Organic & Biomolecular Chemistry

View Article Online

PAPER

Check for updates

Cite this: *Org. Biomol. Chem.*, 2018, **16**, 7903

Received 27th July 2018, Accepted 3rd October 2018 DOI: 10.1039/c8ob01629a rsc.li/obc

Introduction

In recent times, substantial research work has been carried out for the development of external stimuli responsive gasotransmitters.^{1–5} Among the existing gasotransmitters, hydrogen sulfide (H_2S) is more significant due to its influence over a wide range of physiological and pathological processes.⁶ H_2S acts as a signaling molecule and mediator of important cellular processes causing several beneficiary effects like antiinflammatory, antioxidative, vasorelaxant and cytoprotective effects.^{7,8} H_2S is made endogenously in a smaller amount by different mammalian tissues as a protecting factor against many diseases like cardiovascular disease, metabolic syndrome, obesity and neurodegenerative diseases.^{9–13} Recent studies have acknowledged that H_2S is a third gaseous transmitter, in addition to carbon monoxide (CO) and nitric oxide

Kharagpur-721302, West Bengal, India. E-mail: ndpradeep@chem.iitkgp.ernet.in ^bCentre for Biomaterials, Cellular and Molecular Theranostics, VIT University,

Vellore-632014, Tamil Nadu, India

Tetraphenylethylene conjugated *p*-hydroxyphenacyl: fluorescent organic nanoparticles for the release of hydrogen sulfide under visible light with real-time cellular imaging⁺

C. Parthiban,^a Pavithra M.,^a L. Vinod Kumar Reddy,^b Dwaipayan Sen,^b Melvin Samuel S.^a and N. D. Pradeep Singh ^b *^a

Hydrogen sulfide (H₂S) behaves like a two-edged sword, at low concentrations it has beneficial and cytoprotective effects, while at higher concentrations it exhibits toxicity. Hence there is a keen interest in developing light responsive H₂S donors with a spatio-temporal controlled release. Herein, we report visible light activatable tetraphenylethylene conjugated *p*-hydroxyphenacyl (TPE-*p*HP-H₂S) nanoparticles for the release of hydrogen sulfide (H₂S) with a real time monitoring ability. Our newly designed photoresponsive single component organic nanoparticle based H₂S donor is built by integrating the tetraphenylethylene (TPE) moiety and *p*-hydroxyphenacyl (*p*HP) group so that it can display both aggregation-induced emission (AIE) and excited state intramolecular proton transfer (ESIPT) properties. Aggregation-induced emission enhancement was exhibited by our TPE-*p*HP-H₂S NP donor, which was then explored for the cellular imaging application. The ESIPT by the *p*HP moiety provided unique advantages to our TPE-*p*HP-H₂S NP donor which include (i) the excitation wavelength extended to >410 nm (ii) a large Stokes shift (iii) a low inner filter effect and (iv) real-time monitoring of H₂S release by a simple fluorescent colour change. *In vitro* studies showed that the TPE-*p*HP-H₂S NP donor presents excellent properties like real-time monitoring, photoregulated H₂S release and biocompatibility.

(NO).¹⁴ Interestingly, studies have shown that the biological effects of H_2S are dependent on its concentration, at low concentrations it has beneficial and cytoprotective effects, while at higher concentrations it exhibits toxicity.¹⁵ Hence, several H_2S donors triggered by different stimuli (pH,¹⁶ reaction with glutathione (GSH),¹⁷ esterase-activated release,¹⁸ redox-controlled release,¹⁹ and temperature²⁰) have been developed. Among them light induced H_2S donors have gained considerable attention because of their ability to provide spatio-temporal control over the release.^{21–23}

