₂), 65.7 (t, C-5), 54.8 (d, CHPh), 32.6 (s).

4.3. Acidification of the lithium nitronates 13 and 14 with 3 N HCl

The crude reaction mixture containing the lithium nitronate was acidified with 20 ml of 3 N HCl, the mixture was stirred overnight and extracted three times with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by flash chromatography (light petroleum/ethyl acetate). In the case of nitronate **13**, from the complex mixture containing the Nef products **32a** and **32b** in 3:2 ratio and the oxime **34**, only **32a** and **34** could be isolated as pure compounds, by flash chromatography. In the case of nitronate **14** the Nef product **33** and the oxime **35** could be isolated by flash chromatography (see text).

4.3.1. 4,5-Dihydro-3-(2-oxo-1-phenylpropyl)-2(3H)-furanone 32a. 19% Yield, white solid, mp 87–88 °C from ether; IR (cm⁻¹, nujol): 1753 (OC=O), 1714 (C=O); ¹H NMR (δ , ppm): 7.33 (3H, m, Ph), 7.21 (2H, m, Ph), 4.15 (2H, m, 2H-5), 4.08 (1H, d, *J*=7.7 Hz, CHPh), 3.56 (1H, ddd, *J*₁= 7.7 Hz, *J*₂=8.7 Hz, *J*₃=12.1 Hz, H-3), 2.20 (3H, s, CH₃), 2.12 (1H, m, H-4), 1.82 (1H, m, H-4); ¹³C NMR (δ , ppm): 206.1 (s, C=O), 177.9 (s, COO), 134.7 (s), 129.0 (d), 128.8 (d), 128.0 (d), 66.9 (t, C-5), 58.3 (d, CHPh), 41.3 (d, C-3), 29.4 (q, CH₃), 26.4 (t, C-4); MS (*m*/*z*): 218 (M⁺⁺, 1), 176 (53), 149 (76), 148 (32), 132 (47), 131 (100), 118 (18), 117 (19), 116 (28), 105 (31), 92 (74), 77 (18). Anal. Calcd for C₁₃H₁₄O₃: C, 71.54; H, 6.47. Found: C, 71.3; H, 6.39.

4.3.2. 4,5-Dihydro-3-(2-oxo-1-phenylpropyl)-2(3H)-fura-none 32b. The lactone **19d** was submitted to the Nef reaction conditions according to the literature,¹⁹ furnishing a 3:1 mixture of **32a** and **32b**.

Compound **32b**. ¹H NMR (δ , ppm): 7.36 (5H, m, Ph), 4.48 (1H, dt, $J_1 = 2.3$ Hz, $J_2 = J_3 = 9.0$ Hz, H-5), 4.28 (1H, d, J = 5.1 Hz, CHPh), 4.16 (1H, m, H-5), 2.89 (1H, ddd, $J_1 = 5.1$ Hz, $J_2 = 9.5$ Hz, $J_3 = 11.0$ Hz, H-3), 2.56 (1H, quintet, J = 10.4 Hz, H-4), 2.21 (1H, m, H-4), 2.08 (3H, s, CH₃); ¹³C NMR (δ , ppm): 206.3 (s, C=O), 177.8 (s, COO), 136.3 (s),

129.3 (d), 128.7 (d), 127.9 (d), 66.6 (t, C-5), 58.2 (d, CHPh), 42.8 (d, C-3), 29.1 (q, CH₃), 25.1 (t, C-4).

4.3.3. 4,5-Dihydro-3-methyl-3-(2-oxo-1-phenylpropyl)-2(3H)-furanone 33. 17% Yield; white solid, mp 67– 70 °C; IR (cm⁻¹, nujol): 1772 (OC=O), 1701(C=O), 1580 (Ph); ¹H NMR (δ , ppm): 7.33 (3H, m, Ph), 7.28 (2H, m, Ph), 4.27 (1H, s, CHPh), 4.06 (1H, q, J_1 =8.6 Hz, H-5), 3.58 (1H, dt, J_1 =5.1 Hz, J_2 =8.6 Hz, H-5), 2.63 (1H, m, H-4), 2.23 (1H, m, H-4), 2.12 (3H, s, CH₃–CO), 1.38 (3H, s, CH₃); ¹³C NMR (δ , ppm): 205.6 (s, C=O), 180.6 (s, COO), 133.4 (s), 130.0 (d), 128.9 (d), 128.2 (d), 65.6 (t, C-5), 62.7 (d, CHPh), 46.1 (s, C-3), 31.1 (q, CH₃–CO), 30.9 (t, C-4), 23.3 (q, CH₃); MS (m/z): [232 (M⁺⁺) at 20 eV], 190 (25), 175 (15), 162 (21), 144 (44), 129 (25), 117 (22), 115 (20), 106 (52), 105 (65), 91 (100), 77 (41), 65 (10), 57 (10). Anal. Calcd for C₁₄H₁₆O₃: C, 72.39; H, 6.94. Found: C, 72.5; H, 6.80.

4.3.4. 4,5-Dihydro-3-(2-hydroxyimino-1-phenylpropyl)-2(3H)-furanone 34. 15% Yield; white solid, mp 127-129 °C from light petroleum/ether; IR (cm⁻¹, nujol): 3329 (OH), 1730 (OC=O), 1655 (C=N), 1600 (Ph); ¹H NMR (δ , ppm): 8.00 (1H, bs, OH), 7.27 (5H, m, Ph), 4.40 (1H, dt, $J_1 = 3.0 \text{ Hz}, J_2 = J_3 = 8.8 \text{ Hz}, \text{ H-5}$, 4.16 (1H, q, J = 8.8 Hz, Hz) H-5), 4.10 (1H, d, J=5.9 Hz, CHPh), 2.99 (1H, dt, $J_1=$ 5.9 Hz, $J_2 = J_3 = 8.8$ Hz, H-3), 2.66 (1H, dq, $J_1 = 12.0$ Hz, $J_2 = J_3 = J_4 = 8.8$ Hz, H-4), 1.99 (1H, m, H-4), 1.75 (3H, s, CH₃); ¹³C NMR (δ , ppm): 178.3 (s, COO), 155.8 (s, C=N), 138.5 (s), 128.8 (d), 128.4 (d), 127.4 (d), 66.7 (t, C-5), 50.4 (d, CHPh), 43.2 (d, C-3), 24.7 (t, C-4), 13.8 (q, CH₃); MS (m/z): 233 (M⁺⁺, 15), 216 (79), 185 (20), 175 (22), 174 (40), 173 (32), 172 (18), 170 (26), 157 (26), 156 (17), 149 (41), 148 (49), 147 (20), 132 (32), 130 (49), 128 (22), 121 (26), 118 (30), 116 (65), 92 (100), 89 (29), 81 (39),77 (65). Anal. Calcd for C₁₃H₁₅NO₃: C, 66.94; H, 6.48; N, 6.00. Found: C, 67.2; H, 6.58; N, 6.02.

4.3.5. 4,5-Dihydro-3-methyl-3-(2-hydroxyimino-1-phenylpropyl)-2(3H)-furanone 35. 10% Yield, white solid, mp 117–119 °C. IR (cm⁻¹, nujol): 3271 (OH), 1758 (C=O), 1670 (C=N); ¹H NMR (δ , ppm): 7.80 (1H, bs, OH), 7.30 (5H, m, Ph), 4.03 (1H, dt, $J_1 = 7.3$ Hz, $J_2 =$ 8.8 Hz, H-5), 3.89 (1H, s, CHPh), 3.56 (1H, dt, $J_1 = 5.1$ Hz, $J_2 = 8.8$ Hz, H-5), 2.65 (1H, ddd, $J_1 = 7.3$ Hz, $J_2 = 8.8$ Hz, $J_3 = 13.6$ Hz, H-4), 2.17 (1H, m, H-4), 1.79 (3H, s, CH₃C=N-OH), 1.45 (3H, s, CH₃); ¹³C NMR (δ, ppm): 181.4 (s, COO), 156.6 (s, C=N), 136.1 (s), 130.1 (d), 128.5 (d), 127.8 (d), 65.4 (t, C-5), 56.5 (d, CHPh), 46.7 (s, C-3), 31.7 (t, C-4), 24.5 (q, CH₃), 15.5 (q, CH₃); MS (m/z): 247 $(M^{+}, 16), 202 (10), 186 (18), 149 (43), 148 (100), 131 (25),$ 130 (42), 129 (26), 117 (19), 116 (15), 115 (33), 106 (25), 105 (17), 100 (13), 95 (17), 91 (42), 77 (25), 69 (10), 55(13). Anal. Calcd for C14H17NO3: C, 68.00; H, 6.93; N, 5.66. Found: C, 67.9; H, 7.00; N, 5.56.

