190 Papers SYNTHESIS

A Short and Efficient Diastereoselective Synthesis of 2'-Substituted 2-Cyclopropylglycines

Jürgen Zindel, Armin de Meijere*

Institut für Organische Chemie der Georg-August-Universität Göttingen, Tammannstraße 2, D-37077 Göttingen, Germany Received 24 June 1993

Diastereomerically pure 2-cyclopropylglycines 2, 2'-substituted with an electron-withdrawing group, were prepared in two steps by Michael addition of the glycine equivalent 2-(diphenylmethylene-amino)acetate 11 to various Michael acceptors of type 1 with subsequent γ -elimination of bromide and followed by acid mediated deprotection.

Cyclopropylglycines are an important subgroup of naturally occurring amino acids containing a cyclopropane ring. $^{1-3}$ They are quite regularly found in plants and microorganisms, and have received attention as enzyme inhibitors, phytochemical agents or probes in metabolism studies. 4,5 We now report a short and efficient synthesis of 2-cyclopropylglycines 2 substituted at C-2' with an electron-withdrawing group (EWG) starting from Michael acceptors of type 1 with a suitable leaving group (LG) at the γ -position (Scheme 1).

LG = Br EWG = NO_2 , CO_2Me , COMe, SO_2Ph

Scheme 1

This approach has previously been used to prepare protected 2-(2'-carboxycyclopropyl)glycine, ^{6,7} the only known natural cyclopropylglycine of type 2.⁸ All four possible stereoisomers of 2-(2'-carboxycyclopropyl)glycine have also been prepared by addition of various carbenes to olefins, suitable precursors were ethyl diazoacetate, diazomethane or an enantiopure diazoamide for intramolecular cyclopropanation. ^{9,10}

y-Bromo Substituted Michael Acceptors

The γ -bromo substituted Michael acceptors 5 were prepared by an addition–elimination sequence starting from readily available allyl derivatives $3.^{11-14}$ After addition of bromine to the double bonds in compounds 3, carried out in chloroform, the resulting dibromides 4 were treated with a suitable base in diethyl ether to give the expected γ -bromo substituted Michael acceptors 5 (Scheme 2, Table 1). $^{15-19}$

The β -substituted Michael acceptor 10 was prepared in a sequence starting with addition of methylenenitronate to THP-protected hydroxyacetone 6^{20} in methanol. The resulting tertiary β -nitro alcohol 7 was acetylated in dicthyl ether with acetic anhydride and a catalytic amount of 4-dimethylaminopyridine. Subsequent elimination of acetic acid with sodium acetate gave the THP-protected allyl alcohol 8 which was deprotected with p-toluenesulfonic acid in methanol. The primary allyl alcohol 9 was

Scheme 2

Table 1. Formation of γ-Bromo Substituted Michael Acceptors 5

Starting Material	EWG	Base	Prod- uct	Yield (%)	Ratio E/Z ^a
3a	NO ₂ CO ₂ Me	NaOAc	5 a 5 b ^b	68	> 19 : 1
3c	COMe	Na ₂ CO ₃	5 c	29	> 19:1
3d	CN	Na ₂ CO ₃	5 d	83	2:1
3e	SO ₂ Ph	Na ₂ CO ₃	5e	53	> 19:1
3f	PO_3Me_2	$\overline{\mathrm{DBU}^{\mathtt{c}}}$	5f	42	> 19:1

- ^a Determined by ¹H NMR spectroscopy.
- ^b Commercially available (Fluka).
- ^c DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene.

converted to the bromide 10 by treatment with tetrabromomethane/triphenylphosphine²¹ in dichloromethane at 0° C (Scheme 3).

Scheme 3

2'-Substituted 2-Cyclopropylglycines

The lithiated glycine equivalent 11^{22} reacted with various Michael acceptors 5 and 10 to yield either the protected 2'-substituted 2-cyclopropylglycines 12-R or the 5-substituted 4-pentenoates 13-R. At -78 °C the reaction should produce 2'-substituted 2-cyclopropylglycines 12-

R.⁶ The competitive formation of 5-substituted 4-pentenoates 13-R is preferred in the presence of strongly solvating solvent additives (HMPA,6 DME19) or under phase-transfer conditions at room temperature. 23 All 2'substituted 2-cyclopropylglycines 12-R obtained were diastereomerically pure and trans configurated (R = H). The E/Z isomer ratios of 5-substituted 4-pentenoates 13d-H, 13f-H were identical to those of the corresponding starting materials 5d,f. Deprotection of compounds 12-R with 1 N hydrochloric acid provided the amino acid hydrochlorides 15-R, which were pure according to their ¹H NMR spectra (Scheme 4, Table 2).

It is remarkable that with three new stereogenic centers generated in the sequence of Michael addition of the lithiated glycine equivalent 11 to compounds 5 and subsequent cyclisation of the intermediates 14-R, only a single pair of enantiomers of the 2'-substituted 2-cyclopropylglyclines 12-R was obtained in each case, independent of the E/Z ratios in the starting materials 5. The substituents on the three-membered ring were always trans orientated. This complete diastereoselectivity can be rationalized if only two out of four possible stereoisomeric intermediates 14-R are formed due to a chelation of the lithium counterion of the enolate 14-R. With a suitable chiral auxiliary in the glycine equivalent it should be possible to create the new stereogenic centers in these 2'-substituted 2-cyclopropylglycines with a high enantiomeric excess. 7,24

The nitro group in 15a-H could be hydrogenated²⁵ to give the α, γ -diaminocarboxylic acid 16 in quantitative yield. Compound 16 is an interesting methano bridged, and thereby conformationally restricted, 26,27 analogue of the natural 2,4-diaminobutanoic acid (Scheme 5).