To date, different types of UV light responsive Gasotransmitter Donors (GDs) for the release of H_2S have been developed.^{24–26} But the major limitation of using UV light responsive GDs for the release of H_2S is the phototoxicity associated with the UV light. Of late, Chakrapani and co-workers described BODIPY-caged thiocarbamate based visible light activated carbonyl sulfide (COS) release.²⁷ The released COS consequently gets hydrolysed into H_2S in the presence of carbonic anhydrase (Fig. 1a). The limitation of the abovementioned visible light activated H_2S in real time. Furthermore, the above visible light activated H_2S donor needs an external agent (carbonic anhydrase) for the release of $H_2S.^{27}$ Later, our group

^aDepartment of Chemistry, Indian Institute of Technology Kharagpur,

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ c8ob01629a

Fig. 1 Visible light-triggered H_2S donors, (a) COS/ H_2S donor, (b) ESIPT based H_2S donor, and (c) design of AIE + ESIPT based photoresponsive single component organic nanoparticles for H_2S release with a real time monitoring ability.

developed a visible light activated ESIPT based H_2S donor using *p*-hydroxy phenacyl as a phototrigger with a real time monitoring ability (Fig. 1b).²⁸

Recently, AIE, a novel photophysical phenomenon, has been utilized in a wide range of applications, such as cell imaging, biosensing and therapeutics, fluorescent sensors, optoelectronic and energy devices etc.²⁹⁻³¹ This AIE process has attracted great attention from the scientific community because of its unique properties like high signal to noise ratio, tremendous photostability in the solution phase and remarkable emission properties of a molecule in the aggregated state. AIE chromophores are extremely emissive in their aggregated state however they exhibit weak fluorescence in solution.³⁰ The regulated intramolecular motion in the aggregated state plays a substantial role. Among the different AIE chromophores, tetraphenylethylene (TPE) has excellent fluorescence in the aggregated state, because of the restriction of molecular motion.³² TPE has been used in various applications such as chemo/biosensors, solar cells, optoelectronic devices, field effect transistors and light emitting diodes.33-36

Keeping the importance of AIE and ESIPT in mind, we intend to design for the first time a photoresponsive single component organic nanoparticle based H_2S donor which can exhibit the combined benefits of AIE and ESIPT phenomena. The H_2S donor was developed by integrating the tetraphenyl-ethylene (TPE) moiety and *p*-hydroxyphenacyl (*p*HP) group (Fig. 1c). Our designed H_2S donor provided advantages like (i) aggregation-induced emission enhancement (ii) a large Stokes shift (iii) the excitation wavelength extended to >410 nm, (iv) unlocking of photorelease of H_2S in the aggregated state, (v) real-time monitoring of H_2S release by a simple fluorescent colour change and (vi) no requirement of additional reagent for the release of H_2S .

Results and discussion

The TPE-*p*HP-H₂S donor was synthesized according to the following procedure (Scheme 1). The synthesis of compounds **2** and **3** was carried out according to the reported procedure.²⁸ On the other hand, compound **4** was treated with 4-nitrobenzophenone (5) in the presence of TiCl₄ in dry THF at reflux for 5 h to afford **6**. Next, compound **6** was treated with 10% Pd/C in dry ethanol at reflux for 4 h to furnish 7. Finally, the reaction between **3** and 7 for 3 h in methanol at reflux yields our desired product **8**. The products were characterized by NMR (¹H and ¹³C) spectroscopy (Fig. S1 to S5†) and HR-MS (Fig. S6†).

The TPE-*p*HP-H₂S NP (nanoparticle) donor was prepared by the reprecipitation technique (Scheme S1[†]). The surface morphology of the TPE-*p*HP-H₂S NP donor was monitored by highresolution transmission electron microscopy (HR-TEM). It showed that the prepared nanoparticles were spherical in shape with a size ~35 nm (Fig. 2a). A DLS (dynamic light scat-

Scheme 1 Synthesis of the TPE-*p*HP-H₂S donor. Reaction conditions: (a) Bromoacetyl bromide, AlCl₃, CH₂Cl₂, 35 °C, 15 h; (b) Na₂S·9H₂O, acetone, H₂O, 2 h; (c) Zn, TiCl₄, THF, reflux, 5 h; (d) (NH₂)₂·H₂O, 10% Pd/C, EtOH, reflux; (e) MeOH, reflux, 3 h.

