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Na2S mediated synthesis of terminal alkynes from gem-

dibromoalkenes 

Radhey M. Singh,
a*

 Durgesh Nandini,
a,b

 Kishor Chandra Bharadwaj,
a
  upta

a
 and Raj Pal Singh

b
 

Na2S-mediated facile synthesis of terminal alkynes from gem- 

dibromoalkenes, at 20/40 °C under open flask conditions has 

been developed. Various precursors derived from 

heteroaromatic/aromatic/aliphatic aldehydes were found 

compatible. The reaction is proposed to go through the 

Fritsch-Buttenberg-Wiechell (FBW) rearrangement involving 

the corresponding vinyl carbene. Mild reaction conditions 

using inexpensive Na2S.9H2O under air, are significant 

advantages over earlier routes. 

Development of new methodology for the synthesis of organic 

molecules has always been challenging to both organic and 

medicinal chemists when it is based on cost, reaction 

conditions and applications. For example, terminal alkynes are 

useful functional groups and versatile intermediates,
1
 widely 

used in the synthesis of natural products, pharmaceuticals and 

functional materials.
2,3

 They are used as precursors in azide-

alkyne cycloaddition reactions,
4
 carbon-carbon bond 

formations,
5
 hydroamination,

6
 carbohalogenation

7 
and 

oxidative cross coupling reactions.
8
 Amongst available 

methods in the literature
9-13

 for alkyne synthesis, gem-

dibromoalkenes
14a

 prepared from aldehydes via one-carbon 

homologation have been identified as valuable precursors. 

Corey-Fuchs reactions,
14b

 has been a classical method for the 

synthesis of alkynes using gem-dibromoalkenes. However 

these reactions proceed in the presence of strong and air 

sensitive bases such as BuLi,
14b,15d

 LDA,
15a

 Grignard reagents,
15c

 

t-BuOK,
15e

 and others.
15b

  Further, they require very low 

temperature and inert atmosphere. Recently, efforts have 

been directed for alternate methods. Yang has reported 

synthesis of terminal alkynes
16

 using cesium carbonate (Figure 

1).  Zhang
17a

 have used tetra-n-butyl ammonium fluoride
17b

 

and TPP for the same. Ramana utilized DBU for conversion of 

these precursors to terminal alkyne.
18
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reaction
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H Br
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HR
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Ramana (2015)

Zhang (2015)

Yang (2011)

 

Fig. 1. Access to terminal alkynes from gem-dibromo-1-alkenes. 

However, these reactions require either excess of base and/or 

high temperature. Therefore, development of new 

methodology for terminal alkynes that tolerates some of these 

drawbacks is highly desirable. Importantly, given the huge 

importance, application & commercialization of alkynes, a 

catalytic route for their synthesis would be highly desirable. 

As our continued interest in exploring reactivity and synthetic 

applications of 2-chloroquinyl-3-caboxaldehydes,
19

 we recently 

explored the application of 2-chloro-3(2,2-

dibromovinyl)quinoline for the corresponding synthesis of furo 

(2,3-b) quinolines.
20 

The reaction was then tried for synthesis 

of thiophene-fused quinolines from these precursors. Initially, 

reaction of 2-chloro-3(2,2-dibromovinyl)quinoline, (1a) was 

investigated with 1 eq. of Na2S.9H2O in 2mL DMSO at 40 
o
C 

under air. The reaction afforded thiophene-fused quionline 

(2a) in 55% yield. However, it was interesting to observe the 

formation of terminal alkyne (3a) in 25% yield (Scheme 1). 
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Scheme 1. Reaction of 2-chloro-3(2,2-dibromovinyl)quionline (1a) with Na2S. 

This result was enthralling because it led to synthesis of alkyne 

under ambient conditions using Na2S.9H2O as a cheap, 

commercial and stable reagent. Thus we focused our attention 

for the development of this method. We report herein a base-

free, efficient synthesis of terminal alkynes at rt under open 

flask conditions in good yields. 

Systematic study began for exclusive synthesis of terminal 

alkyne. Results are summarized in table 1. Further increase of 

the temperature to 50 °C lead to reduced yield (entry 2). 

Interestingly when reaction temperature was lowered to 20 °C, 

reaction was completed in 2h affording alkyne as single 

product in 72% yield. Further lowering of temperature to 0 
o
C 

didn’t afford reaction. After establishment of 20 °C as reaction 

temperature for synthesis of terminal alkyne, optimization of 

reaction was performed by screening mole variations of 

Na2S.9H2O and solvents. When 0.5 eq. of Na2S was used, we 

were delighted to observe a complete reaction in 2h with an 

yield of 75% (entry 5). This was intriguing, as it suggested 

reaction to proceed in catalytic pathway. Further decrease of 

mole equivalent of reagent to 0.25 eq. lead to reduced yield of 

62%. Similarly, screening of various solvents like DMF, CH3OH, 

CH3CN, DCM and benzene (entries 7-11) gave inferior results. 

