Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: L. Sun, Y. Liu, Y. Wang, Y. Li, Z. Liu, T. Lu and W. Li, *Org. Biomol. Chem.*, 2019, DOI: 10.1039/C9OB01366K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Published on 26 July 2019. Downloaded by Nottingham Trent University on 7/26/2019 12:32:56 PM.

COMMUNICATION

An Efficient Synthesis of Oxazolines via Cascade Reaction between Azaoxyallyl Cations and 1, 2-Benzisoxazoles

Received 00th January 20xx, Accepted 00th January 20xx

Li Sun‡, Yi Liu‡, Yankai Wang, Yuanyuan Li, Zhiwen Liu, Tao Lu and Wenhai Li*

DOI: 10.1039/x0xx00000x

A formal [3+2] cycloaddition reaction between the C and O terminals of the azaoxyallyl cations formed *in situ* and 1, 2-benzisoxazoles has been realized. This one-pot cycloaddition method provided an effective and practical pathway to s-ynthesize oxazoline in good yields under mild conditions. The titled products were observed unique fluorescent properties.

The oxazolines are important heterocyclic structure motifs in bioactive natural products and pharmaceuticals¹. For example, the natural product DDM-838² was obtained from Mycobacterium tuberculosis, vulnibactin³ served as iron chelators, and etoxazole⁴ exhibited a very strong ovicidal activity against tetranycus urticae. In addition, they have also found applications in synthetic chemistry as valuable ligands⁵ and exhibit tuneable luminescence properties⁶ (Fig.1). Due to their biological and physical properties, oxazoline derivatives have received increasing attention from organic and pharmaceutical chemists. But developing more efficient, versatile and simple synthesis methods is still necessary.

In the past decade, α -halohydroxamates, a readily available and stable precursor of azaoxyallyl cations, has been widely developed as the key to new efficient synthesis of heterocyclic. In pioneering work, Jeffrey⁷ et al. reported the intermolecular [3 + 4]-cycloaddition reactions of the azaoxyallyl with furans for the synthesis of heterocycles. Subsequently, a series of $[3 + 3]^{-8}$ $[3 + 2]^9$ $[3 + 1]^{-9k}$ and $[2 + 4]^{-10}$ cycloaddition reactions involved *in situ* formed azaoxyallyl cations were developed, in which most of the C and N terminals of azaoxyallyl cations were participated in the final bond formations. Only in few cases, the cycloaddition products with the C and O terminals of azaoxyallyl cations could be observed [Scheme 1 (1)].

E-mail: liwenghai@cpu.edu.cn

 $^{+}$ Electronic supplementary information (ESI) available: Experimental procedures, characterization data, and 1 H and 13 C NMR charts. CCDC 1900697. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x

‡These authors contributed equally to this work.

Fig. 1 Some compounds containing oxazoline ring

On the other hand, 1, 2-benzisoxazoles was also used to prepare various azaheterocycles based on the nucleophilicity of nitrogen atoms in the molecule. For example, Tang¹¹ proposed a [3 + 2]-cycloaddition reaction of Rh-catalyzed Nsulfonyl-1, 2, 3-triazole with 1, 2-benzisoxazoles. Recently, Liu¹² reported that tert-butyl propiolates and 1, 2benzisoxazoles underwent [4 + 2]-cycloaddition by Au-catalysis 2-(2-hydroxyphenyl)-6H-1, produce 3-Oxazine-6-one derivatives [Scheme 1 (2)]. Inspired by these efforts, we envisioned that the in situ formed azaoxyallyl cations could be subjected to a [3 + 2]-cyclization reaction with 1, 2benzisoxazoles. Surprisingly, X-ray crystallography (Fig. 2) revealed that cycloaddition occurred through 1, 2benzisoxazoles with the C and O terminals of the azaoxyallyl cations rather than with the C and N terminals [Scheme 1 (3)].

State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China

(1) Some works of azaoxyallyl cations

(2) Some works of Benzoldlisoxazole

Published on 26 July 2019. Downloaded by Nottingham Trent University on 7/26/2019 12:32:56 PM.