Fig. 2 TPE-*p*HP-H₂S NP donor (a) HR-TEM in aqueous acetonitrile and (b) DLS.

tering) study in Fig. 2b shows that the synthesized nanoparticles have ~35 nm of diameter on average, which is almost similar to the size obtained in the HR-TEM image.

The photophysical properties of our newly synthesized H₂S donor were investigated. The UV spectrum indicated that the TPE-pHP-H₂S donor has an absorption band at 372 nm (Fig. 3b). Emission studies were also carried out to understand the ESIPT behavior of the TPE-pHP-H₂S donor. In non-hydrogen bonding solvents (chloroform, benzene), only one emission band at λ_{max} = 549 nm (keto form) of the TPE-*p*HP-H₂S donor was noted (Fig. 3a). In non-hydrogen bonding solvents, there is an ultrafast proton transfer occurring from the hydroxyl group of the *p*HP group to the nitrogen atom of the TPE moiety (ESIPT). In addition, in polar aprotic solvents (THF, ACN) and polar protic solvents (MeOH, EtOH), we found two emission bands at λ_{max} = 460 nm (enol form) and λ_{max} = 549 nm (keto form) (Fig. 3c). The new emission at 460 nm (enol form) is due to the existence of a hydrogen bond between the solvent and the hydroxyl group of the TPEpHP-H₂S donor which restricts the ESIPT process. In addition, emission spectra of TPE-pHP-H₂S NPs at different concen-

TPE

THF DMSO MeOH EtOH

ACN EtOAd DCM

500

Intensity 300

200

100

0 | 400

Fluorescence

THE

DMSO

MeOH

ACN

EtoAc

CHCI

500

Keto Form

500

Wavelength (nm)

Τ́РЕ

600

c

trations in aqueous acetonitrile were recorded and we observed an increase in the emission intensity of TPE-*p*HP-H₂S NPs (Fig. S7 \dagger).

To examine the photochemical properties of the TPE-pHP-H₂S NP donor, a solution of TPE-pHP-H₂S NP donor $(1 \times 10^{-4} \text{ M}, 5 \text{ mL})$ in CH₃CN/PBS buffer (0.1:9.9 v/v) was irradiated with a medium-pressure mercury lamp (125 W, incident intensity $(I_0) = 2.886 \times 10^{16}$ quanta per s) as the source of visible light ($\lambda \ge 410$ nm) using a suitable UV cut-off filter (1 M NaNO₂ solution) with constant stirring for 20 min. The photodecomposition of the TPE-pHP-H₂S NP donor was analyzed by reversed-phase HPLC. As shown in Fig. 4a, the steady disappearance of a peak at R_t = 7.42 min corresponding to the TPE-pHP-H₂S NP donor indicates gradual photodecomposition of the H₂S donor with respect to irradiation time. Furthermore, the appearance and continuous increase in the intensity of the new peak at $R_t = 4.67$ min indicate the formation of the photoproduct (13). The newly formed peak at $R_{\rm t}$ = 4.67 was validated as the photoproduct by co-injection and further established by isolation and characterization by ¹H NMR spectroscopy (Fig. S8[†]). In addition, the time-dependent decomposition of the TPE-pHP-H2S NP donor was found with a first-order rate constant of $2.76 \times 10^4 \text{ s}^{-1}$ (Fig. 4b).

Furthermore, the photochemical quantum yield (Φ p) of the TPE-*p*HP-H₂S NP donor was determined as 0.18 ± 0.05 with potassium ferrioxalate as an actinometer. The stability of the TPE-*p*HP-H₂S NP donor was also confirmed under dark conditions in CH₃CN/PBS containing 10% fetal bovine serum (pH = 7.4) and different pH solutions (pH = 6 and 8) for one week ~32 °C. It is clearly shown that the TPE-*p*HP-H₂S NP donor is relatively stable in biological media and in various pH solutions in the dark.