Scheme 5

The 2'-nitrocyclopropylglycine 15a-H is the lower homologue to the unusual natural amino acid 3-(trans-2'-nitrocyclopropyl)alanine.28

IR spectra were recorded with a Perkin-Elmer 298 spectrophotometer. ¹H NMR spectra were recorded on a Bruker AM 250 spectrometer, ¹³C NMR spectra on Varian XL 200 or VXR 200 spectrometers. Mass spectra were measured with Varian MAT CH-7 and MAT 731 instruments. Merck Kieselgel 60 (200-400 mesh) was used for flash column chromatography, Merck Kieselgel 60 F₂₅₄ on aluminium was used for TLC tests. Mps are uncorrected. Combustion analyses were carried out by the microanalytical laboratory at the Georg-August-Universität Göttingen. Compounds 7-10, 12a-H,b-H,e-H,a-Me, 13d-H,f-H, and 15a-H,b-H,c-H,e-H,a-Me gave C,H \pm 0.3%, except: 12a-H, C + 0.96, H + 0.63; 13f-H, H - 0.36; and 15e-H, C - 0.71%. All reactions with organometallic reagents were performed in anhydrous solvents under dry nitrogen.

Scheme 4

Table 2. Synthesis of Diastereopure 2-Cyclopropylglycines 12-R Substituted at C-2' with an Electron-Withdrawing Group and Deprotection to the Amino Acid Hydrochlorides 15-R

Starting Material	EWG	R	Time (h)	Product	Yield (%)	Isomer Ratio d.e. or E/Z^a	Product	Yield (%)
5a	NO ₂	H	15	12a-H	63	≥ 95	15a-H	93
5b	CO ₂ Me	H	1	12b-H	91	≥95	15b-H	90
5c	COMe	Н	1	12c-H	83	≥95	15c-H	87
5d	CN	Н	48	13d-H	64	2:1	10011	0,
5e	SO ₂ Ph	H	15	12e-H	69	≥ 95	15e-H	96
5f	$PO_3^2Me_2$	Н	24	13f-H	59	> 19:1	10011	70
10	NO ₂	Me	15	12a-Me	56	≥ 95 ≥ 95	15a-Me	94

^a Determined by ¹H NMR spectroscopy after chromatography over silica gel.

192 Papers SYNTHESIS

Michael Acceptors 5 from Allyl Compounds 3; Typical Procedure:

(E)-3-Bromo-1-nitro-1-propene (5a):

To a stirred solution of 3-nitro-1-propene (3a)¹¹ (8.71 g, 100 mmol) in CHCl₃ (100 mL), a solution of Br₂ (5.12 mL, 100 mmol) in CHCl₃ (50 mL) was added dropwise at 0°C. The mixture was stirred for 2 h at r.t., the solvent was evaporated under reduced pressure, and the product was purified by bulb-to-bulb distillation in vacuo (0.1 mbar). The resulting dibromo compound 4a was dissolved in Et₂O (200 mL) and NaOAc (16.4 g, 200 mmol) was added. The mixture was stirred for 24 h at r.t., the solids were collected on a filter, the filtrate was concentrated under reduced pressure, and the product was purified by bulb-to-bulb distillation in vacuo (0.1 mbar) to give 11.3 g (68%) of 5a.

IR (film): v = 3100, 3050, 1650 (C=C), 1525 (NO₂), 1350 (NO₂), 1205, 950, 870, 740 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 4.05 (dd, 2 H, $^3J = 7.1$, $^4J = 1.0$ Hz, 3-H), 7.16 (dt, 1 H, $^3J_{\text{trans}} = 13.2$, $^4J = 1.0$ Hz, 1-H), 7.35 (dt, 1 H, $^3J = 7.1$, $^3J_{\text{trans}} = 13.2$ Hz, 2-H).

¹³C NMR (50.3 MHz, CDCl₃, APT): δ = 23.97 (-, C-3), 135.99 and 141.80 (+, C-1 and C-2).

MS (70 eV): m/z (%) = 167/165 (7/7, M⁺), 121/119 (16/16, M⁺ – NO₂), 95/93 (15/15, CH₂Br⁺), 86 (29, M⁺ – Br).

2-Methyl-3-nitro-1-(tetrahydro-2'H-pyranyloxy)propan-2-ol (7):

To a solution of 1-(tetrahydro-2'H-pyranyloxy)propan-2-one (6)²⁰ (15.8 g, 100 mmol) in MeNO₂ (8 mL), NaOMe (0.27 g, 5 mmol) dissolved in MeOH (5 mL) was added. The mixture was stirred for 3 d at r.t. and then poured into H_2O (150 mL). The aqueous solution was extracted three times with Et_2O (50 mL), and the combined organic extracts were dried (MgSO₄). After filtration and evaporation of the solvent under reduced pressure the crude product was purified by flash chromatography eluting with Et_2O /light petroleum (1:1) to give 7, yield 17.1 g (78%); mp 63 °C; $R_t = 0.35$.

IR (KBr): v = 3600-3200 (OH), 2950, 1550 (NO₂), 1375 (NO₂) 1130, 1070, 1035 cm⁻¹.

¹H NMR (250 MHz, CDCl₃) (both isomers): $\delta = 1.36$ (s, 3 H, CH₃), 1.52–1.90 [m, 6 H, (CH₂)₃], 3.48 (s, 1 H, OH), 3.44–3.62 and 3.75–3.92 (m, 4 H, 1-H and 6'-H), 4.48–4.69 (m, 3 H, 3-H and 2'-H).

¹³C NMR (50.3 MHz, CDCl₃, APT) (1st isomer): $\delta = 21.94$ (+, CH₃), 19.41, 25.18, and 30.62 [-, (CH₂)₃], 62.66 (-, C-6'), 71.23 (-, C-2), 74.38 (-, C-1), 81.83 (-, C-3), 99.60 (+, C-2').

(2nd isomer): 22.48 (+, CH₃), 20.14, 25.01, and 30.34 [-, (CH₂)₃], 63.83 (-, C-6'), 71.01 (-, C-2), 72.83 (-, C-1), 81.67 (-, C-3), 100.90 (+, C-2').