4.3.6. 1-(Tetrahydro-3-methyl-2-oxofuryl)-1-phenylpropan-2-ylideneazinic acid 37. The reaction between the lithium enolate of 1' and (*E*)-2-nitro-1-phenylpropene **4**, carried out in accordance with the general procedure, was quenched by addition of a saturated aqueous solution of NH₄Cl. The aqueous phase was extracted with CH₂Cl₂ three times in order to separate the nitroalkylated lactones. From

the mother liquors, acidified to pH 2 with 3 N HCl, the nitronic acid **37** precipitated as a white solid which was washed with ether. 10% Yield, mp 100–102 °C; IR (cm⁻¹, nujol): 2668 (OH); 1754 (COO), 1658 (C=N); ¹H NMR (DMSO-d₆, δ , ppm) 7.20 (5H, m, Ph), 4.70 (1H, s, CHPh), 4.18 (1H, q, *J*=8.4 Hz, H-5), 3.93 (1H, dt, *J*₁=2.7 Hz, *J*₂= *J*₃=8.4 Hz, H-5), 2.43 (1H, m, H-4), 2.12 (1H, m, H-4), 2.03 (3H, s, CH₃), 1.23 (3H, s, CH₃); ¹³C NMR (DMSO-d₆, δ , ppm): 180.9 (s), 137.9 (s), 129.3 (d), 129.0 (d), 127.7 (d), 121.2 (s), 65.4 (t), 50.8 (d), 46.4 (t), 31.2 (s), 23.0 (q), 16.6 (q); MS (*m*/*z*): 262 (M-H^{¬+}, 0.3), 247 (0.4), 216 (1.3), 190 (30), 175 (18), 162 (13), 145 (27), 144 (58), 130 (35), 118 (27), 116 (28), 106 (44), 100 (10), 99 (5), 92 (100), 77 (47), 55 (7), 51 (17). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.7; H, 6.71; N, 5.26.

4.4. General procedure for the reduction with Raney Ni

The nitro compound (0.85 mmol) was dissolved in 1:1 EtOH/ethyl acetate (20 ml) and one teaspoon of Raney Ni (Aldrich) was added. The apparatus was evacuated and flushed with H_2 . The mixture was stirred at room temperature under H_2 atmosphere for 16 h, then filtered on Celite and the solvent was evaporated.

4.4.1. (3*R**,4*R**)- and (3*R**,4*S**)-3-(2-Hydroxyethyl)-4methyl-2-pyrrolidinone 21a and 21b. Reduction of the nitroalkylated lactone 15a gave the *trans* isomer 21a: 80% yield, white solid, mp 78–80 °C, IR (cm⁻¹, nujol): 3165 (OH and NH), 1672 (NHC=O); ¹H NMR (δ , ppm): 7.03 (1H, bs, NH), 4.9 (1H, bs, OH), 3.84 (1H, m, CHOH), 3.72 (1H, m, CHOH), 3.49 (1H, t, *J*=9.0 Hz, H-5), 2.99 (1H, t, *J*=9.0 Hz, H-5), 2.18 (1H, m), 2.09 (1H, m), 1.78 (2H, m, CH₂CH₂OH), 1.15 (3H, d, *J*=6.9 Hz, CH₃); ¹³C NMR (δ , ppm): 181.6 (s), 62.2 (t, CH₂OH), 49.7 (d, C-3), 48.7 (t, C-5), 37.1 (d, C-4), 32.4 (t, CH₂CH₂OH), 17.3 (q, CH₃); MS (*m*/*z*): 144 (MH⁺, 41), 126 (6), 113 (9), 112 (10), 99 (22), 98 (33), 96 (17), 85 (18), 84 (100), 67 (9). Anal. Calcd for C₇H₁₃NO₂: C, 58.72; H, 9.15; N, 9.78. Found: C, 58.5; H, 8.90; N, 9.59.

Reduction of nitroalkylated lactone **15b** gave the *cis* isomer **21b**: 80% yield, white solid, mp 62–65 °C, IR (cm⁻¹, nujol): 3165 (OH and NH), 1672 (NHC=O); ¹H NMR (δ , ppm): 6.77 (1H, bs, NH), 4.4 (1H, bs, OH), 3.82 (1H, m, CHOH), 3.70 (1H, m, CHOH), 3.48 (1H, dd, J_1 =6.0 Hz, J_2 =9.5 Hz, H-5), 2.94 (1H, bd, J=9.5 Hz, H-5), 2.50 (2H, m, H-3 and H-4), 1.70 (2H, m, CH₂CH₂OH), 0.97 (3H, d, J=6.9 Hz, CH₃); ¹³C NMR (δ , ppm): 180.3 (s), 62.2 (t, CH₂OH), 48.6 (t, C-5), 45.5 (d, C-3), 33.5 (d, C-4), 28.5 (t, CH₂CH₂OH), 14.6 (q, CH₃); MS (*m*/*z*): 144 (MH⁺, 49), 126 (14), 112 (22), 99 (27), 98 (69), 96 (23), 85 (23), 84 (100), 67 (22). Anal. Calcd for C₇H₁₃NO₂: C, 58.72; H, 9.15; N, 9.78. Found: C, 58. 5; H, 9.00; N, 9.58.

4.4.2. (*3R**,*4R**)- and (*3R**,*4S**)-3-(2-Hydroxyethyl)-3,4dimethyl-2-pyrrolidinone 22a and 22b. The two isomers were obtained as a 1:9 inseparable mixture, 80% yield, white solid, mp 88 °C (from light petroleum/ethyl acetate); IR (cm⁻¹, nujol): 3330 (OH and NH), 1680 (NHC=O); MS (*m*/*z*): 158 (M+H^{¬+}, 13), 113 (40), 112 (54), 98 (100), 84 (17), 67 (11), 55 (22). Anal. Calcd for C₈H₁₅NO₂: C, 61.12; H, 9.62; N, 8.91. Found: C, 61.3; H, 9.41; N, 9.14. For clarity sake the NMR values of the two isomers are given separately.

Compound **22a** in admixture with **22b**. ¹H NMR (δ , ppm) (only few signals were identified): 6.97 (1H, bs, NH), 2.25 (1H, m, H-4), 1.70 (1H, ddd, J_1 =5.8 Hz, J_2 =10.2 Hz, J_3 = 15.7 Hz, CHCH₂OH), 1.42 (1H, m, CHCH₂OH), 0.94 (3H, s, CH₃); ¹³C NMR (δ , ppm): 184.5 (s), 58.7 (t, CH₂OH), 47.0 (t, C-5), 45.9 (s, C-3), 39.7 (d, C-4), 38.2 (t, CH₂CH₂OH), 15.1 (q, CH₃ at C-3), 11.4 (q, CH₃ at C-4).

Compound **22b.** ¹H NMR (δ , ppm). 6.92 (1H, bs, NH), 3.82 (1H, m, CHOH), 3.79 (1H, bs, OH), 3.63 (1H, m, CHOH), 3.35 (1H, dd, J_1 =8.2 Hz, J_2 =9.0 Hz, H-5), 2.92 (1H, dd, J_1 =8.2 Hz, J_2 =9.7 Hz, H-5), 2.13 (1H, m, H-4), 1.73 (1H, ddd, J_1 =5.3 Hz, J_2 =9.0 Hz, J_3 =14.1 Hz, CHCH₂OH), 1.35 (1H, dt, J_1 =4.7 Hz, J_2 =14.1 Hz, CHCH₂OH), 1.13 (3H, s, CH₃), 0.96 (3H, d, J=7.3 Hz, CH₃); ¹³C NMR (δ , ppm): 184.0 (s), 58.9 (t, CH₂OH), 46.6 (t, C-5), 44.6 (s, C-3), 42.0 (d, C-4), 34.0 (t, CH₂CH₂OH), 20.5 (q, CH₃ at C-3), 12.6 (q, CH₃ at C-4).

4.4.3. (3*R**,4*S**)- and (3*R**,4*R**)-3-(2-Hydroxyethyl)-4phenyl-2-pyrrolidinone 23a and 23b. Treatment of the crude reaction mixture with light petroleum/ethyl acetate gave a 3:2 mixture of 23a and 23b as a white solid (70% yield), mp 90–93 °C, IR (cm⁻¹, nujol): 3366, 3262 (OH and NH), 1693 (NHC=O), 1638 (Ph); MS (*m*/*z*): 206 (MH⁺, 16), 160 (100), 159 (90), 147 (13), 118 (13), 117 (43), 115 (33), 104 (16), 91 (13), 84 (14), 78 (11). Anal. Calcd for $C_{12}H_{15}NO_2$: C, 70.22; H, 7.37; N, 6.82. Found: C, 70.0; H, 7.11; N, 6.64.