To analyze H₂S release from the TPE-*p*HP-H₂S NP donor, we utilized the standard methylene blue assay. In this study, a 100 μ M solution of TPE-*p*HP-H₂S NP donor in pH 7.4 ACN/PBS buffer (0.1:9.9) was prepared. Upon irradiation of the TPE-*p*HP-H₂S NP donor, we noted an increase in absorption maximum at 663 nm with increasing irradiation time, validating the ability of the TPE-*p*HP-H₂S NP donor to release H₂S (Fig. 5a). In addition, we carried out a time-dependent H₂S generation study; it was observed that the H₂S generation followed a pseudo-first-order reaction with a rate constant of 1.22 × 10⁷ s⁻¹. The concentrations of H₂S extended a maximum of ~40 μ M in about 20 min and dropped afterward, probably due to volatilization of H₂S gas (Fig. 5b).

In addition, to demonstrate the H_2S release only in the presence of light, we observed the release of H_2S by intermittently switching the visible light source on and off. Fig. 6 shows that on every occasion the light source was switched off, H_2S release stopped; this evidently specifies that only external stimulus light induces H_2S release.

With reference to the literature^{37,38} and our previous work,^{28,39} we proposed a mechanism for the photochemical release of H_2S from the TPE-*p*HP-H₂S NP donor in aqueous acetonitrile solution as shown in Scheme 2.

400

Wavelength (nm)

Enol Forn

Absorbance

0.0+200

300

Fig. 4 (a) HPLC profiles of the TPE-pHP-H₂S NP donor at fixed time intervals (0–20 min) of irradiation using visible light (\geq 410 nm) and (b) time course of disappearance of the TPE-pHP-H₂S NP donor was resolved by HPLC analysis.

Fig. 5 (a) Spectra of methylene blue assay. Red line: Na₂S (50 μ M). Other lines: H₂S release from the TPE-*p*HP-H₂S NP donor upon irradiation at various times and (b) time-dependent H₂S release of the TPE-*p*HP-H₂S NP donor was resolved by methylene blue assay and curve fitting found to be pseudo-first-order (rate constant of 1.22 × 10⁷ s⁻¹).

Fig. 6 Progress of the release of H_2S from the TPE-*p*HP- H_2S NP donor in bright and dark environments (ON indicates the start of visible light irradiation and OFF indicates the end of visible light irradiation).

At first the aggregation between the molecules (TPE*p*HP-H₂S) leads to an inhibition of the intramolecular rotation. Upon irradiation, the TPE-*p*HP-H₂S NP donor gets excited to its singlet state (S1), then it undergoes a rapid ESIPT process from the *p*HP group to the tetraphenyl moiety (9), which results in the deprotonation of the *p*HP group to yield intermediate 10. The zwitterionic intermediate 10 then undergoes intersystem crossing (ISC) to its triplet excited state, from the triplet state it undergoes photo-Favorskii rearrangement to give an assumed spirodiketone 11 with the simultaneous release of the H₂S. The spirodiketone is then subject to hydrolytic ring opening to yield the photoproduct (13). Moreover, at various pH values the release rate (Table S1†) supported the ESIPT assistance in the photorelease.

To support the unlocking of photorelease of H_2S by our donor in the aggregated state, the photolysis of the TPE*p*HP-H₂S NP donor was carried out under visible light (\geq 410 nm) in various ACN-H₂O solvent systems. The ratio of H₂S release was calculated against different water fractions of ACN (Fig. S10†). The photochemical quantum yield progressively increased with increasing f_w and it was obtained to be the highest at $f_w = 99$ vol% (Table S2†). No considerable H₂S release was recorded below $f_w = 80$ vol% and in pure ACN. This proposes that aggregation initiates the H₂S release process.