Scheme 1 Research background and assumptions

Fig. 2 X-ray crystallography of 3ao

Table 1 Optimization of reaction conditions^a

Entry	Cat.	Base(equiv)	Solvent	T/C,t/Ŋ _{iew}	AHEIGS (%)
1		Et ₃ N(2)	HFIP	DOI: 29,3039/C	908 0/14 66К
2		DMAP(2)	HFIP	25,3	83
3		K ₂ CO ₃ (2)	HFIP	25,3	73
4		Na₂CO₃(2)	HFIP	25,3	87
5		NaHCO₃(2)	HFIP	25,3	39
6		$CS_2CO_3(2)$	HFIP	25,3	81
7		NaOH(2)	HFIP	25,3	79
8		KOH(2)	HFIP	25,3	55
9	Cul ₂	Na₂CO₃(2)	HFIP	25,3	56
10	CuCl ₂	Na ₂ CO ₃ (2)	HFIP	25,3	48
11	Cu(OTf) ₂	Na ₂ CO ₃ (2)	HFIP	25,3	61
12		Na₂CO₃(2)	TFE	25,3	60
13		Na ₂ CO ₃ (2)	MeCN	25,18	25
14		Na ₂ CO ₃ (2)	Dioxane	25,18	29
15		Na ₂ CO ₃ (2)	THF	25,18	9
16		Na ₂ CO ₃ (2)	Toluene	25,18	NR
17		Na ₂ CO ₃ (2)	DCM	25,18	NR
18		Na₂CO₃(2)	DMF	25,18	NR
19		Na ₂ CO ₃ (2)	HFIP	0,3	83
20		Na ₂ CO ₃ (2)	HFIP	50,3	5
21		$Na_2CO_3(1)$	HFIP	25,3	34
22		Na₂CO₃(3)	HFIP	25,3	71
23 ^d		Na ₂ CO ₃ (2)	HFIP	25,3	70
24 ^e		Na ₂ CO ₃ (2)	HFIP	25,3	81
25 ^f		Na ₂ CO ₃ (2)	HFIP	25,3	65

^a The reactions were carried out with **1a** (0.2 mmol), **2a** (0.3 mmol), base (0.4 mmol) in solvent (1.0 mL) for 3h at room temperature. ^b Isolated yields. ^c NR= no reaction. ^d 1 equiv of 2a was used. e 2 equiv of 2a was used. f 1a:2a=1.5:1.

Initially, selected N-(benzyloxy)-2-bromo-2we methylpropanamide 1a and 1, 2-benzisoxazoles 2a as model substrates (Table 1). The only product **3aa** was obtained under the organic bases Et₃N and DMAP in good yields 74% and 83% in HFIP, respectively (Table 1 entry 1-2). Then K₂CO₃, Na₂CO₃ and other inorganic bases were tried, the best yield of 3aa (87%) can be isolated by using Na_2CO_3 (Table 1 entry 3-8). Since most of the reactions involved 1, 2-benzisoxazoles useing catalysts, several Lewis acids were tried. Unfortunately, no better result is produced (Table 1 entry 9-11). A brief screen of solvents showed that toluene, DCM, and DMF were unsuitable for this reaction, the yield of 3aa in TFE was only 60% (Table 1 entry 12-18). The temperature was then further evaluated and high temperature only produced a trace amount of the 3aa (Table 1 entry 19-20). Investigation on the feed ratios showed that 1.5 equiv of 2a and 2 equiv of Na₂CO₃ were optimal (Table 1 entry 21-25).

After determining the optimized reaction conditions, we next examined the scope of 1, 2-benzisoxazoles substituted at aryl ring (Scheme 2). The corresponding [3 + 2]-cycloadducts were isolated in good to excellent yields. It was noted that the 1, 2-benzisoxazoles with electron-withdrawing groups result in higher yields. For example, the best yield of 3ab (91%) was obtained. In addition, naphtha[2, 1-d]isoxazole was also suitable for this reaction to give **3an** in 80%. However, the 3substituted 1, 2-benzisoxazoles did not produce the

Page 2 of 5

Journal Name

COMMUNICATION

corresponding target products **3ap** and **3aq**. Then we turned to study the substrate range of α -halohydroxamates.

As shown in Scheme 3, acceptable yields were achieved when the benzyloxy group in α -halohydroxamates was replaced by its structural analogues, such as methoxy, ethoxy, allyloxy and *tert*-butoxy. However, no reaction occurred when the -OR³ is changed from -OBn to -Bn. Fortunately, mono-alpha-substituted *N*-(benzyloxy)-2-bromopropionamide can successfully give product **3ag** with desired yield at relative high reaction temperature (50 °C, 33%).