For clarity sake the NMR values of the isomeric mixture are given separately for each isomer.

Compound **23a**. ¹H NMR (δ , ppm): 7.64 (1H, bs, NH), 7.28 (5H, m, Ph), 4.5 (1H, bs, OH), 3.74–3.50 (3H, m, CH₂OH, H-5), 3.41 (1H, t, *J*=9.5 Hz, H-5), 3.27 (1H, q, *J*=9.5 Hz, H-4), 2.70 (1H, dt, *J*₁=*J*₂=9.5 Hz, *J*₃=4.0 Hz, H-3), 1.85 (1H, m, CHCH₂OH), 1.74 (1H, m, CHCH₂OH); ¹³C NMR (δ , ppm): 180.4 (s), 140.0 (s), 129.0 (2d), 128.7 (2d), 127.6 (d), 61.6 (t, CH₂OH), 49.0 (d, C-3), 48.9 (t, C-5), 48.4 (d, C-4), 32.4 (t, CH₂CH₂OH).

Compound **23b.** ¹H NMR (δ , ppm): 7.67 (1H, bs, NH), 7.28 (5H, m, Ph), 4.5 (1H, bs, OH), 3.79 (1H, dd, J_1 =7.1 Hz, J_2 =9.7 Hz, H-5), 3.74–3.50 (4H, m, CH₂OH, H-5, H-4), 2.92 (1H, dt, J_1 = J_2 =8.7 Hz, J_3 =5.0 Hz, H-3), 1.48 (1H, m, CHCH₂OH), 1.30 (1H, m, CHCH₂OH); ¹³C NMR (δ , ppm): 181.2 (s), 140.4 (s), 127.8 (2d), 127.5 (2d), 127.3 (d), 61.4 (t, CH₂OH), 48.0 (t, C-5), 45.3 (d, C-3), 44. 3 (d, C-4), 29.9 (t, CH₂CH₂OH).

4.4.4. (3*R**,4*R**)- and (3*R**,4*S**)-3-(2-Hydroxyethyl)-3methyl-4-phenyl-2-pyrrolidinone 24a and 24b. The 65:35 crude mixture of 24a and 24b (70% overall yield), obtained from the reduction, was purified by flash chromatography. The two isomeric lactams could be separated only partially. Semisolid material, IR (cm⁻¹, neat): 3260 (OH and NH), 1685 (NHC=O); MS (*m*/*z*): 220 (MH⁺, 20), 204 (27), 175 (100), 174 (69), 160 (68), 158 (28), 131 (14), 129 (18), 128 (15), 117 (11), 115 (19), 104 (21), 98 (54), 91 (16), 78 (11). Anal. Calcd for C₁₃H₁₇NO₂: C, 71.21; H, 7.81; N, 6.39. Found: C, 71.0; H, 7.88; N, 6.25.

Compound **24a**. ¹H NMR (δ , ppm). 7.33 (3H, m, *m*-, *p*-ArH), 7.23 (2H, m, *o*-ArH), 6.31 (1H, bs, NH), 4.53 (1H, dd, J_1 =8.4 Hz, J_2 =2.6 Hz, OH), 3.85–3.60 (4H, m, CH₂OH, 2H-5), 3.48 (1H, dd, J_1 =10.1 Hz, J_2 =7.8 Hz, H-4), 1.90 (1H, m, CHCH₂OH), 1.72 (1H, m, CHCH₂OH), 0.93 (3H, s, CH₃); ¹³C NMR (δ , ppm): 183.4 (s), 136.4 (s), 129.1 (2d), 128.5 (2d), 127.7 (d), 58.6 (t, CH₂OH), 51.3 (d, C-4), 47.5 (s, C-3), 44.5 (t, C-5), 38.5 (t, CH₂CH₂OH), 17.4 (q, CH₃).

Compound **24b.** ¹H NMR (δ , ppm). 7.33 (3H, m, *m*-, *p*-ArH), 7.21 (2H, m, *o*-ArH), 6.34 (1H, bs, NH), 3.85–3.60 (4H, m, *CH*₂OH, H-5, H-4), 3.62 (1H, dd, J_1 =2.1 Hz, J_2 = 10.1 Hz, OH), 3.36 (1H, t, J=7.7 Hz, H-5), 1.66 (1H, m, *CHC*H₂OH), 1.37 (3H, s, CH₃), 0.98 (1H, m, *CHC*H₂OH); ¹³C NMR (δ , ppm): 183.6 (s), 137.8 (s), 128.7 (2d), 128.4 (2d), 127.6 (d), 58.7 (t, *C*H₂OH), 53.6 (d, C-4), 46.5 (s, C-3), 44.4 (t, C-5), 35.7 (t, *C*H₂CH₂OH), 21.4 (q, CH₃).

4.4.5. (3R*,4R*,5S*)-3-(2-Hydroxyethyl)-5-methyl-4phenyl-2-pyrrolidinone 25a. The crude reaction mixture obtained from the reduction of 19a was treated with light petroleum/ethyl acetate to afford 25a (70% yield) as a white solid, mp 123–125 °C; IR (cm⁻¹, nujol): 3260 (OH and NH), 1690 (NHC=O), 1600 (Ph); ¹H NMR (CD₃OD, δ , ppm): 7.27 (3H, m, *m*-, *p*-ArH), 7.12 (2H, bd, *o*-ArH), 4.09 $(1H, dq, J_1 = 6.6 Hz, J_2 = 5.8 Hz, H-5), 3.54 (1H, dd, J_1 =$ 7.7 Hz, J₂=5.8 Hz, H-4), 3.45 (2H, m, CH₂OH), 3.03 (1H, ddd, J₁=8.9 Hz, J₂=7.7 Hz, J₃=5.8 Hz, H-3), 1.86 (1H, m, CHCH₂OH), 1.30 (1H, m, CHCH₂OH), 0.83 (3H, d, J= 6.6 Hz, CH₃); ¹³C NMR (δ, ppm): 183.7 (s), 139.3 (s), 132.5 (2d), 131.3 (2d), 130.4 (d), 65.1 (t, CH₂OH), 56.0 (d), 54.2 (d), 51.2 (d, C-3), 32.4 (t, CH₂CH₂OH), 19.5 (q, CH₃); MS (*m/z*): 220 (MH⁺, 14), 175 (100), 174 (19), 131 (15), 118 (27), 117 (65), 115 (33), 91 (10). Anal. Calcd for C13H17NO2: C, 71.21; H, 7.81; N, 6.39. Found: C, 69.9; H, 7.41; N, 6.14.

4.4.6. ($3R^*$, $4R^*$, $5R^*$)- and ($3R^*$, $4R^*$, $5S^*$)-3,5-Dimethyl-3-(2-hydroxyethyl)-4-phenyl-2-pyrrolidinone 26a and 26b. A 1:1 mixture of nitroalkylated lactones 20a and 20b was reduced under the above mentioned conditions to give a 1:1 mixture of the corresponding lactams 26a and 26b (70% overall yield). The same compounds were obtained from the reduction with Raney Ni of the nitronic acid 37, although in a 7:3 molar ratio. The two isomers could not be separated. White solid, mp 94–100 °C, IR (cm⁻¹, CHCl₃): 3336 (OH and NH), 1680 (NHC=O), 1602 (Ph); MS (*m*/*z*): 234 (MH⁺, 14), 218 (49), 203 (16), 190 (27), 189 (100), 188 (82), 174 (62), 162 (28), 161 (14), 160 (15), 132 (28), 131 (87), 129 (42), 128 (20), 118 (28), 117 (55), 116 (22), 115 (37), 112 (35), 91 (46). Anal. Calcd for C₁₄H₁₉NO₂: C, 72.07; H, 8.21; N, 6.00. Found: C, 71.9; H, 8.11; N, 5.89.

For clarity sake the NMR values of the isomeric mixture are given separately for each isomer.

Compound **26a**. ¹H NMR (CD₃OD, δ , ppm). 7.25 (3H, m, *m*-, *p*-ArH), 7.12 (2H, bd, *o*-ArH), 4.25 (1H, dq, J_1 =6.2 Hz, J_2 =6.9 Hz, H-5), 3.8–3.6 (2H, m, CH₂OH), 3.38 (1H, d,

 J_1 =6.2 Hz, H-4), 1.90 (2H, m, CH_2CH_2OH), 0.91 (3H, d, J=6.9 Hz, CH₃), 0.81 (3H, s, CH₃); ¹³C NMR (δ , ppm): 183.0 (s), 136.9 (s), 130.1 (2d), 128.1 (2d), 127.7 (d), 59.2 (t, CH₂OH), 57.4 (d, C-4), 50.6 (d, C-5), 47.7 (s, C-3), 40.5 (t, CH₂CH₂OH), 18.7 (q, CH₃ at C-3), 17.1 (q, CH₃ at C-5).