Our newly designed H_2S donor displays a noticeable fluorescence colour change from yellow to green on photoirradia-

Scheme 2 Proposed AIE + ESIPT induced H₂S-releasing mechanism.

tion. At 0 min, the excitation of the TPE-*p*HP-H₂S NP donor $(1 \times 10^{-4} \text{ M}, 0.1 : 9.9 \text{ ACN/PBS}$ buffer at pH 7.4) at $\lambda_{\text{max}} = 372 \text{ nm}$ produced only a yellow-emission band at $\lambda_{\text{max}} = 549 \text{ nm}$. The steady increase in the irradiation time (0–20 min) results in a continuing decrease in the emission intensity at $\lambda_{\text{max}} = 549 \text{ nm}$, with a simultaneous increase in the new emission band at $\lambda_{\text{max}} = 486 \text{ nm}$ (Fig. 7). The blue shift of the emission suggests the formation of the photoproduct (the blue shift is attributed to the disruption of conjugation from the phenolic hydroxyl group to the carbonyl group). The release of H₂S from the TPE-*p*HP-H₂S NP donor was confirmed by fluorescence quenching of coumarin–hemicyanine dye (Scheme S2 and Fig. S11[†]).

To investigate the cellular uptake and real-time monitoring of H_2S release from the TPE-*p*HP- H_2S NP donor within cells, cervical cancer cells HeLa were incubated with the TPE*p*HP- H_2S NP donor for 8 h. After incubation, a bright yellow fluorescence (Fig. 8) was produced inside the cells showing good cellular internalization. The co-localization experiments (Fig. S12 and S13†) suggest that the TPE-*p*HP- H_2S NP donor went selectively into the lysosomes of the HeLa cells. To demonstrate the real time monitoring capability of the TPE*p*HP-H₂S NP donor, confocal microscopy images were obtained at 0, 10 and 20 min of irradiation by visible light respectively. Initially, the cell shows a yellow fluorescence due to aggregation and cellular uptake of **8** (Fig. 8b) and after visible light irradiation for 10 min, we observed a light green fluorescence (Fig. 8c); it shows decomposition of the TPE-*p*HP-H₂S NPs donor and H₂S release. After irradiation for 20 min, we observed a complete fluorescence colour change from yellow to green (Fig. 8d), it clearly shows complete photolysis of the TPE-*p*HP-H₂S NP donor to release H₂S. Moreover, for the detection of the intracellular H₂S level we have used coumarinhemicyanine fluorescence dye (Fig. S14†).

We carried out the cytotoxicity test of the TPE-*p*HP-H₂S NP donor by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay on HeLa cells before and after photolysis (Fig. 9a and b). HeLa cells were incubated with various concentrations of TPE-*p*HP-H₂S NP donor (1, 5, 10, 15, 20 μ m) for 6 h, and then exposed to photolysis with visible light for 20 min. MTT was added to the cells at 0.4 mg ml⁻¹ after 72 h of incubation. From the results, we observed that

Fig. 7 (a) Fluorescence response of the TPE-pHP-H₂S NP donor with incremental addition of water (0–99%) and (b) fluorescent spectral change of the TPE-pHP-H₂S NP donor during photolysis at regular intervals of time (0–20 min).

Fig. 8 Confocal microscopy images of internalization of the TPEpHP-H₂S NP donor in HeLa cells: (a) bright-field image, (b) 0 min, (c) 10 min and (d) 20 min. Scale bar = $50 \mu m$.

Fig. 9 Cell viability assay of the TPE- $pHP-H_2S$ NP donor in the HeLa cell line: (a) before and (b) after photolysis for 20 min. Values are depicted as mean \pm standard deviation from three independent experiments.

there is no confirmation of the inhibition of proliferation of HeLa cells by the TPE-*p*HP-H₂S NP donor before and after photolysis, this clearly shows that the H₂S donor TPE-*p*HP-H₂S NPs are not cytotoxic at the studied concentration.

