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Abstract: The title compounds were prepared via a “one-pottt Y-lactone annulation sequence in 
which dilithium acetate functions as a bis-nuxophile, first at carbonyl and then at hindered 
allylic sulfonate centers (S,’ orientat=). 

The alliacolides (exemplified by 1-3, below), produced by the basidiomycete Marasmius 

alliaceus, are novel epoxy-lactones’ which may 

precursors.2 

1 ALLJACOLIOE 2 &COLA 

originate biosynthetically from cadinane 

xglO” @ 
0 0 

3 ALLL4COLB 4 _ 

Arteannuin B (4) and the alliacolides are quite unusual among the various types of sesquiterpene 

lactones3 In that tertiary hydroxyl groups, rather than primary or secondary ones, are 

intramolecularly Y-lactonized. We met this challenge in a recently completed total synthesis 
4a 

of Ji by using a mechanism-based intramolecular conjugate reduction designed to culminate in a 

trans-fused Y-lactone. 
4b 

This Letter reports a novel and expedient method for B-0x0-Y- 

butyrolactone cis-annulation, 5 

6 
which is especially relevant for synthesis of alliacolides such as 

alliacol A (2). - 

Our strategy is based on fully exploiting both nucleophilic sites of dilithium carboxylates7 

in a “one-pot” sequence. Ordinarily, the initially-formed carboxylate ion (pKa-5) functions only 

to enhance the nucleophilicity of the dianion7 
8 

(pK,-241, even when E-electrophiles are the 

reaction partners. In the present investigation, we envisioned attack first by the "IX- 

carbanion" of ctilithium acetate (DILA) at an unhindered carbonyl group, followed by 

intramolecular carboxylate closure to 5 (SN’ orientation, probably via ion pair collapse’), - 

although a labile vinyl epoxide might first intervene. Whatever the exact mechanistic details, 

5735 



5736 

the ring-forming step was expected to be competitive with further bimolecular DILA attack at the 

hindered neopentyl center in the first-formed adduct. 

Previous synthetic approaches6 to the alliacolides did not solve the stereochemical problem 

arising from the cis-relationship of the C-l methyl group and the Y-lactone ring. In both - 
6 

cases, C-l epimers predominated. To produce 5, DILA attack has to occur from the more hindered 

side of the conformationally-mobile cyclohexenone ring, cis to the non-adjacent methyl group. 

The prospects for achieving at least random diastereoselectivity (ie. 50:5O epimer ratio) are not 

further diminished if the leaving group introduced into 6 
10 

remains trans to the C-l substituent - 

(to ttbalanceV’ remote steric hindrance). This necessity was confirmed in the two-stage DILA 

addition to Y-chloro-cr,B-unsaturated ketone 2, 
11 

unintentionally obtained, with net inversion at 

C-8, from 1 and methanesulfonyl chloride in pyridine. As shown below, 2 produced only the C-l 

epimeric precursor 1_1. in 80% yield (due to cumulative backside steric hindrance from both C-l and 

C-8 substituents). Accordingly, we carefully reacted 7 with sulfene 
12 

and immediately carried 

out inverse DILA addition to crude 8 without isolation or purification. Upon workup, an 

HO = 
\ f 

b 

Reagents and conditions: a) K CO 12h. b) 1.5 eq. MsCl, 2 eq. Et N, THF, 25”, 30 min; 
c) 1.5 eq. MsCl, pyridine, 252, ?;h”~~~&‘~~~d) 315 eq. DILA, hexane-THF, 3.3 eq. HMPA, 25’, 12h; 
e) 1.5-2.0 eq. MCPBA, c~~C12, NaHCO , 25O,-3h; f) 3 eq. LiTMP, THF-HMPA, -20°, Eschenmoser’s 
salt, -20°+250, 12h. 3 

inseparable 1:l mixture of lactones E and 1_L (vcco 1770 cm 
-1 ) was obtained (45-50s reproducible 

yield), along with some acidic by-products that were not further characterized. NMR integration 

of the C-8 vinyl hydrogen signals at 5.63 ppm (singlet, J1 8 =0 Hz) in g and 5.55 ppm (doublet, 
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J, 8=2.0 Hz) in 11 established the isomer ratio and configurational assignments, based on the - 

abhve long-range coupling constants. 
6b 

Hydroxyl-assisted epoxidation 

combined 97% yield, 12-noralliacolide (E), mp 160-161”, whose ’ H an,‘:’ 

of lo and fi afforded, in 

C NMR spectra were in 

full agreement with reported values, ” and 1 -epi-12-noralliacolide (12) , mp 172-l 73O. The C-IO - 

methyl group in 12 is shielded by the neighboring oxirane ring (6CH 0.76 ppm in ‘H spectrum and 

14.21 ppm in 13 C), an effect also noted by Pattenden 
6b 3 

in several other 1-epi-alliacolide 

compounds. 