Compound **26b.** ¹H NMR (CD₃OD, δ , ppm). 7.25 (3H, m, *m*-, *p*-ArH), 7.12 (2H, bd, *o*-ArH), 4.12 (1H, dq, J_1 =6.2 Hz, J_2 =9.9 Hz, H-5), 3.8–3.6 (2H, m, CH₂OH), 3.07 (1H, d, J_1 =9.9 Hz, H-4), 1.70 (2H, m, CH₂CH₂OH), 1.15 (3H, d, J=6.2 Hz, CH₃), 0.85 (3H, s, CH₃); ¹³C NMR (δ , ppm): 181.9 (s), 134.8 (s), 129.4 (2d), 128.5 (2d), 127.9 (d), 60.7 (d, C-4), 58.3 (t, CH₂OH), 51.7 (d, C-5), 48.8 (s, C-3), 38.4 (t, CH₂CH₂OH), 19.7 (q, CH₃ at C-3), 19.6 (q, CH₃ at C-5).

4.5. Reduction of the nitro group with 10% Pd on carbon

The appropriate nitroalkylated γ -lactone (0.8 mmol) was dissolved in 6 ml of MeOH and 10% Pd on activated carbon (54 mg) was added. The mixture was stirred at room temperature under H₂ for 4 h. The mixture was filtered on Celite and the solvent was evaporated.

4.5.1. (*3R**,*4R**)- and (*3R**,*4S**)-1-Hydroxy-3-(2-hydroxyethyl)-4-methyl-2-pyrrolidinone 27a and 27b. The two isomers were obtained in admixture with the corresponding lactams 21a and 21b from the corresponding parent lactones 15a and 15b. For clarity sake the NMR values of the isomeric mixture are given separately for each isomer.

Compound **27a.** ¹H NMR (δ , ppm): 9.0 (1H, vbs, OH), 4.6 (1H, bs, OH), 3.75 (2H, m, CH₂OH), 3.72 (1H, m, H-5), 3.22 (1H, bd, *J*=9.1 Hz, H-5), 2.14 (2H, m, H-3 and H-4), 1.80 (2H, m, CH₂CH₂OH), 1.14 (3H, d, *J*=6.2 Hz, CH₃); ¹³C NMR (δ , ppm): 172.4 (s), 61.5 (t, CH₂OH), 55.2 (t, C-5), 47.8 (d, C-3), 33.0 (t, CH₂CH₂OH), 31.5 (d, C-4), 17.6 (q, CH₃).

Compound **27b.** ¹H NMR (δ , ppm): 9.0 (1H, vbs, OH), 4.6 (1H, bs, OH), 3.75 (2H, m, CH₂OH), 3.73 (1H, m, H-5), 3.21 (1H, dd, J_1 =9.5 Hz, J_2 =11.0 Hz, H-5), 2.66 (1H, m, H-3), 2.52 (1H, m, H-4), 1.70 (2H, m, CH₂CH₂OH), 1.04 (3H, d, J=7.0 Hz, CH₃); ¹³C NMR (δ , ppm): 172.0 (s), 61.5 (t, CH₂OH), 55.5 (t, C-5), 43.4 (d, C-3), 28.8 (t, CH₂CH₂OH), 28.4 (d, C-4), 14.9 (q, CH₃).

4.5.2. (3*R**,4*R**) and (3*R**,4*S**)-1-Hydroxy-3-(2-hydroxyethyl)-3,4-dimethyl-2-pyrrolidinone 28a and 28b. The two isomers were obtained from the corresponding nitroalkylated lactones 16a and 16b. The crude reaction mixture was purified by flash chromatography (eluant: ethyl acetate, 70% yield) and the isomer 28b crystallized on standing at room temperature.

Compound **28a** (in admixture with **28b**). Oil, only a few signals were identified; ¹H NMR (δ , ppm): 3.36 (1H, m), 2.95 (1H, m), 2.23 (1H, m, H-4), 0.94 (3H, s, CH₃), 0.92 (3H, d, *J*=7.3 Hz, CH₃); ¹³C NMR (δ , ppm): 58.5 (t, CH₂OH), 53.6 (t, C-5), 44.7 (s, C-3), 38.5 (t, CH₂CH₂OH), 33.8 (d, C-4), 16.0 (q, CH₃ at C-3), 11.5 (q, CH₃ at C-4).

Compound **28b**. White solid, mp 90–92 °C, IR (cm⁻¹, neat): 3350 (OH), 1680 (NC=O); ¹H NMR (δ , ppm): 10.0 (1H,

vbs, NOH), 5.00 (1H, vbs, OH), 3.82 (1H, m, CHOH), 3.66 (2H, m, H-5 and CHOH), 3.29 (1H, t, J=9.0 Hz, H-5), 2.18 (1H, sextet, J=7.3 Hz, H-4), 1.74 (1H, m, CHCH₂OH), 1.50 (1H, dt, J_1 = J_2 =5.1 Hz, J_3 =13.9 Hz, CHCH₂OH), 1.18 (3H, s, CH₃), 1.04 (3H, d, J=7.3 Hz, CH₃); ¹³C NMR (δ , ppm): 174.0 (s), 58.3 (t, CH₂OH), 53.6 (t, C-5), 43.6 (s, C-3), 37.3 (d, C-4), 35.0 (t, CH₂CH₂OH), 21.3 (q, CH₃ at C-3), 12.0 (q, CH₃ at C-4). MS (m/z): 156 (M – OH^{¬+}, 12), 129 (18), 128 (34), 127 (11), 114 (100), 113 (33), 100 (14), 99 (68), 83 (21), 82 (39), 81 (13), 70 (22), 69 (66), 67 (65), 55 (80). Anal. Calcd for C₈H₁₅NO₃: C, 55.47; H, 8.73; N, 8.09. Found: C, 55.4; H, 8.29; N, 7.89.

4.5.3. (3*R**,4*S**)- and (3*R**,4*R**)-1-Hydroxy-3-(2-hydroxyethyl)-4-phenyl-2-pyrrolidinone 29a and 29b. Treatment of the crude reaction mixture, obtained by reduction of 17a and 17b, with ethyl acetate led to the crystallization of the isomer 29a (6% yield). The isomer 29b was recovered in 1:1 admixture with 29a (89% yield).

Compound **29a.** White solid, mp 171–173 °C; IR (cm⁻¹, nujol): 3210 (OH), 1685 (NC=O); ¹H NMR (CD₃OD, δ , ppm): 7.35 (5H, m, Ph), 3.85 (1H, t, J=8.6 Hz, H-5), 3.66–3.48 (3H, m, CH₂OH and H-5), 3.25 (1H, q, J=8.5 Hz, H-4), 2.71 (1H, m, H-3), 1.94 (1H, sextet, J=6.9 Hz, CHCH₂OH), 1.73 (1H, sextet, J=6.9 Hz, CHCH₂OH); ¹³C NMR (CD₃OD, δ , ppm): 173.3 (s), 141.2 (s), 129.9 (d), 128.6 (d), 128.4 (d), 60.6 (t, CH₂OH), 56.3 (t, C-5), 46.4 (d, C-3), 43.5 (d, C-4), 34.1 (t, CH₂CH₂OH); MS (*m*/*z*): 175 (19), 174 (13), 161 (93), 160 (43), 148 (16), 131 (25), 130 (16), 129 (16), 128 (11), 118 (26), 117 (100), 116 (33), 115 (48), 104 (67), 91 (48), 84 (30), 78 (17), 77 (25). Anal. Calcd for C₁₂H₁₅NO₃: C, 65.14; H, 6.83; N, 6.33. Found: C, 65.4; H, 6.71; N, 6.16.

Compound **29b.** ¹H NMR (CD₃OD, δ , ppm): 7.35 (5H, m, Ph), 3.99 (1H, t, J=8.2 Hz, H-5), 3.64 (2H, m, H-5 and H-4), 3.47 (2H, m, CH₂OH), 2.95 (1H, q, J=7.7 Hz, H-3), 1.59 (1H, sextet, J=7.2 Hz, CHCH₂OH), 1.25 (1H, m, CHCH₂OH); ¹³C NMR (CD₃OD, δ , ppm): 172.9 (s), 141.6 (s), 129.6 (d), 128.2 (d), 128.1 (d), 60.6 (t, CH₂OH), 55.8 (t, C-5), 42.6 (d, C-3), 40.0 (d, C-4), 30.5 (t, CH₂CH₂OH).