Scheme 2 Substrate scope of 1, 2-benzisoxazoless^{a,b,c}

In order to display the practicability of the experimental method. We carried out a gram scale experimental optimized conditions [Scheme 4 (a)], **3aa** was obtained in 1.04g (80%) without significant loss. According to the previous literature^{8b, c, 9c, h, j}, 3aa could be an intermediate obtained by rapid kinetic O-alkylation reaction, which may be rearranged into a thermodynamically favorable N-arylation product 4, however, only oxazole 3aa was observed in our reaction. Even if treated with TFA at room temperature for 3aa for 3 hours without any rearranged product formation [Scheme 4(b)], it finally implied that 3aa is a stable product of the cycloaddition reaction involving the C-O terminal.

The possible reaction mechanisms are described in Scheme 5. At the beginning, azaoxyallyl cations were formed *in situ* from *N*-(benzyloxy)-2-bromo-2-methylpropanamide. Then an initial *N*-attack of 1, 2-benzisoxazole at azaoxyallyl cations to yield intermediate **A**, this *N*-attack arises from the potent nucleophilicity of the nitrogen atom. A subsequent cyclization intermediate **B**, finally readily aromatized because dissociation of the C-H proton from species **B** to give **3aa**.

Scheme 3 Substrate scope of α -halohydroxamates^{*a,b,c*}

^{*a*} Reaction conditions: **1** (0.2 mmol), **2a** (0.3 mmol), Na₂CO₃ (0.4 mmol) in HFIP (1.0 mL) for 3 h at room temperature or 50 $^{\circ}$ C. ^{*b*} Isolated yields. ^{*c*} NR= no reaction.

Scheme 4. Related experiments

COMMUNICATION

Scheme 5 Proposed mechanisms for the formation of 3aa

To investigate the synthetic utility, the **3aa** was treated with H_2/Pd in MeOH to afford oxime **5**. The products can be readily transformed into other interesting compounds due to the free hydroxyl group. For example, *O*-Michael addition product **6** was released when **3aa** was coupled with ethyl propiolate. (Scheme 6; see also Table S6 in the Supporting Information).

Interestingly, we noted that the product may have the ESIPT-based emission properties, and three selected phenols 3aa, 3ao and 3ai (Figure 3 and Table 2) were studied in dichloromethane because of the presence of an intramolecular hydrogen bond (H-bond) between the proton donor (–OH) and the proton acceptor groups in close proximity to each other in a molecule. The results of the graph show that the excitation and emission spectra of this series of compounds overlap declines, the Stokes shift is up to 20408 cm⁻¹, and the resolution of fluorescence analysis is much higher.

Journal Name

View Article Online DOI: 10.1039/C9OB01366K

Table 2. Emission properties of selected phenols

component	3aa	3ao	3ai
λ abs (nm)	267	266	267
λ em (nm)	326	325	326
Stokes shift (cm ⁻¹)	18868	18868	20408

Scheme 6. Gram-Scale and Synthetic Transformations

Conclusions

In summary, we have established a new [3+2]-cycloaddition reaction between the C and O terminals of azaoxyallyl cations with 1, 2-benzisoxazoles, which provides an effective and practical approach for the synthesis of oxazoline derivatives. The method has the characteristics of being gentle, simple and one-step. Further research is currently being conducted in our laboratory for the construction of drug molecules using *in situ* formed azaoxyallyl cations.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We gratefully acknowledge the Double First-Class (CPU2018GF02) for financial support. Project supported by Program of Innovation and Entrepreneurship for Undergraduates.

Notes and references

- (a) H. R. Onishi, B. A. Pelak, L. S. Gerckens, L. L. Silver, F. M. Kahan, M.-H. Chen, A. A. Patchett, S. M. Galloway, S. A. Hyland, M. S. Anderson and C. R. H. Raetz, *Science*, 1996, **274**, 980-982; (b) H. A. McManus and P. J. Guiry *Chem. Rev.*, 2004, **104**, 4151-4202.
- J. M. H. Cheng, L. Liu, D. G. Pellicci, S. J. J. Reddiex, R. N. Cotton, T. -Y. Cheng, D. C. Young, I. Van Rhijn, D. B. Moody, J. Rossjohn, D. P. Fairlie, D. I. Godfrey and S. J. Williams, *Chemistry - A European Journal*, 2017, 23, 1694-1701.
- 3 R. J. Bergeron, N. Bharti, S. Singh, J. S. McManis, J. Wiegand and L. G. Green, *Journal of Medicinal Chemistry*, 2009, **52**, 3801-3813.
- 4 (a) C. Minakuchi, J. Suzuki, K. Toda, M. Akamatsu and Y. Nakagawa, *Bioorg. Med. Chem. Lett.*, 2006, **16**, 4080-4084; (b) X. Yu, Y. Liu, Y. Li and Q. Wang, *J. Agric. Food. Chem*, 2015, **63**, 9690-9695.