Conclusion

In conclusion, we have demonstrated photoresponsive single component fluorescent organic nanoparticles for H_2S release, utilizing the combined benefits of AIE and ESIPT phenomena with a real time monitoring ability. Our TPE-*p*HP-H₂S NP donor exhibited yellow fluorescence and the photorelease

ability was found to be unlocked only in its aggregated state. Upon visible light irradiation, the TPE-*p*HP-H₂S NP donor gets excited to its singlet state and then undergoes the ESIPT process to release H₂S. We also demonstrated that our H₂S donor released H₂S in a spatio-temporal controlled manner. Furthermore, we demonstrated the real-time monitoring capability of our H₂S donor at the cellular level with the assistance of a change in fluorescence from yellow to green. Thus, our synthesized TPE-*p*HP-H₂S NP donor accomplished the controlled release of H₂S under the visible light without the help of any external agent. In the future, we will focus on developing a near infra-red (NIR) activatable gasotransmitter donor for the release of two different gasotransmitters with a real time monitoring ability.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank DST-SERB (Grant No. EMR/2016/005885) for financial support. DST-FIST for 600 and 400 MHz NMR. C. Parthiban thanks the Science & Engineering Research Board (SERB), New Delhi for N-PDF.

References

- Z. Xiao, T. Bonnard, A. Shakouri-Motlagh, R. A. L. Wylie, J. Collins, J. White, D. E. Heath, C. E. Hagemeyer and L. A. Connal, *Chem. – Eur. J.*, 2017, 23, 11294.
- 2 Y. Zhao, H. Wang and M. Xian, J. Am. Chem. Soc., 2011, 133, 15.
- 3 T. Liu, Z. Xu, D. R. Spring and J. Cui, *Org. Lett.*, 2013, 15, 2310.
- 4 Y. Wang, G. Zhang, M. Gao, Y. Cai, C. Zhan, Z. Zhao,
 D. Zhang and B. Z. Tang, *Faraday Discuss.*, 2017, **196**,
 9.
- 5 J. Liang, B. Z. Tang and B. Liu, *Chem. Soc. Rev.*, 2015, 44, 2798.
- 6 C. Zhan, X. You, G. Zhang and D. Zhang, *Chem. Rec.*, 2016, 16, 2142.
- 7 J. L. Wallace and R. Wang, *Nat. Rev. Drug Discovery*, 2015, 14, 329.
- 8 D. J. Polhemus and D. J. Lefer, *Circ. Res.*, 2014, 114, 730.
- 9 B. L. Predmore and D. J. Lefer, *Expert Rev. Clin. Pharmacol.*, 2011, 4, 83.
- 10 D. J. Polhemus, Z. Li, C. B. Pattillo, G. Gojon, T. Giordano and H. Krum, *Cardiovasc. Ther.*, 2015, 33, 216.
- 11 S. Mani, A. Untereiner, L. Wu and R. Wang, *Antioxid. Redox Signaling*, 2014, **20**, 805.
- 12 J. Beltowski, G. Wojcika and A. J. Wisniewska, *Biochem. Pharmacol.*, 2018, **149**, 60.