4.5.4. (*3R**,*4R**)- and (*3R**,*4S**)-1-Hydroxy-3-(2-hydroxyethyl)-3-methyl-4-phenyl-2-pyrrolidinone 30a and 30b. Treatment of the crude reaction mixture, obtained by reduction of 18a and 18b, with ethyl acetate led to the crystallization of the isomer 30a, while 30b was obtained by flash chromatography of the mother liquors (eluant: ethyl acetate).

Compound **30a**. 57% Yield, white solid, mp 175–178 °C; IR (cm⁻¹, nujol): 3200 (OH), 1681 (NC=O); ¹H NMR (CD₃OD, δ , ppm): 7.31 (5H, m, Ph), 3.90 (1H, dd, J_1 = 8.4 Hz, J_2 = 9.1 Hz, H-5), 3.80 (1H, dd, J_1 = 7.8 Hz, J_2 = 9.0 Hz, H-5), 3.77–3.66 (2H, m, CH₂OH) 3.63 (1H, t, J= 8.1 Hz, H-4), 1.80 (2H, m, CH₂CH₂OH), 0.74 (3H, s, CH₃); ¹³C NMR (CD₃OD, δ , ppm): 175.3 (s), 138.7 (s), 129.9 (d), 129.5 (d), 128.4 (d), 59.3 (t, CH₂OH), 52.5 (t, C-5), 47.1 (s, C-3), 45.0 (d, C-4), 40.1 (t, CH₂CH₂OH), 19.5 (q, CH₃); MS (m/z): 218 (M – OH^{¬+}, 1), 190 (18), 189 (18), 175 (100), 174 (37), 160 (23), 131 (43), 129 (23), 117 (28), 116 (19), 115 (27), 104 (77), 98 (57), 91 (62), 78 (15), 77 (18). Anal.

Calcd for C₁₃H₁₇NO₃: C, 66.36; H, 7.28; N, 5.95. Found: C, 66.5; H, 7.31; N, 5.81.

Compound **30b.** 12% Yield; oil, IR (cm⁻¹, film): 3200 (OH), 1681 (NC=O); ¹H NMR (CD₃OD, δ , ppm): 7.31 (5H, m, Ph), 3.92 (1H, dd, J_1 =7.9 Hz, J_2 =9.3 Hz, H-5), 3.81 (1H, dd, J_1 =7.7 Hz, J_2 =9.2 Hz, H-5), 3.55 (1H, m, CHOH), 3.35 (2H, m, CHOH and H-4), 1.57 (1H, ddd, J_1 = 6.4 Hz, J_2 =9.5 Hz, J_3 =13.9 Hz, CHCH₂OH), 1.30 (3H, s, CH₃), 1.15 (1H, ddd, J_1 =5.2 Hz, J_2 =9.4 Hz, J_3 =14.1 Hz, CHCH₂OH); ¹³C NMR (CD₃OD, δ , ppm): 175.2 (s), 138.7 (s), 129.7 (d), 129.5 (d), 128.6 (d), 58.9 (t, CH₂OH), 52.4 (t, C-5), 46.5 (s, C-3), 45.0 (d, C-4), 37.0 (t, CH₂CH₂OH), 23.3 (q, CH₃).

4.5.5. (3*R**,4*R**,5*R**)-1-Hydroxy-3-(2-hydroxyethyl)-5methyl-4-phenyl-2-pyrrolidinone 31b. Reduction of 19b afforded a 1:3 mixture of the lactam 25b and the cyclic hydroxamic acid 31b (80% yield), from which 31b was isolated by treatment with ethyl acetate.

Compound **25b** not separated: ¹H NMR (CDCl₃+CD₃OD, δ , ppm) (only a few signals were identified): 3.96 (1H, bq, J=5.7 Hz, H-5), 3.25 (1H, dd, $J_1=4.6$ Hz, $J_2=8.6$ Hz, H-4), 1.29 (3H, d, J=6.2 Hz, CH₃); ¹³C NMR (CDCl₃+ CD₃OD, δ , ppm): 180.1 (s), 138.8 (s), 128.6 (2d), 127.9 (2d), 127.1 (d), 61.0 (t, CH₂OH), 54.8 (d, C-5), 52.1 (d, C-4), 44.2 (d, C-3), 29.6 (t, CH₂CH₂OH), 20.6 (q, CH₃).

Compound 31b. White solid, mp 158 °C, 18% yield, IR (cm⁻¹, nujol): 3220 (OH), 1676 (NC=O); ¹H NMR (CDCl₃+CD₃OD, δ, ppm): 7.24 (3H, m, Ph), 7.14 (2H, m, Ph), 3.94 (1H, dq, J_1 =4.4 Hz, J_2 = J_3 = J_4 =6.2 Hz, H-5), 3.45 (2H, m, CH₂OH,), 3.20 (1H, dd, $J_1 = 4.4$ Hz, $J_2 =$ 8.8 Hz, H-4), 2.91 (1H, dt, $J_1 = 8.8$ Hz, $J_2 = J_3 = 6.2$ Hz, H-3), 1.47 (1H, m, CHCH₂OH), 1.33 (3H, d, *J*=6.2 Hz, CH₃), 1.24 (1H, m, CHCH₂OH); ¹³C NMR (CDCl₃+CD₃OD, δ , ppm): 171.3 (s), 138.3 (s), 128.7 (2d), 128.0 (2d), 127.3 (d), 60.8 (d, C-5), 60.7 (t, CH₂OH), 47.6 (d, C-4), 41.7 (d, C-3), 30.0 (t, CH₂CH₂OH), 17.1 (q, CH₃); MS (m/z): 217 (M- H_2O^{++} , 1), 216 (1), 176 (28), 175 (32), 148 (13), 133 (11), 132 (25), 131 (13), 119 (51), 118 (100), 117 (29), 116 (38), 92 (35), 77 (14); MS (m/z, 20 eV): 236 (MH⁺, 2), 235 (M⁺ 2). Anal. Calcd for C₁₃H₁₇NO₃: C, 66.36; H, 7.28; N, 5.95. Found: C, 66.5; H, 7.27; N, 5.90.

4.6. Reactions of α -methyl- γ -butyrolactone 1' with (*E*)-2-morpholinyl-1-nitro-1-phenylethene (5), (*E*)-1-(2methylthiophenyl)-2-pyrrolidinyl-1-nitroethene (6), (*Z*,*E*)-1-methylthio-4-pyrrolidinyl-2-nitrobutadiene (7) and (*E*)-1,1-dimethylthio-4-pyrrolidinyl-2nitrobutadiene (7'). General procedure for the Michael addition of nitroenamines to α -methyl- γ -butyrolactone zinc enolate 8'

To a solution of lithium diisopropylamide (1.5 M solution in THF) (2 mmol, 1.3 ml for the reaction with **5**, **7** and **7**'; 3.5 mmol, 2.3 ml for the reaction with **6**) in THF (1.3 ml), a solution of the lactone **1**' (0.162 g, 1.62 mmol) in 1.3 ml of THF was slowly added, at -78 °C. The mixture was stirred for 1 h at -78 °C. A solution of 1M ZnCl₂ (1.62 ml) was then added and the temperature was raised to -40 °C. After 1 h at this temperature, the solution was transferred to the

appropriate aminonitroalkene (0.81 mmol) dissolved in 5.2 ml of THF at -78 °C. The mixture was stirred at -78 °C for 2 h, the temperature was allowed to raise and the solution was kept overnight at room temperature. The reaction mixture was then quenched with 2 N HCl and extracted with dichloromethane. The organic phase was dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by flash chromatography (light petroleum/ethyl acetate 3:2).