Journal Name

- 5 J. Liu, X. Su, M. Han, D. Wu, D. L. Gray, J. R. Shapley, C. J. Werth and T. J. Strathmann, *Inorganic Chemistry*, 2017, **56**, 1757-1769.
- 6 D. Goebel, N. Clamor, E. Lork and B. J. Nachtsheim, *Organic Letters*, 2019, DOI: 10.1021/acs.orglett.9b01350, Ahead of Print.
- 7 (a) C. S. Jeffrey, K. L. Barnes, J. A. Eickhoff and C. R. Carson, J. Am. Chem. Soc., 2011, 133, 7688-7691; (b) A. Acharya, J. A. Eickhoff and C. S. Jeffrey, Synthesis, 2013, 45, 1825-1836; (c) A. Acharya, J. A. Eickhoff, K. Chen, V. J. Catalano and C. S. Jeffrey, Org. Chem. Front., 2016, 3, 330-334.
- 8 For selected examples, see: (a) Y. Y. An, H. G. Xia and J. Wu, *Chem. Commun.*, 2016, **52**, 10415-10418; (b) Q. F. Jia, D. L. Li, M. Lang, K. Zhang and J. Wang, *Adv. Syn. Catal.*, 2017, **359**, 3837-3842; (c) K. F. Zhang, X. Y. Xu, J. Zheng, H. Q. Yao, Y. Huang and A. J. Lin, *Org. Lett.*, 2017, **19**, 2596-2599; (d) H. W. Zhao, Y. D. Zhao, Y. Y. Liu, L. J. Zhao, N. N. Feng, H. L. Pang, X. Q. Chen, X. Q. Song and J. Du, *RSC Adv.*, 2017, **7**, 12916-12922; (e) R. X. Chen, S. F. Sun, G. Q. Wang and H. B. Guo, *Tetrahedron Lett.*, 2018, **59**, 1916-1920; (f) X. Cheng, X. Cao, J. Xuan and W. J. Xiao, *Org. Lett.*, 2018, **20**, 52-55; (g) M. Cordier and A. Archambeau, *Org. Lett.*, 2018, **20**, 2265-2268; (h) X. Y. Xu, K. F. Zhang, P. P. Li, H. Q. Yao and A. J. Lin, *Org. Lett.*, 2018, **20**, 1781-1784.
- 9 For selected examples, see: (a) A. Acharya, D. Anumandla and C. S. Jeffrey, J. Am. Chem. Soc., 2015, 137, 14858-14860; (b) M. C. DiPoto, R. P. Hughes and J. Wu, J. Am. Chem. Soc., 2015, 137, 14861-14864; (c) A. Acharya, K. Montes and C. S. Jeffrey, Org. Lett., 2016, 18, 6082-6085; (d) Y. R. Chen, G. Zhan, W. Du and Y. C. Chen, Adv. Synth. Catal., 2016, 358, 3759-3764; (e) Y. Yamane, K. Miyazaki and T. Nishikata, ACS Catal., 2016, 6, 7418-7425; (f) C. Li, K. Jiang, Q. Ouyang, T. Y. Liu and Y. C. Chen, Org. Lett., 2016, 18, 2738-2741; (g) Q. F. Jia, Z. Y. Du, K. Zhang and J. Wang, Org. Chem. Front., 2017, 4, 91-94; (h) P. L. Shao, Z. R. Li, Z. P. Wang, M. H. Zhou, Q. Wu, P. Hu and Y. He, J. Org. Chem., 2017, 82, 10680-10686; (i) G. Q. Wang, R. X. Chen, M. H. Wu, S. F. Sun, X. Luo, Z. Chen, H. B. Guo, C. Chong and Y. L. Xing, Tetrahedron Lett., 2017, 58, 847-850; (j) M. C. DiPoto and J. Wu, Org. Lett., 2018, 20, 499-501; (k) D. Q. Ji, J. T. Sun and Org. Lett., 2018, 20, 2745-2748.
- 10 Q. M. Jin, M. Gao, D. J. Zhang, C. H. Jiang, N. Yao and J. Zhang, Org. Biomol. Chem., 2018, 16, 7336-7339.
- X. Q. Lei, M. H. Gao and Y. F. Tang, Org. Lett., 2016, 18, 4990-4993.
 Y. B. Pandit, R. L. Sahani and R. S. Liu, Org. Lett., 2018, 20, 6655-6658.

COMMUNICATION

View Article Online DOI: 10.1039/C9OB01366K