MS (70 eV): m/z (%) = 118 (4, M⁺ – C₅H₉O₂), 101 (3, C₅H₉O₂⁺), 85 (100, C₅H₉O⁺).

2-Methyl-3-nitro-2-propenyl Tetrahydro-2*H*-pyran-2-yl Ether (8):

A solution of alcohol 7 (16.4 g, 75 mmol) in $\rm Et_2O$ (200 mL) was treated with $\rm Ac_2O$ (8.5 mL, 90 mmol) and DMAP (367 mg, 3.0 mmol). The mixture was stirred for 15 h at r.t., washed with aq 1 N NaHCO₃ (100 mL), dried (MgSO₄) and the solvent was evaporated in vacuo. The resulting yellowish oil was dissolved in $\rm Et_2O$ (200 mL), and NaOAc (12.3 g, 150 mmol) was added. The mixture was stirred for 3 d at 30 °C. After filtration and evaporation of the solvent under reduced pressure, the crude product was purified by flash chromatography eluting with $\rm Et_2O/light$ petroleum (1:10) to give 7.36 g (49%) of 8: $\rm R_f = 0.21$.

IR (film): v = 2950, 1650 (C=C), 1520 (NO₂), 1345 (NO₂), 1130, 1085, 1040 cm⁻¹.

 $^1\mathrm{H}$ NMR (250 MHz, CDCl₃) (1st isomer): $\delta=1.49-1.93$ [m, 6 H, (CH₂)₃], 2.18 (d, 3 H, $^4J=0.7$ Hz, CH₃), 3.48–3.61 and 3.74–3.90 (m, 2 H, 6-H), 3.99–4.10 and 4.29–4.41 (m, 2 H, 1'-H), 4.60–4.71 (m, 1 H, 2-H), 7.23 (s br, 1 H, 3'-H).

(2nd isomer): 1.49-1.93 [m, 6 H, $(CH_2)_3$], 2.05 (d, 3 H, ${}^4J=0.7$ Hz, CH_3), 3.48-3.61 and 3.74-3.90 (m, 2 H, 6-H), 4.60-4.71 (m, 1 H, 2-H), 4.76-4.81 and 4.86-4.91 (m, 2 H, 1'-H), 6.95 (s, br, 1 H, 3'-H). ${}^{13}C$ NMR (50.3 MHz, $CDCl_3$, APT) (1st isomer): $\delta=15.66$ (+,

CH₃), 19.03, 25.21, and 30.18 $[-, (CH_2)_3]$, 62.18 (-, C-6), 68.37 (-, C-1'), 98.30 (+, C-2), 134.82 (+, C-3'), 148.81 (-, C-2').

(2nd isomer): $18.44 (+, CH_3)$, 19.14, 25.25, and $30.25 [-, (CH_2)_3]$, 62.56 (-, C-6), 69.17 (-, C-1'), 99.08 (+, C-2), 134.10 (+, C-3'), 153.26 (-, C-2').

2-Methyl-3-nitro-2-propen-1-ol (9):

To a solution of the acetal 8 (7.04 g, 35 mmol) in MeOH (80 mL), p-TsOH (190 mg, 1.0 mmol) was added. The mixture was stirred for 15 h at r.t., poured into conc. aq NaCl (300 mL). The aqueous solution was extracted three times with Et₂O (100 mL), and the combined organic layers were dried (MgSO₄). After filtration and evaporation of the solvent under reduced pressure the crude product was purified by flash chromatography eluting with Et₂O/light petroleum (1:3) to give 3.89 g (95%) of 9; $R_f = 0.15$.

IR (film): v = 3600-3200 (OH), 2940, 1650 (C=C), 1515 (NO₂), 1345 (NO₂), 1080, 835 cm⁻¹.

¹H NMR (250 MHz, CDCl₃) (1st isomer): $\delta = 2.13$ (d, 3 H, $^4J = 0.7$ Hz, CH₃), 3.10 (t, 1 H, $^3J = 6.5$ Hz, OH), 4.26 (dd, 2 H, $^3J = 6.5$, $^4J = 0.6$ Hz, 1-H), 7.23 (s br, 1 H, 3-H).

(2nd isomer): 2.05 (d, 3 H, ${}^4J = 0.7$ Hz, CH₃), 2.96 (t, 1 H, ${}^3J = 6.5$ Hz, OH), 4.76 (dd, 2 H, ${}^3J = 6.5$, ${}^4J = 0.6$ Hz, 1-H), 6.95 (s br, 1 H, 3-H).

¹³C NMR (50.3 MHz, CDCl₃, APT) (1st isomer): δ = 15.43 (+, CH₃), 64.79 (-, C-1), 134.37 (+, C-3), 152.44 (-, C-2).

(2nd isomer): 18.76 (+, CH₃), 61.96 (-, C-1), 134.21 (+, C-3), 155.51 (-, C-2).

MS (70 eV): m/z (%) = 117 (4, M⁺), 100 (6, M⁺ – OH), 71 (18, M⁺ – NO₂).

3-Bromo-2-methyl-1-nitro-1-propene (10):

To a stirred solution of the alcohol 9 (3.51 g, 30 mmol) and CBr₄ (12.6 g, 38 mmol) in anhydr. CH₂Cl₂ (60 mL), PPh₃ (11.8 g, 45 mmol) was added in small doses at 0 °C. The mixture was stirred for 15 min, half of the solvent was evaporated under reduced pressure, and the mixture was treated with Et₂O (100 mL). The filtrate was concentrated under reduced pressure, and the crude product was purified by flash chromatography eluting with Et₂O/light petroleum (1:3) to give 3.89 g (72 %) of 10; $R_f = 0.40$.

IR (film): v = 3100, 1640 (C=C), 1525 (NO₂), 1440, 1350 (NO₂), 1225, 970, 835, 770, 630 cm⁻¹.

¹H NMR (250 MHz, CDCl₃) (1st isomer): $\delta = 2.38$ (d, 3 H, ${}^4J = 0.7$ Hz, CH₃), 3.96 (d, 2 H, ${}^4J = 0.6$ Hz, 3-H), 7.17 (s br, 1 H, 1-H).