4.6.1. (E)- and (Z)-4,5-Dihydro-3-methyl-3-(2-nitro-2phenylethenyl)-2(3H)-furanone 38. The crude reaction mixture (88% yield), whose composition was 85:15 in favour of the (E)-isomer, was treated with ether and ethanol at 0 °C. The major isomer (E)-38 was isolated as pure compound (30% yield), mp 90–92 °C; IR (cm⁻¹, nujol): 1778 (COO), 1672 (C=C), 1528 (NO₂). ¹H NMR (δ, ppm): 7.75 (1H, s, HC=C), 7.50 (3H, m, Ar-H), 7.32 (2H, m, Ar-H), 4.13 (2H, m, 2H-5), 2.10 (1H, dt, $J_1=9.3$ Hz, $J_2=$ 13.2 Hz, H-4), 1.60 (1H, ddd, $J_1 = 2.9$ Hz, $J_2 = 6.2$ Hz, $J_3 =$ 13.2 Hz, H-4), 1.41 (3H, s, CH₃); ¹³C NMR (δ, ppm): 177.8 (s, COO), 152.2 (s, C=CNO₂), 137.6 (d, CH=CNO₂), 130.7 (2d, o-Ar-H), 130.4 (2d, m-Ar-H), 129.1 (s), 128.6 (d, *p*-Ar–H), 65.1 (t, C-5), 43.2 (s, C-3), 34.6 (t, C-4), 23.5 (q, CH₃). MS (m/z): 247 (M⁺⁺, 0.01), 201 (72), 174 (15), 173 (100), 171 (14), 170 (13), 156 (13), 155 (10), 145 (23), 143 (20), 142 (43), 141 (38), 130 (12), 129 (65), 128 (67), 127 (25), 117 (17), 115 (49), 105 (58), 104 (18), 103 (52), 102 (31), 99 (10), 91 (40), 84 (32), 77 (73), 76 (28), 75 (15), 69 (17), 65 (10), 63 (17), 56 (11), 55 (29), 51 (66), 53 (13). Anal. Calcd for C₁₃H₁₃NO₄: C, 63.15; H, 5.30; N, 5.67. Found: C, 63.0; H, 5.19; N, 5.90.

The compound (Z)-38 was not isolated as pure isomer.

¹H NMR (δ , ppm): 7.43 (5H, m, Ar–H), 6.43 (1H, s, HC=C), 4.44 (1H, dt, J_1 =1.5 Hz, J_2 = J_3 =9.2 Hz, H-5), 4.32 (1H, ddd, J_1 =6.3 Hz, J_2 =9.2 Hz, J_3 =10.7 Hz, H-5), 2.51 (1H, ddd, J_1 =9.2 Hz, J_2 =10.7 Hz, J_3 =12.8 Hz, H-4), 2.35 (1H, ddd, J_1 =1.5 Hz, J_2 =6.3 Hz, J_3 =12.8 Hz, H-4), 1.58 (3H, s, CH₃); ¹³C NMR (δ , ppm): 178.2 (s), 152.2 (s), 137.6 (d), 128.8 (d), 128.5 (d), 128.2 (d), 65.3 (t, C-5), 43.8 (s, C-3), 32.9 (t, C-4), 22.7 (q, CH₃); the singlet relative to C-1 of the phenyl ring was hidden under other signals.

4.6.2. (E)- and (Z)-4,5-Dihydro-3-methyl-3-[2-(2methylthiophenyl)-2-nitroethenyl]-2(3H)-furanone 39. The crude reaction mixture, whose composition was 67:33 in favour of the (E)-isomer, was purified on flash chromatography, 50% yield, yellow oil, IR (cm⁻¹, neat): 1775 (COO), 1520, (C=C-NO₂); ¹H NMR (δ, ppm): 7.81 (0.67H, s, C=CH), 7.73 (0.33H, s, C=CH), 7.47 (1H, m, Ar-H), 7.31 (1H, bd, J=7.7 Hz, Ar-H), 7.23 (2H, m, Ar-H), 4.23 (0.67H, dt, $J_1 = 9.0$ Hz, $J_2 = 2.6$ Hz, H-5), 4.09 (1.33H, m, H-5), 2.45 $(3H, s, SCH_3)$, 2.26 $(0.33H, dt, J_1 =$ 8.9 Hz, $J_2 = 13.1$ Hz, H-4), 2.16 (0.67H, dt, $J_1 = 9.1$ Hz, $J_2 = 12.8$ Hz, H-4), 1.78 (0.33H, ddd, $J_1 = 3.7$ Hz, $J_2 =$ 6.6 Hz, $J_3 = 13.1$ Hz, H-4), 1.48 (0.67H, ddd, $J_1 = 2.4$ Hz, $J_2 = 6.6$ Hz, $J_3 = 12.8$ Hz, H-4), 1.43 (0.90H, s, CH₃), 1.38 (2.1H, s, CH₃); ¹³C NMR (δ, ppm): (*E*)-**39**: 177.7 (s), 150.8 (s), 140.6 (s), 139.0 (d), 131.6 (d), 131.3 (d), 128.5 (s), 126.0 (d), 125.0 (d), 65.4 (t), 43.6 (s), 33.3 (t), 23.3 (q), 15.7 (q); (Z)-**39**: 178.0 (s), 150.2 (s), 140.1 (s), 139.2 (d), 132.2 (d),

131.3 (d), 127.9 (s), 126.1 (d), 125.0 (d), 65.4 (t), 43.3 (s), 34.6 (t), 22.9 (q), 15.8 (q); MS (m/z): 293 (M⁺, 28), 248 (12), 247 (49), 220 (16), 219 (100), 201 (12), 194 (36), 191 (12), 189 (17), 186 (14), 174 (15), 173 (36), 161 (14), 151 (41), 149 (25), 148 (13), 147 (28), 129 (14), 128 (12), 115 (18), 83 (11). Anal. Calcd for C₁₄H₁₅NO₄S: C, 57.32; H, 5.15; N, 4.77; S, 10.93. Found: C, 56.4; H, 5.19; N, 4.60.

4.6.3. *cis*- and *trans*-**3**-(**2-Hydroxyethyl**)-**3-methyl**-**5-phenyl-2-pyrrolidinone 40a and 40b.** The nitroalkenylated lactones **38** and **39** were reduced using Pd on carbon and Raney Nickel as a catalyst as reported in the general procedure.

A 2:3 mixture of lactams **40a** and **40b** were obtained in 70% yield. The two isomers were only partially separable by flash chromatography; yellow oil, IR (cm⁻¹, CHCl₃): 3420, 3153 (NH and OH), 1685 (NHC=O); MS (*m*/*z*): 220 (MH⁺, 33), 219 (M⁺⁺, 38), 202 (10), 191 (65), 190 (46), 175 (100), 174 (69), 173 (35), 172 (29), 160 (40), 158 (40), 147 (18), 146 (49), 145 (17), 144 (13), 143 (14), 132 (13), 131 (41), 130 (26), 129 (34), 128 (32), 120 (11), 117 (12), 115 (23), 106 (16), 104 (21), 91 (26), 84 (11), 77 (14). Anal. Calcd for C₁₃H₁₇NO₂: C, 71.21; H, 7.81; N, 6.39. Found: C, 70.5; H, 7.65; N, 6.30.

For sake of clarity the NMR values of the isomeric mixture are given separately for each isomer.

Compound **40a**. ¹H NMR (δ , ppm): 7.33 (5H, m, Ph), 6.23 (1H, bs, NH), 4.75 (1H, t, J=6.6 Hz, H-5), 4.09 (1H, bd, J=6.2 Hz, OH), 3.92 (1H, m, *CHOH*), 3.70 (1H, m, *CHOH*), 2.30 (1H, dd, J_1 =6.6 Hz, J_2 =12.6 Hz, H-4), 1.90 (2H, m, *CHCH*₂OH and H-4), 1.71 (1H, m, *CHCH*₂OH), 1.33 (3H, s, CH₃); ¹³C NMR (δ , ppm): 183.3 (s), 141.6 (s), 129.0 (2d), 128.0 (d), 125.7 (2d), 58.7 (t, CH₂OH), 55.8 (d, C-5), 46.6 (t, C-4), 44. 6 (s, C-3), 40.3 (t, *CH*₂CH₂OH), 21.8 (q).

Compound **40b.** ¹H NMR (δ , ppm): 7.38 (2H, m, Ph), 7.31 (3H, m, Ph), 5.94 (1H, bs, NH), 4.77 (1H, t, J=7.3 Hz, H-5), 3.94 (1H, m, CHOH), 3.75 (1H, m, CHOH), 2.97 (1H, bd, OH), 2.55 (1H, dd, J_1 =7.3 Hz, J_2 =13.0 Hz, H-4), 2.02 (1H, m, CHCH₂OH), 1.90 (1H, dd, J_1 =7.3 Hz, J_2 =13.0 Hz, H-4), 1.71 (1H, m, CHCH₂OH), 1.28 (3H, s, CH₃); ¹³C NMR (δ , ppm): 183.3 (s), 142.2 (s), 129.1 (2d), 128.1 (d), 125.8 (2d), 59.4 (t, CH₂OH), 55.0 (d, C-5), 46.8 (t, C-4), 43. 3 (s, C-3), 40.6 (t, CH₂CH₂OH), 23.5 (q).