- 13 B. D. paul and S. H. Snyder, *Biochem. Pharmacol.*, 2018, **149**, 101.
- 14 W. Zhang, N. Wang, Y. Yu, Y. M. Shan, B. Wang, X. M. Pu and X. Q. Yu, *Chem. – Eur. J.*, 2018, **24**, 4871.
- 15 R. O. Beauchamp, J. S. Bus, J. A. Popp, C. J. Boreiko and D. A. Andjelkovich, *Crit. Rev. Toxicol.*, 1984, **13**, 25.
- 16 J. Kang, Z. Li, C. L. Organ, C. M. Park, C. T. Yang, A. Pacheco, D. Wang, D. J. Lefer and M. Xian, *J. Am. Chem. Soc.*, 2016, **138**, 6336.
- 17 D. Liang, H. Wu, M. W. Wong and D. Huang, Org. Lett., 2015, 17, 4196.
- 18 Y. Zheng, B. Yu, K. Ji, Z. Pan, V. Chittavong and B. Wang, Angew. Chem., Int. Ed., 2016, 55, 4514.
- 19 A. Stein and S. M. Bailey, Redox Biol., 2013, 1, 32.
- 20 Y. Zhao, T. D. Biggs and M. Xian, Chem. Commun., 2014, 50, 11788.
- 21 P. Stacko, L. Muchova, L. Vitek and P. Klan, *Org. Lett.*, 2018, 20, 4907.
- 22 M. Popova, T. Soboleva, S. Ayad, A. D. Benning and L. M. Berreau, J. Am. Chem. Soc., 2018, 140, 9721.
- 23 R. Sakla and A. Jose, *ACS Appl. Mater. Interfaces*, 2018, **10**, 14214.
- 24 N. O. Devarie-Baez, P. E. Bagdon, B. Peng, Y. Zhao, C. M. Park and M. Xian, *Org. Lett.*, 2013, 15, 2786.
- 25 Y. Zhao, S. G. Bolton and M. D. Pluth, Org. Lett., 2017, 19, 2278.
- 26 Z. Xiao, T. Bonnard, A. Shakouri-Motlagh, R. A. L. Wylie, J. Collins, J. White, D. E. Heath, C. E. Hagemeyer and L. A. Connal, *Chem. – Eur. J.*, 2017, 23, 11294.

- 27 A. K. Sharma, M. Nair, P. Chauhan, K. Gupta, D. K. Saini and H. Chakrapani, *Org. Lett.*, 2017, **19**, 4822.
- 28 Y. Venkatesh, J. Das, A. Chaudhuri, A. Karmakar, T. K. Maiti and N. D. Pradeep Singh, *Chem. Commun.*, 2018, 54, 3106.
- 29 Y. Wang, G. Zhang, M. Gao, Y. Cai, C. Zhan, Z. Zhao, D. Zhang and B. Z. Tang, *Faraday Discuss.*, 2017, **196**, 9.
- 30 J. Liang, B. Z. Tang and B. Liu, *Chem. Soc. Rev.*, 2015, 44, 2798.
- 31 C. Zhan, X. You, G. Zhang and D. Zhang, *Chem. Rec.*, 2016, 16, 2142.
- 32 W. Zhang, N. Wang, Y. Yu, Y. M. Shan, B. Wang, X. M. Pu and X. Q. Yu, *Chem. – Eur. J.*, 2018, **24**, 4871.
- 33 H. Zhang, H. Li, J. Wang, J. Sun, A. Qin and B. Z. Tang, J. Mater. Chem. C, 2015, 3, 5162.
- 34 H. T. Feng, S. Song, Y. C. Chen, C. H. Shen and Y. S. Zheng, J. Mater. Chem. C, 2014, 2, 2353.
- 35 Z. Zhao, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem., 2012, 22, 23726.
- 36 X. Liu, J. Jiao, X. Jiang, J. Li, Y. Cheng and C. Zhu, J. Mater. Chem. C, 2013, 1, 4713.
- 37 X. Luo, J. Wu, T. Lv, Y. Lai, H. Zhang, J. Jian Lu, Y. Zhang and Z. Huang, Org. Chem. Front., 2017, 4, 2445.
- 38 P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov and J. Wirz, *Chem. Rev.*, 2013, **113**, 119.
- 39 S. Barman, S. K. Mukhopadhyay, S. Biswas, S. Nandi, M. Gangopadhyay, S. Dey, A. Anoop and N. D. P. Singh, *Angew. Chem., Int. Ed.*, 2016, **128**, 4266.