(2nd isomer): 2.11 (d, 3 H, ${}^4J = 0.7$ Hz, CH₃), 4.45 (d, 2 H, ${}^4J = 0.6$ Hz, 3-H), 6.94 (s, br, 1 H, 1-H).

¹³C NMR (50.3 MHz, CDCl₃, APT) (1st isomer): $\delta = 17.51$ (+, CH₃), 33.75 (-, C-3), 137.22 (+, C-1), 146.18 (-, C-2).

(2nd isomer): 20.82 (+, CH₃), 26.64 (-, C-3), 135.83 (+, C-1), 145.55 (-, C-2).

MS (70 eV): m/z (%) = 181/179 (6/6, M⁺), 135/133 (9/9, M⁺ – NO₂), 100 (100, M⁺ – Br).

Reactions of the Glycine Equivalent 11 with γ-Bromo Michael Acceptors 5; General Procedure:

To a stirred solution of tert-butyl 2-(diphenylmethyleneamino) ethanoate (11)²² (591 mg, 2.0 mmol) in THF (60 mL) a solution of butyllithium in hexane (2.36 N, 0.89 mL, 2.1 mmol) was added dropwise at $-78\,^{\circ}$ C. After being stirred for 1 h at $-78\,^{\circ}$ C the γ -bromo Michael acceptor 5 (2.0 mmol) dissolved in THF (1 mL) was added dropwise. The mixture was stirred at $-78\,^{\circ}$ C for the time given in Table 2. The solvent was removed in vacuo at r. t., and H₂O (100 mL) was added to the residue. The mixture was extracted three times with Et₂O (50 mL), and the combined organic layers were dried (MgSO₄). After filtration and evaporation of the solvent under reduced pressure the crude product was purified by flash chromatography eluting with Et₂O/light petroleum containing NEt₃ (1%) to give 12.

February 1994 SYNTHESIS 193

tert-Butyl 2-(Diphenylmethyleneamino)-2-(trans-2'-nitrocyclo-propyl)ethanoate (12a-H):

3-Bromo-1-nitro-1-propene (5a)¹⁵ (332 mg) gave after purification [Et₂O/light petroleum (1:5)] 479 mg (63%) of 12a-H; $R_f = 0.34$. IR (film): v = 2970, 1720 (C=O), 1620 (N=C), 1535 (NO₂), 1440, 1365 (NO₂), 1265, 1150, 695 cm⁻¹.

 $^{1}\text{H NMR}$ (250 MHz, CDCl₃): $\delta=1.28$ (ddd, 1 H, $^{2}J=5.8$, $^{3}J_{\text{cis}}=7.1$, $^{3}J_{\text{trans}}=7.1$ Hz, 3'-H), 1.43 [s, 9 H, C(CH₃)₃], 1.83 (ddd, 1 H, $^{2}J=5.8$, $^{3}J_{\text{cis}}=10.5$, $^{3}J_{\text{trans}}=3.7$ Hz, 3'-H), 2.54 (dddd, 1 H, $^{3}J=4.5$, $^{3}J_{\text{cis}}=10.5$, $^{3}J_{\text{trans}}=3.4$, $^{3}J_{\text{trans}}=7.1$ Hz, 1'-H), 4.05 (d, 1 H, $^{3}J=4.5$ Hz, 2-H), 4.65 (ddd, 1 H $^{3}J_{\text{cis}}=7.1$, $^{3}J_{\text{trans}}=3.4$, $^{3}J_{\text{trans}}=3.7$ Hz, 2'-H), 7.12–7.19 and 7.28–7.62 (m, 10 H, Ar-H). $^{13}\text{C NMR}$ (50.3 MHz, CDCl₃, APT): $\delta=14.89$ (-, C-3'), 27.86 (+, C-1'), 27.95 [+, C(CH₃)₃], 56.63 (+, C-2'), 62.91 (+, C-2), 82.17 [-, C(CH₃)₃], 127.62, 128.13, 128.67, 128.82, 128.96, and 130.84 (+, Ar-C), 135.80 and 138.79 (-, Ar-C), 169.07 and 172.29 (-, C=N and C=O).

tert-Butyl 2-(Diphenylmethyleneamino)-2-(trans-2'-methoxycarbonylcyclopropyl)ethanoate (12b-H):

Methyl 4-bromo-2-butenoate (5b) (0.24 mL) gave after purification [Et₂O/light petroleum (1:5)] 716 mg (91 %) of 12b-H; $R_f = 0.23$. IR (film): $\nu = 2970$, 1725 (C=O), 1620 (N=C), 1445, 1260, 1155, 695 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.92$ (ddd, 1 H, ²J = 4.5, ³ $J_{cis} = 9.0$, ³ $J_{trans} = 6.6$ Hz, 3'-H), 1.18 (ddd, 1 H, ²J = 4.5, ³ $J_{cis} = 9.0$, ³ $J_{trans} = 4.5$ Hz, 3'-H), 1.44 [s, 9 H, C(CH₃)₃], 1.83 (ddd, 1 H, ³ $J_{cis} = 9.0$, ³ $J_{trans} = 4.5$, ³ $J_{trans} = 4.5$ Hz, 2'-H), 2.04 (dddd, 1 H, ³J = 6.5, ³ $J_{cis} = 9.0$, ³ $J_{trans} = 4.5$, ³ $J_{trans} = 4.5$ Hz, 1'-H), 3.67 (s, 3 H, CH₃), 3.77 (d, 1 H, ³J = 6.5 Hz, 2-H), 7.12–7.19 and 7.29–7.65 (m, 10 H, Ar-H).