4.6.4. 4,5-Dihydro-3-(2-(hydroxyimino)-2-(2-methylthiophenyl))ethyl-3-methyl-2(3H)-furanone 41. 51% Yield, yellow oil, IR (cm⁻¹) 3350 (OH), 1766 (COO), 1625 (C=N), 1587, 1560 (Ph), ¹H NMR (δ , ppm): 8.8 (1H, vbs, OH), 7.27 (4H, m, Ph), 4.25 (2H, m, 2H-5), 3.21 (2H, AB system, J=13.2 Hz, CH₂ of the chain), 2.44 (3H, s, SCH₃), 2.30 (1H, dt, J_1 = J_2 =7.6 Hz, J_3 =12.9 Hz, H-4), 1.90 (1H, ddd, J_1 =5.1 Hz, J_2 =7.3 Hz, J_3 =12.9 Hz, H-4), 1.17 (3H, s, CH₃); ¹³C NMR (δ , ppm): 181.0 (s), 156.7 (s), 137.7 (s), 135.7 (s), 129.4 (d), 129.1 (d), 126.6 (d), 124.9 (d), 65.3 (t, C-5), 42.4 (s, C-3), 34.6 (t), 34.3 (t), 22.9 (q, CH₃), 16.5 (q, CH₃); MS (m/z): 264 (M-CH₃⁺, 100), 262 (76), 247 (50), 232 (42), 229 (16), 203 (13), 188 (10), 164 (17), 152 (14).

Anal. Calcd for C₁₄H₁₇NO₃S: C, 60.19; H, 6.13; N, 5.01; S, 11.48. Found: C, 60.3; H, 6.25; N, 4.96.

4.6.5. (*E*,*Z*)- and (*Z*,*Z*)-4,5-Dihydro-3-methyl-3-(4-methylthio-2-nitrobutadienyl)-2(3*H*)-furanone 42. The product (*E*,*Z*)-42 was purified on column chromatography (52% yield). Oil, IR (cm⁻¹, CHCl₃): 1775 (COO), 1525 (C=C-NO₂); ¹H NMR (δ , ppm): 7.32 (1H, d, *J*=1.5 Hz, H-1 of the chain), 6.64 (1H, d, *J*=10.2 Hz, H-3 of the chain), 6.04 (1H, dd, *J*₁=10.2 Hz, *J*₂=1.5 Hz, H-4 of the chain), 4.32 (2H, m, 2H-5), 2.55 (1H, dt, *J*₁=8.5 Hz, *J*₂=13.1 Hz, H-4), 2.32 (1H, m, H-4), 2.36 (3H, s, SCH₃), 1.52 (3H, s, CH₃); ¹³C NMR (δ , ppm): (*E*,*Z*)-42: 177.7 (s), 148.5 (s), 141.3 (d), 141.2 (d), 113.1 (d), 65.4 (t, C-5), 43.4 (s, C-3), 33.3 (t, C-4), 23.3 (q, SCH₃), 15.7 (q, CH₃); Anal. Calcd for C₁₀H₁₃NO₄S: C, 49.37; H, 5.39; N, 5.76; S, 13.18. Found: C, 48.8; H, 5.49; N, 5.64. On standing in CDCl₃, the (*E*,*Z*)-isomer converted into its (*Z*,*Z*) isomer for an amount of 20%.

Compound (Z,Z)-42. ¹H NMR (δ , ppm) (a few signals were hidden under those of the (*E*)-isomer): 6.54 (1H, d, *J*= 11.0 Hz, H-3 of the chain), 6.29 (1H, s, H-1 of the chain), 6.09 (1H, d, *J*=11.0 Hz, H-4 of the chain), 4.44 (1H, dt, *J*₁=1.5 Hz, *J*₂=9.2 Hz, H-5), 2.41 (3H, s, SCH₃), 1.57 (3H, s, CH₃); ¹³C NMR (δ , ppm): 180.6 (s), 147.5 (s), 137.9 (d), 132.6 (d), 115.2 (d), 65.4 (t, C-5), 43.6 (s, C-3), 34.3 (t, C-4), 23.9 (q, SCH₃), 18.9 (q, CH₃).

4.6.6. (E)-4,5-Dihydro-3-methyl-3-(4,4-dimethylthio-2nitro)butadienyl-2(3H)-furanone 43. The product (70%) yield) was purified by flash chromatography (eluant: light petroleum:ethyl acetate, gradient), mp 82-84 °C; IR (cm⁻ film): 1770 (COO), 1666 (C=C), 1528, 1368 (NO₂); ¹H NMR (δ , ppm): 7.24 (1H, d, J = 1.8 Hz, H-1 of the chain), 5.96 (1H, d, J = 1.8 Hz, H-3 of the chain), 4.32 (2H, dd, $J_1 =$ 6.0 Hz, $J_2 = 7.7$ Hz, 2H-5), 2.48 (1H, dt, $J_1 = 7.7$ Hz, $J_2 =$ 12.8 Hz, H-4), 2.45 (3H, s, SCH₃), 2.35 (3H, s, SCH₃), 2.30 $(1H, dt, J_1 = 6.0 Hz, J_2 = 12.8 Hz, H-4), 1.51 (3H, s, CH_3);$ ¹³C NMR (δ, ppm): 177.7 (s), 149.8 (s), 147.9 (s), 137.0 (d, C-1 of the chain), 111.0 (d, C-3 of the chain), 65.3 (t, C-5), 43.2 (s, C-3), 35.9 (t, C-4), 22.6 (q, CH₃), 16.4 (q, SCH₃), 16.2 (q, SCH₃); MS (m/z): 289 (M⁺⁺, 3), 243 (100), 215 (48), 195 (11), 167 (22), 139 (11), 91 (11). Anal. Calcd for C₁₁H₁₅NO₄S₂: C, 45.66; H, 5.22; N, 4.84; S, 22.16. Found: C, 46.5; H, 5.35; N, 4.76.

4.6.7. 4,5-Dihydro-3-methyl-3-[(**4,4-dimethylthio-2-nitro)but-3-enyl]-2(3***H***)-furanone 44a,b.** To a solution of the nitrodiene **43** (0.04 g, 0.14 mmol) in MeOH (7 ml), 0.105 g of supported borohydride (2 mmol/g of Amberlyst A26, Aldrich product) was added under stirring and the reaction was monitored by TLC. After 15 min, the polymer was filtered off and washed with MeOH, the filtrated was evaporated and purified by flash chromatography. Compounds **44a** and **44b** (60 and 40%, respectively) were not separable by flash chromatography. For sake of clarity the NMR values of the isomeric mixture are given separately for each isomer.

Compound **44a**. ¹H NMR (δ , ppm): 5.52 (1H, d, J=8.8 Hz, H–C=C), 4.50 (1H, dt, J_1 = J_2 =8.8 Hz, J_3 =4.8 Hz, CH–NO₂), 4.26 (2H, m, 2H-5), 2.44 (1H, m), 2.35 (3H, s, SCH₃),

2.31 (3H, s, SCH₃), 2.03 (2H, m), 1.70 (1H, m), 1.29 (3H, s, CH₃).

Compound **44b**. ¹H NMR (δ , ppm): 5.57 (1H, d, J=8.4, H– C=C), 4.58 (1H, ddd, J_1 =3.0, J_2 =8.4, J_3 =10.6, CH– NO₂), 4.26 (2H, m, 2H-5), 2.44 (1H, m), 2.35 (3H, s, SCH₃), 2.30 (3H, s, SCH₃), 2.03 (2H, m), 1.70 (1H, m), 1.30 (3H, s, CH₃).

4.6.8. (*E*)-4,5-Dihydro-3-methyl-3-(4,4-dimethylthio)butadienyl-2(*3H*)-furanone 45. On standing in CDCl₃, 44a and 44b convert into the diene system 45. Oil. IR (cm⁻¹, CHCl₃): 1770 (COO), 1605, 1558 (C=C); ¹H NMR (δ , ppm): 6.78 (1H, dd, J_1 =15.7 Hz, J_2 =10.2 Hz, H-2 of the chain), 6.32 (1H, d, J=10.2 Hz, H-3 of the chain), 5.77 (1H, d, J=15.7 Hz, H-1 of the chain), 4.29 (2H, m, 2H-5), 2.40 (1H, m, H-4), 2.33 (3H, s, SCH₃), 2.32 (3H, s, SCH₃), 2.17 (1H, m, H-4), 1.40 (3H, s, CH₃); ¹³C NMR (δ , ppm): 168.0 (s), 133.6 (s), 133.2 (d), 129.4 (d), 126.9 (d), 65.2 (t), 45.3 (s), 35.8 (t), 23.3 (q), 17.4 (q), 16.7 (q); MS (m/z): 245 (MH⁺, 19), 244 (M⁺, 21), 231 (19), 230 (24), 229 (100), 213 (13), 212 (15), 201 (36), 185 (12), 183 (43), 155 (10), 138 (10), 137 (13), 123 (10), 91 (19), 77 (12). Anal. Calcd for C₁₁H₁₆O₂S₂: C, 54.06; H, 6.60; S, 26.24. Found: C, 55.0; H, 6.67.