Thus, a combination of substrate 1a (1 mmol) and Na2S.9H2O 

(0.5 eq.) in 2mL DMSO at 20 °C under open flask, was 

identified as best reaction condition (entry 5, table 1). Having 

an optimized condition in hand the scope of the reaction was 

investigated with substituted 2-chloro-3-(2,2-dibromovinyl) 

quinolines. 

Table 1. Optimization of the reaction conditions. 

N Cl

Na2S.9H2O

N

1a 3a

Br

Br
Cl

T °Csolvent,

 

Entry Na2S 

(eq.) 

Solvent Temperature 

(°C) 

Time 

(h) 

Yield
a 

(%) 

1 1.0 DMSO 40 24 25 

2
b 

1.0 DMSO 50 24 20 

3 1.0 DMSO 20 2 72 

4 1.0 DMSO 0 2 - 

5 0.5 DMSO 20 2 75 

6 0.25 DMSO 20 6 62 

7 0.5 DMF 20 3 70 

8 0.5 CH3OH 20 3.5 68 

9 0.5 CH3CN 20 5 55 

10 0.5 DCM 20 8 SM 

11 0.5 Benzene 20 8 SM 

a
Isolated yield.

b
 60% of 2a was observed. 

3l (14h, 67%) 3m (16h, 55%) 3n (14h, 68%)

Br

3o (18h, 58%) 3q (18h, 42%)

O2N
MeO
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N Cl N Cl

O
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Scheme 2. Substrate scope for terminal alkyne synthesis.
a
 

a
For 3l-3r, reaction were carried out at 40 

o
C 

Results of corresponding terminal alkynes 3b-3j are listed in 

scheme 2. Substrates with electron-donating groups at 6 and 7 

positions led to enhance yields of terminal alkynes relative to 

substrates with electron withdrawing groups. However, lower 

yields were observed with electron donating groups at position 

8. The reaction was extendable to pyridine framework 3k. We 

were able to get single crystal structure for one of the alkyne 

(3b) which further confirmed the structure (Figure 2).
21

 We 

were also able to carry out reaction of 1f on 1.122 g (3 mmol) 

scale to obtain 3f in 79% yield. To broaden the scope of the 

reaction, gem-dibromovinyl derivatives of aromatic/other 

hetroaromatic and aliphatic analogues were also evaluated 

under the optimized conditions. Results are summarized in 

scheme 2. The reaction of these gem-dibromovinyl derivatives  
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Fig. 2. ORTEP diagram of 3b. 
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Scheme 3. Plausible Mechanism. 

were less reactive than hetero aromatic analogues and 

proceeded at 40 °C in 14-18h affording terminal alkynes 3l-

3r
17a,22

  in 42-68% respectively. Phenyl ring bearing electron-

donating groups were relatively more reactive than those with 

electron-withdrawing groups and afforded better yields of 

terminal alkynes. 

A plausible mechanism based on FBW rearrangement is as 

depicted in scheme 3.
23,24

 Initially, sodium sulphide anion 

attacks as nucleophile on one of bromine atom of gem-

dibromoalkenes 1 followed by cleavage of another C-Br bond 

to afford vinylene carbene A. The carbene A subsequently 

undergoes rearrangement leading to terminal alkyne. NaSBr 

and NaBr react together to regenerate Na2S along with 

formation of bromine which can exist in equilibrium. To rule 

out the possibility of Na2S acting as a base, the reaction of 

(Z)2-bromovinylbenzene
25

 was examined for the synthesis of 

terminal alkyne under optimized reaction condition (Scheme 

4). However reaction failed to proceed and starting material 

was recovered. This further ruled out Na2S acting as base. 

In summary, we have developed a catalytic route for the 

synthesis of terminal alkynes from gem-dibromoalkenes. This 

route is superior over other methods because of cheap and 

commercial availability of reagent. The reactions proceeds 

without base at 20/40 
o
C under open atmosphere in good 

yields. Different heteroaromatic, aromatic and aliphatic gem-

dibromoalkenes afforded corresponding terminal alkynes from 

this method.  

Br

Na2S.9H2O (0.5 eq.)

DMSO, 40 oC, 24 h

X

 

Scheme 4. Reaction of 1-bromovinylbenzene with Na2S.9H2O. 

Reaction opens up gateways for the development of catalytic 

and mild routes for the synthesis of terminal alkynes. Further 

work in this direction is under progress. 
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