¹³C NMR (50.3 MHz, CDCl₃, APT): $\delta = 12.17$ (-, C-3'), 16.92 (+, C-1'), 25.22 (+, C-2'), 28.00 [+, C(Ω_3)₃], 51.68 (+, OCH₃), 65.63 (+, C-2), 81.33 [-, Ω_3 (CH₃)₃], 127.78, 128.01, 128.52, 128.68, 128.84, and 130.42 (+, Ar-C), 136.26 and 139.31 (-, Ar-C), 170.16, 170.81, and 174.51 (-, C=N and C=O).

tert-Butyl 2-(Diphenylmethyleneamino)-2-[trans-2'-(1-oxoethyl)-cyclopropyl]ethanoate (12c-H):

5-Bromo-3-pentene-2-one (5c)¹⁶ (326 mg) gave after purification [Et₂O/light petroleum (1:5)] 627 mg (83%) of **12c-H**; $R_f = 0.15$. IR (film): v = 2970, 2920, 1730 (C=O), 1695 (C=O), 1620 (N=C), 1440, 1365, 1150, 695 cm⁻¹.

 $^{1}\text{H NMR}$ (250 MHz, CDCl₃): $\delta=0.97$ (ddd, 1 H, $^{2}J=3.9,$ $^{3}J_{\text{cis}}=7.1,$ $^{3}J_{\text{trans}}=6.7$ Hz, 3'-H), 1.26 (ddd, 1 H, $^{2}J=3.9,$ $^{3}J_{\text{cis}}=8.6,$ $^{3}J_{\text{trans}}=4.7$ Hz, 3'-H), 1.42 [s, 9 H, C(CH₃)₃], 1.99 (dddd, 1 H, $^{3}J=5.1,$ $^{3}J_{\text{cis}}=8.6,$ $^{3}J_{\text{trans}}=3.5,$ $^{3}J_{\text{trans}}=6.7$ Hz, 1'-H), 2.23–2.32 (m, 1 H, 2'-H), 2.26 (s, 3 H, CH₃), 3.89 (d, 1 H, $^{3}J=5.1$ Hz, 2-H), 7.12–7.19 and 7.28–7.66 (m, 10 H, Ar-H).

¹³C NMR (50.3 MHz, CDCl₃, APT): $\delta = 13.77$ (-, C-3'), 15.21 (+, C-1'), 24.84 (+, C-2'), 27.95 [+, C(CH₃)₃], 30.43 (+, CH₃), 64.76 (+, C-2), 81.25 [-, C(CH₃)₃], 127.67, 127.97, 128.36, 128.62, 128.75, and 130.41 (+, Ar-C), 136.22 and 139.25 (-, Ar-C), 170.34 and 171.03 (-, C=N and C=O), 207.96 (-, C=O).

tert-Butyl (E)- and (Z)-5-Cyano-2-diphenylmethyleneamino-4-pentenoate (13d-H):

4-Bromo-2-butenenitrile (5d)¹⁷ (292 mg) gave after purification [Et₂O/light petroleum (1:5)] 461 mg (64%) of 13d-H; $R_f = 0.26$. IR (Film): v = 2965, 2920, 2220 (C \equiv N), 1730 (C \equiv O), 1620 (N \equiv C and C \equiv C), 1445, 1370, 1155, 700 cm⁻¹.

¹H NMR (250 MHz, CDCl₃) (both isomers): δ = 1.46 [s, 9 H, C(CH₃)₃], 2.72–3.11 (m, 2 H, 3-H), 4.04–4.17 (m, 1 H, 2-H), 5.36–5.45 (m, 1 H, 5-H), 6.60–6.73 (m, 1 H, 4-H), 7.14–7.51 and 7.61–7.69 (m, 10 H, Ar-H).

 $^{13}\text{C NMR}$ (50.3 MHz, CDCl3, APT) (1st isomer): $\delta=27.98~[+, \text{C}(\square\text{H}_3)_3], 35.84~(-, \text{C-3}), 64.22~(+, \text{C-2}), 81.73~[-, \text{C}(\text{CH}_3)_3], 101.23~(+, \text{C-5}), 115.76~(-, \text{C} <math display="inline">\equiv$ N), 127.64, 128.01, 128.57, 128.76, 128.83, and 130.47~(+, Ar-C), 136.12 and 139.19~(-, Ar-C), 151.06~(+, C-4), 169.72 and 171.08~(-, C=N and C=O).

(2nd isomer): 27.98 [+, $C(CH_3)_3$], 37.20 (-, C-3), 64.32 (+, C-2), 81.79 [-, $C(CH_3)_3$], 102.01 (+, C-5), 117.12 (-, C=N), 127.64, 128.07, 128.57, 128.76, 128.83, and 130.57 (+, Ar-C), 136.12 and 139.07 (-, Ar-C), 152.04 (+, C-4), 169.60 and 171.21 (-, C=N and C=O).

tert-Butyl 2-(Diphenylmethyleneamino)-2-(trans-2'-phenylsulfonyl-cyclopropyl)ethanoate (12e-H):

3-Bromo-1-phenylsulfonyl-1-propene (5e) 18 (522 mg) gave after purification [Et₂O/light petroleum (1:1)] 656 mg (69%) of 12e-H; mp 136°C; $R_f = 0.47$.

IR (KBr): v = 2980, 1730 (C=O), 1620 (N=C), 1445, 1370, 1305, 1130, 890, 790, 735, 700 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.07 (ddd, 1 H, ²J = 4.8, ³ $J_{\rm cis} = 9.6$, ³ $J_{\rm trans} = 6.1$ Hz, 3'-H), 1.39 [s, 9 H, C(CH₃)₃], 1.57 (ddd, 1 H, ²J = 4.8, ³ $J_{\rm cis} = 9.6$, ³ $J_{\rm trans} = 4.8$ Hz, 3'-H), 2.37 (dddd, 1 H, ³J = 5.7, ³ $J_{\rm cis} = 9.6$, ³ $J_{\rm trans} = 4.8$, ³ $J_{\rm trans} = 6.1$ Hz, 1'-H), 2.68 (ddd, 1 H, ³ $J_{\rm cis} = 9.6$, ³ $J_{\rm trans} = 4.8$, ³ $J_{\rm trans} = 4.8$ Hz, 2'-H), 3.75 (d, 1 H, ³J = 5.7 Hz, 2-H), 6.92–6.99, 7.28–7.54 and 7.91–7.97 (m, 15 H, Ar-H).