Acknowledgements

The authors wish to thank the Universities of Trieste, Bologna, and Genova and M.I.U.R. (Rome) for financial support to this research (PRIN 2001-2003).

References and notes

- (a) Fischer, N. H.; Olivier, E. J.; Fischer, H. D. In *Progress in the Chemistry of Organic Natural Compounds*, Herz, W., Grisebach, H., Kirby G. W., Eds.; Springer Verlag, New York: **1979**, *38*, ch. 2. (b) Devon, T. K.; Scott, A. I. In *Handbook of Naturally Occurring Compounds*, Academic, New York, 1975; Vol. 1.
- (a) Yoshoka, H.; Mabry, T. J.; Timmermann, B. N. Sesquiterpene Lactones: Chemistry, NMR and Plant Distribution, University Tokyo Press, Tokyo, Japan, 1973. (b) Hoffmann, H. M. R.; Raabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94–110.
- (a) Hormuth, S.; Deissig, H.-U.; Dorsch, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 1449–1450. (b) Maritani, Y.; Ukita, T.; Nishitani, T.; Seki, M.; Iwasaki, T. Tetrahedron Lett. 1990, 31, 3615–3618. (c) Tomioka, K.; Cho, Y.-S.; Sato, F.; Koga, K. J. Org. Chem. 1988, 53, 4094–4098.
- (a) Klunk, W. E.; McKeon, A. C.; Coney, D. F.; Ferrendelli, J. A. *Science* **1982**, *217*, 1040–1042. (b) Peterson, E. M.; Xu, K.; Holland, K. D.; McKeon, A. C.; Rothman, S. M.; Ferrendelli, J. A.; Coney, D. F. *J. Med. Chem.* **1994**, *37*, 275–286 and references therein.
- (a) Node, M.; Nagasawa, H.; Naniwa, Y.; Fuji, K. Synthesis 1987, 729–732. (b) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Terada, S. J. Am. Chem. Soc. 1986, 108, 3855–3856. (c) Nishide, K.; Kurosaki, R.; Hosomi, K.; Imazato, H.; Inoue, T.;

Node, M.; Ohmori, T.; Fuji, K. *Tetrahedron* **1995**, *51*, 10857–10866. (d) Katoh, T.; Nishide, K.; Node, M.; Ogura, H. *Heterocycles* **1999**, *50*, 833–841.

- (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. Engl. 1998, 37, 388–401.
 (b) Ramachandran, P. V.; Chen, G. M.; Brown, H. C. J. Org. Chem. 1996, 61, 88–94.
 (c) Fuji, K. Chem. Rev. 1993, 93, 2037–2066.
 (d) Isaka, M.; Nakamura, E. J. Am. Chem. Soc. 1990, 112, 7428–7430.
 (e) Martin, S. F. Tetrahedron 1980, 36, 419–460.
- 7. Enders, D.; Teschner, D.; Raabe, G. Synlett 2000, 637-640.
- 8. (a) Fitzi, R.; Seebach, D. *Tetrahedron* 1988, 44, 5277–5292.
 (b) Calderari, G.; Seebach, D. *Helv. Chim. Acta* 1985, 68, 1592–1604.
- Pavlova, Z. F.; Lipina, E. S.; Kasem, Ya. A.; Kuz'mina, N. V. Russ. J. Org. Chem 1999, 35, 1321–1325.
- 10. Surage, S. S.; Rajappa, S. Tetrahedron Lett. **1998**, *39*, 7169–7172.
- Surage, S. S.; Kumarau, G.; Rajappa, S.; Rajalakshmi, K.; Pattabhi, V. *Tetrahedron* 1997, *53*, 8531–8540.
- Dell'Erba, C.; Gabellini, A.; Novi, M.; Petrillo, G.; Tavani, C.; Cosimelli, B.; Spinelli, D. *Tetrahedron* 2001, *57*, 8159–8165.
- (a) Shih, N. Y.; Lupo, A. T. Jr.; Aslanian, R.; Orlando, S.; Piwinski, J. J.; Green, M. J.; Ganguly, A. K.; Clark, M. A.; Tozzi, S.; Kreutner, W.; Hey, J. A. J. Med. Chem. 1995, 38, 1593–1599. (b) Corey, E. J.; Li, W.; Reichard, G. A. J. Am. Chem. Soc. 1998, 120, 2330–2336.
- (a) Herdeis, C.; Hubmann, H. P. *Tetrahedron: Asymmetry* 1992, 3, 1213–1221. (b) McGeer, P. L.; McGeer, E. G. *Basic Neurochemistry: Molecular, Cellular and Medical Aspects*, 4th ed.; Siegel, G. J., Agranoff, B., Albens, R. W., Molinoff, P., Eds.; Raven: New York, 1989.
- 15. Otto, A.; Abegaz, B.; Ziemer, B.; Liebscher, J. *Tetrahedron: Asymmetry* **1999**, *10*, 3381–3389.
- (a) Bapat, J. B.; Black, D. St. C.; Brown, R. F. C. In *Advances* in *Heterocyclic Chemistry*, 1969; Vol. 10, pp 199–240. (b) Thomas, A.; Rajappa, S. *Tetrahedron* 1995, *51*, 10571–10580.
- Grant, D. M.; Cheney, B. V. J. Am. Chem. Soc. 1967, 89, 5319–5327.
- Seebach, D.; Prelog, W. Angew. Chem., Int. Ed. Engl. 1982, 21, 654–660.

- Thominiaux, C.; Roussè, S.; Desmaële, D.; d'Angelo, J.; Riche, C. *Tetrahedron: Asymmetry* **1999**, *10*, 2015–2021.
- 20. Ballini, R.; Petrini, M. *Tetrahedron* **2004**, *60*, 1017–1047 and references cited therein.
- Breuer, E.; Aurich, H. G.; Nielsen, A. Nitrones, nitronates and nitroxides. In *The Chemistry of Functional Groups*; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1989.
- Jackmann, L. M.; Sternhell, S. Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry. 2nd ed.; Pergamon: London, 1969.
- (a) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. Chimia 1979, 33, 1–18. (b) Stevens, R. W.; Mukaiyama, T. Chem. Lett. 1985, 855–856.
- Oare, D. A.; Heathcock, C. H. Stereochemistry of the base promoted Michael addition reaction. In *Topics in Stereochemistry*; Eliel, E. L., Wiley, S. H., Eds.; Wiley: New York, 1989; Vol. 19.
- Juaristi, E.; Beck, A. K.; Hansen, J.; Matt, T.; Mukhopadhyay, T.; Simson, M.; Seebach, D. *Synthesis* 1993, 1271–1290.
- Lerche, H.; König, D.; Severin, Th. Chem. Ber. 1974, 107, 1509–1517.
- 27. (a) Severin, Th.; König, D. *Chem. Ber.* 1974, *107*, 1499–1508.
 (b) Severin, T.; Kullmer, H. *Chem. Ber.* 1971, *104*, 440–448.
- 28. Fuji, K.; Node, M. Synlett 1991, 603-610.
- 29. Fuji, K.; Kawabata, T.; Naniwa, Y.; Ohmori, T.; Node, M. *Chem. Pharm. Bull.* **1994**, *42*, 999–1001.
- (a) Kawai, Y.; Inaba, Y.; Tokitoh, N. *Tetrahedron: Asymmetry* **2001**, *12*, 309–318. (b) Dell'Erba, C.; Mele, A.; Novi, M.; Petrillo, G.; Stagnaro, P. *Tetrahedron* **1992**, *48*, 4407–4418.
- 31. Goudgaon, N. M.; Wadgaonkar, P. P.; Kabalka, G. W. Synth. Commun. **1989**, *19*, 805–808.
- 32. Gröbel, B.-Th.; Seebach, D. Synthesis 1977, 357-402.
- 33. Oare, D. A.; Heathcock, C. H. Acyclic stereocontrol in Michael addition reactions of enamines and enol ethers. In *Topics in Stereochemistry*; Eliel, E. L., Wiley, S. H., Eds.; Wiley: New York, 1991; Vol. 20.
- 34. Buckley, G. D.; Scaife, C. W. J. Chem. Soc. 1947, 1471-1472.
- 35. Boberg, F.; Schultze, G. R. Chem. Ber. 1957, 90, 1215-1225.
- 36. Falques, M.; Rene, L.; Royer, R. Synthesis 1982, 260-261.
- Black, A. P.; Babers, F. H. Organic Syntheses; Collect. Wiley: New York; Vol. 2, pp 412 and 512.