¹³C NMR (50.3 MHz, CDCl₃, APT): $\delta = 9.09$ (-, C-3'), 22.87 (+, C-1'), 27.92 [+, C(CH₃)₃], 36.13 (+, C-2'), 64.28 (+, C-2), 81.90 [-, C(CH₃)₃], 127.50, 127.64, 127.94, 128.56, 128.80, 129.11, 130.61, and 133.17 (+, Ar–C), 135.83, 138.73, and 140.65 (-, Ar–C), 169.39 and 171.34 (-, C=N and C=O).

MS (70 eV): m/z (%) = 374 [100, M⁺ – CO₂C(CH₃)₃], 233 [9, M⁺ – CO₂C(CH₃)₃ – C₆H₅SO₂].

tert-Butyl (*E*)-5-Dimethylphosphonyl-2-diphenylmethyleneamino-4-pentenoate (13f-H):

Dimethyl 3-bromo-1-propene-1-phosphonate (5f)¹⁹ (458 mg) gave after purification [Et₂O/light petroleum (3:1)] 523 mg (59%) of 13f-H; $R_f = 0.15$.

IR (film): v = 2970, 1725 (C=O), 1625 (N=C and C=C), 1445, 1370, 1250, 1155, 1040, 830, 700 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 1.44$ [s, 9 H, C(CH₃)₃], 3.05–3.16 (m, 2 H, 3-H), 3.61 (d, 3 H, $^3J_{\rm HP} = 9.2$ Hz, OCH₃), 3.66 (d, 3 H, $^3J_{\rm HP} = 9.2$ Hz, OCH₃), 4.08 (t, 1 H, $^3J = 6.0$ Hz, 2-H), 5.62 (ddt, 1 H, $^2J_{\rm HP} = 19.3$, $^3J_{\rm trans} = 13.2$, $^4J = 1.0$ Hz, 5-H), 6.63 (ddt, 1 H, $^3J_{\rm HP} = 53.1$, $^3J_{\rm trans} = 13.2$, $^3J = 7.3$ Hz, 4-H), 7.16–7.47 and 7.60–7.66 (m, 10 H, Ar-H).

 $^{13}\mathrm{C}$ NMR (50.3 MHz, CDCl₃, APT): $\delta=27.93$ [+, C(CH₃)₃], 34.43 (-, d, $^{3}J_{\mathrm{CP}}=7.7$ Hz, C-3), 51.84 and 51.95 (+, OCH₃), 64.72(+, d, $^{4}J_{\mathrm{CP}}=1.5$ Hz, C-2), 81.31 [-, C(CH₃)₃], 116.64 (+, d, $^{1}J_{\mathrm{CP}}=183.9$ Hz, C-5), 127.72, 127.88, 128.41, 128.54, 128.73, and 130.25 (+, Ar-C), 136.22 and 139.31 (-, Ar-C), 150.71 (+, d, $^{2}J_{\mathrm{CP}}=3.6$ Hz, C-4), 170.24 and 170.47 (-, C=N and C=O).

tert-Butyl 2-(Diphenylmethyleneamino)-2-(1'-methyl-2'-nitrocyclo-propyl)ethanoate (12a-Me):

3-Bromo-2-methyl-1-nitro-1-propene (10) (360 mg) gave after purification [Et₂O/light petroleum (1:5)] 442 mg (56%) of 12a-Me; mp 78 °C; $R_f = 0.55$.

IR (KBr): $\nu = 2990$, 1730 (C=O), 1625 (N=C), 1545 (NO₂), 1435, 1365 (NO₂), 1145, 880, 785, 710, 695 cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 1.37$ (s, 3 H, CH₃), 1.36–1.47 (m, 1 H, 3'-H), 1.46 [s, 9 H, C(CH₃)₃], 1.73 (dd, 1 H, $^2J = 5.5$, $^3J_{\rm trans} = 5.0$ Hz, 3'-H), 3.81 (s, 1 H, 2-H), 4.78 (dd, 1 H, $^3J_{\rm cis} = 6.5$, $^3J_{\rm trans} = 5.0$ Hz, 2'-H), 7.11–7.18 and 7.30–7.63 (m, 10 H, Ar-H). 13 C NMR (50.3 MHz, CDCl₃, APT): $\delta = 14.59$ (+, CH₃), 19.46 (-, C-3'), 27.97 [+, C(CH₃)₃], 31.77 (-, C-1'), 63.08 (+, C-2'), 69.34 (+, C-2), 82.12 [-, C(CH₃)₃], 127.72, 128.13, 128.65, 128.87, 128.98, and 130.79 (+, Ar-C), 135.80 and 138.95 (-, Ar-C), 168.70 and 171.47 (-, C=N and C=O).

MS (70 eV): m/z (%) = 394 (1, M⁺), 293 [100, M⁺ – CO₂C(CH₃)₃], 247 [38, M⁺ – CO₂C(CH₃)₃ – NO₂].

Deprotection of Cyclopropylglycines 12-R to Amino Acid Hydrochlorides 15-R; General Procedure:

The protected amino acid 12-R (1 mmol) was treated with aq 1 N HCl (40 mL). The mixture was stirred for 15 h at r. t. and the aqueous

194 Papers SYNTHESIS

layer was extracted two times with $\rm Et_2O$ (20 mL). Evaporation of the aqueous solvent in vacuo gave 15-R.

2-(trans-2'-Nitrocyclopropyl)glycine Hydrochloride (15a-H):

12a-H (380 mg) gave 183 mg (93 %) of 15a-H.

IR (KBr): v = 3300-2700 (NH₃⁺ and CO₂H), 1750 (C=O), 1550 (NO₂), 1490, 1370 (NO₂), 1215, 1100, 910, 850, 695 cm⁻¹.

 $^{1}\mathrm{H}$ NMR (250 MHz, D₂O): $\delta=1.53$ (ddd, 1 H, $^{2}J=7.2,\,^{3}J_{\mathrm{cis}}=7.2,\,^{3}J_{\mathrm{trans}}=7.2$ Hz, 3'-H), 1.94 (ddd, 1 H, $^{2}J=7.2,\,^{3}J_{\mathrm{cis}}=10.8,\,^{3}J_{\mathrm{trans}}=3.6$ Hz, 3'-H), 2.32 (dddd, 1 H, $^{3}J=9.9,\,^{3}J_{\mathrm{cis}}=10.8,\,^{3}J_{\mathrm{trans}}=3.6,\,^{3}J_{\mathrm{trans}}=7.2$ Hz, 1'-H), 3.48 (d, 1 H, $^{3}J=9.9$ Hz, 2-H), 4.52 (ddd, 1 H, $^{3}J_{\mathrm{cis}}=7.2,\,^{3}J_{\mathrm{trans}}=3.6,\,^{3}J_{\mathrm{trans}}=3.6$ Hz, 2'-H). $^{13}\mathrm{C}$ NMR (50.3 MHz, D₂O, APT): $\delta=17.22$ (-, C-3'), 24.72 (+, C-1'), 54.00 (+, C-2), 58.35 (+, C-2'), 170.29 (-, C=O).

2-(trans-2'-Methoxycarbonylcyclopropyl)glycine Hydrochloride (15b-H):

12b-H (394 mg) gave 189 mg (90 %) of 15b-H.

IR (KBr): v = 3300-2800 (NH $_3^+$ and CO $_2$ H), 1745 (C=O), 1730 (C=O), 1435, 1320, 1150, 705 cm $^{-1}$.

¹H NMR (250 MHz, D₂O): δ = 1.10–1.35 (m, 2 H, 3′-H), 1.66–1.74 (m, 1 H, 2′-H), 1.85–1.94 (m, 1 H, 1′-H), 3.40 (d, 1 H, 3J = 9.7 Hz, 2-H), 3.55 (s, 3 H, CH₃).

2-[trans-2'-(1-Oxoethyl)cyclopropyl]glycine Hydrochloride (15c-H):

12c-H (377 mg) gave 168 mg (87 %) of 15c-H.

IR (KBr): v = 3300-2800 (NH $_3^+$ and CO $_2$ H), 1740 (C=O), 1700 (C=O), 1440, 1360, 1190, 845 cm $^{-1}$.

¹H NMR (250 MHz, D₂O): δ = 1.12–1.28 (m, 2 H, 3′-H), 1.63–1.75 (m, 1 H, 1′-H), 2.10–2.23 (m, 1 H, 2′-H), 2.14 (s, 3 H, CH₃), 3.38 (d, 1 H, 3J = 9.9 Hz, 2-H).

¹³C NMR (50.3 MHz, D₂O, APT): δ = 17.35 (-, C-3'), 24.49 (+, C-1'), 28.13 (+, C-2'), 30.60 (+, CH₃), 56.50 (+, C-2), 171.41 and 213.46 (-, C=O).

2-(trans-2'-Phenylsulfonylcyclopropyl)glycine Hydrochloride (15e-H):

12e-H (476 mg) gave 280 mg (96 %) of 15e-H.

IR (KBr): v = 3200-2800 (NH $_3^+$ and CO $_2$ H), 1755 (C=O), 1500, 1315, 1210, 1155, 745 cm $^{-1}$.

 $^{1}\text{H NMR (250 MHz, D}_{2}\text{O}): \delta = 1.35 (ddd, 1 \text{ H}, \, ^{2}J = 6.3, \, ^{3}J_{\text{cis}} = 9.2, \\ ^{3}J_{\text{trans}} = 6.3 \text{ Hz}, \quad 3'\text{-H}), \quad 1.57 \quad (ddd, 1 \text{ H}, \, \, ^{2}J = 6.3, \, \, ^{3}J_{\text{cis}} = 10.3, \\ ^{3}J_{\text{trans}} = 4.6 \text{ Hz}, \quad 3'\text{-H}), \quad 2.07 \quad (dddd, 1 \text{ H}, \, \, ^{3}J = 9.4, \, \, ^{3}J_{\text{cis}} = 10.3, \\ ^{3}J_{\text{trans}} = 4.6, \, \, ^{3}J_{\text{trans}} = 6.3 \text{ Hz}, \quad 1'\text{-H}), \quad 2.97 \quad (ddd, 1 \text{ H}, \, \, ^{3}J_{\text{cis}} = 9.2, \\ ^{3}J_{\text{trans}} = 4.6, \, \, ^{3}J_{\text{trans}} = 4.6 \text{ Hz}, \, 2'\text{-H}), \quad 3.44 \, (d, 1 \text{ H}, \, \, ^{3}J = 9.4 \text{ Hz}, \, 2\text{-H}), \\ 7.50-7.72 \quad \text{and} \quad 7.78-7.84 \, (\text{m}, 5 \text{ H}, \text{Ar-H}).$

¹³C NMR (50.3 MHz, D₂O, APT): δ = 11.53 (-, C-3'), 19.19 (+, C-1'), 37.45 (+, C-2'), 54.25 (+, C-2), 127.61, 129.96, and 135.03 (+, Ar-C), 137.82 (-, Ar-C), 170.25 (-, C=O).

2-(1'-Methyl-2'-nitrocyclopropyl)glycine Hydrochloride (15a-Me): 12a-Me (394 mg) gave 198 mg (94%) of 15a-Me.

IR (KBr): v = 3300-2600 (NH₃⁺ and CO₂H), 1735 (C=O), 1560 (NO₂), 1440, 1370 (NO₂), 1205, 1080, 890, 695 cm⁻¹.

¹H NMR (250 MHz, D₂O): δ = 1.15 (s, 3 H, CH₃), 1.71 (dd, 1 H, 2J = 7.0, $^3J_{\rm cis}$ = 7.0 Hz, 3′-H), 1.93 (dd, 1 H, 2J = 7.0, $^3J_{\rm trans}$ = 4.8 Hz, 3′-H), 3.43 (s, 1 H, 2-H), 4.57 (dd, 1 H, $^3J_{\rm cis}$ = 7.0, $^3J_{\rm trans}$ = 4.8 Hz, 2′-H).

¹³C NMR (50.3 MHz, D₂O, APT): δ = 11.45 (+, CH₃), 23.00 (-, C-3'), 29.55 (-, C-1'), 59.83 (+, C-2), 64.95 (+, C-2'), 170.51 (-, C=O).

2-(trans-2'-Aminocyclopropyl)glycine Hydrochloride (16):

A solution of the hydrochloride 15a-H (98 mg, 0.5 mmol) in H_2O (5 mL) was treated with Pd-C (25 mg, 10 % Pd) and stirred for 24 h at r.t. under H_2 (1 bar). Filtration and evaporation of the solvent in vacuo gave 80 mg (96 %) of 16.

IR (KBr): $\nu = 3300-2600$ (NH $_3^+$ and CO $_2$ H), 1745 (C=O), 1450, 1180, 875, 700 cm $^{-1}$.

¹H NMR (250 MHz, D₂O): $\delta = 1.07-1.27$ (m, 2 H, 3'-H), 1.59 (dddd, 1 H, ${}^3J = 9.6$, ${}^3J_{\rm cis} = 9.6$, ${}^3J_{\rm trans} = 3.5$, ${}^3J_{\rm trans} = 6.7$ Hz, 1'-H), 2.78 (ddd, 1 H, ${}^3J_{\rm cis} = 7.4$, ${}^3J_{\rm trans} = 3.5$, ${}^3J_{\rm trans} = 3.7$ Hz, 2'-H), 3.54 (d, 1 H, ${}^3J = 9.6$ Hz, 2-H).

¹³C NMR (50.3 MHz, D₂O, APT): δ = 9.67 (-, C-3'), 16.86 (+, C-1'), 27.49 (C-2'), 54.14 (+, C-2), 170.06 (-, C=O).

- Wagner, I.; Musso, H. Angew. Chem. 1983, 95, 827; Angew. Chem. Int. Ed. Engl. 1983, 22, 816.
- (2) Stammer, C.H. Tetrahedron 1990, 46, 2231.
- (3) Rosenthal, G.A. Plant Nonproteinogenic Amino and Imino Acids. Biological and Toxicological Properties; Academic: New York, 1982.
- (4) Suckling, C.J. Angew. Chem. 1988, 100, 555; Angew. Chem. Int. Ed. Engl. 1988, 27, 537.
- (5) Baldwin, J.E.; Adlington, R.M.; Domayne-Hayman, B.P.; Knight, G.; Ting, H.-H. J. Chem. Soc., Chem. Commun. 1987, 1661.
- (6) Joucla, M.; el Goumzili, M.; Fouchet, B. Tetrahedron Lett. 1986, 27, 1677.
- (7) McIntosh, J. M.; Leavitt, R. K.; Mishra, P.; Cassidy, K. C.; Drake, J. E.; Chadha, R. J. Org. Chem. 1988, 53, 1947.
- (8) Fowden, L.; Smith, A.; Millington, D. S.; Sheppard, R. C. Phytochemistry 1969, 8, 437.
- (9) Yamanoi, K.; Ohfune, Y.; Watanabe, K.; Li, P.N.; Takeuchi, H. Tetrahedron Lett. 1988, 29, 1181. Shimamoto, K.; Ohfune, Y. Tetrahedron Lett. 1989, 30, 3803.
- (10) Pellicciari, R.; Natalini, B.; Marinozzi, M.; Monahan, J.B.; Snyder, J.P. *Tetrahedron Lett.* **1990**, *31*, 139.
- (11) Hesse, G.; Jäger, V. Liebigs Ann. Chem. 1970, 740, 79.
- (12) Rousseau, G.; Conia, J. M. Tetrahedron Lett. 1981, 22, 649.
- (13) Backer, H.J.; Dost, N. Recl. Trav. Chim. Pays-Bas 1949, 68, 1143.
- (14) Bride, M. H.; Gummings, W. A. W.; Pickles, W. J. Appl. Chem. 1961, 11, 357.
- (15) Calderari, G.; Seebach, D. Helv. Chim. Acta 1985, 68, 1592.
- (16) Font, J.; March, P. de Tetrahedron 1981, 37, 2391.
- (17) Glattfeld, J. W. E.; Rietz, E. J. Am. Chem. Soc. 1940, 62, 974.
- (18) Eisch, J.J.; Galle, J.E. J. Org. Chem. 1979, 44, 3277.
- (19) Ornstein, P.L. J. Org. Chem. 1989, 54, 2251.
- (20) Severin, T.; Supp, W.; Manninger, G. Chem. Ber. 1979, 112, 3013.
- (21) Kocienski, P.J.; Cernigliaro, G.; Feldstein, G. J. Org. Chem. 1977, 47, 353.
- (22) O'Donnell, M.J.; Polt, R.L. J. Org. Chem. 1982, 47, 2663.
- (23) Allan, R.D. J. Chem. Res. (S) 1980, 392; (M) 1980, 4658.
- (24) Bremer, C.; de Meijere, A., unpublished results.
- (25) Häner, R.; Seebach, D. Chimia 1985, 39, 356.
- (26) Burgess, K.; Ho, K.-K. J. Org. Chem. 1992, 57, 5931.
- (27) Ohfune, Y.; Shimamoto, K.; Ishida, M.; Shinaschi, H. Bioorg. Med. Chem. Lett. 1993, 3, 15.
- (28) Zindel, J.; Zeeck, A.; König, A. W.; de Meijere, A. *Tetrahedron Lett.* **1993**, *34*, 1917.