With the five chiral centers in 12 correctly in place, only a-methylenation of the Y-lactone 

ring remained to be completed enroute to alliacol A. We had planned to use Danishefsky’s 

protocol 
14 

which was designed for hydroxy-Y-lactones without hydroxyl protection-deprotection 

stages, a welcomed prospect with our labile and hindered tertiary hydroxyl substituent at C-4. 

Lithium tetramethylpiperidide was found to be most efficient for deprotonating 12 at C-II (first - 

C4-OH), after which we added excess N,N-dimethylmethyleneammonium iodide (Eschenmoser’s Salt). 

Unexpectedly, ’ ’ alliacol A was formed directly (45%), without requiring addition of methyl iodide 

to quaternize the tertiary amine group prior to base-induced elimination. Apparently, 

Eschenmoser’s salt can serve the dual purpose of C-11,12 carbon-carbon bond formation and - 

nitrogen quaternization in this instance (see chart). (+)-Alliacol A (z), mp 164-165O, was fully 

characterized by ’ H and 13 C NMR, as well as IR and mass spectroscopy, using the data of Hanson 
1c 

and Steglich 
Id 

for comparison. In addition, hydrogenation of 2 over Pd-C gave alliacolide (1) as - 

reported, Id allowing us to verify the identity of our (?)-l l5 with a sample of natural c-)-l 

provided by Professors Hanson and Thaller. Finally, an alternative procedure to obtain 1 was 

found to be more convenient than prior separation of 12 from 1-2; direct methylenation 
14 

of the 2 

and 11 epimeric mixture with Eschenmoser’s salt gave a 1 :I mixture (45% yield) of cr-methylene-Y- - 

lactones 14 and 15 (“Cc0 1750 cm-’ ). As before, epoxidation led to separable 2 and comparable - - - 

amounts of 1-epi-alliacol A (16) mp 150-152O. 

The total synthesis of 12-noralliacolide (2) requires only eleven steps beginning with 

cyclopentenone. 
10 

Versatile “one-pot” reactions of note are the ceric ammonium nitrate oxidative 

hydrolysis of saturated dithianes to conjugated ketones 
10 

and the doubly-nucleophilic DILA 

annulation leading to cis-fused R-oxo-Y-butyrolactones. Clearly a variety of alliacolides, in 

addition to 1 and 1, can be prepared expeditiously by this approach. 
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All new compounds, including epjmeric yjxtures, were thoroughly characterized by an 
appropriate combination of IR, H and C NMR and mass spectroscopy (EI or CI); elemental 
compositions were determined by HRMS. Salient information on specific compounds is given 
below: 
7: IR(CHC1 ) 3425, 1650 cm-' ; 
Ez), 1.04 aAd 0.94 (s,bH); l3 
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C NMR(75 mHz, CDCl ) g3199.89, 166.90 136.33, 84.85, il.43 
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12: IR(CHC1 ) 1780 cm -l; 'H NMR(CDC1 1 6 3.18 (s,lH), 2.75 and 2.52 (2H, AB quartet, 
Hz), 2.00 ana 1.28 (2H, AB quartet (5215 Hz), 

J=15 
1.10 (d,3H,J=6 HZ), 1.08 (s,bH); C NMR 
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:I, 2.01 IR(CHC1 ana ) 1.30 1780 (2H, cm-l. AB’quartet. H NMR(CDC13) J=15 6 Hz), 3.27 1.11 (s,lH), and 2.64 1.07 and (s,3H 2.45 each), (2H, 0.76 AB quartet, (d,3H,J=7 J=l5 Hz); 
C 

26.79, NMR(CDC13) 24.51, 
6 173.90, 92,110, 75.20, 69.00, 44.16, 

24.15, 14.21; MS (EI), m/z 252 (M 68.72, ), 237, 210, 
41.26, 38.03, 27.49, 35.70, 
193, Peak). 182 (base 

2: IR(CHC1 ) 1761 cm-' ; 
1 

T.21 (2H, Aa quartet, 
H NMRCCDCI 1 6 6.36 (s,lH), 5.90 (s,iH), 3.19 (s,iH) 1.88 and 

J=14.1 Hz), 1.33 and 1.09 (s,bH), 1.11 (d,3H,J=6.9 Hz); 13C NMR(CDC13) 
6 168.79, 142.98, 124.72, 95.02, 76.69,+69.53, 67.22, 41.79, 39.33, 38.69, 31.61, 26.39, 
24.49, 24.15, 19.40; HRMS, calcd. for M m/z = 264.1362, found 264.1366. 
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15. 
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Methylation of the dianion from 12 produces 11 -epi-alliacolide instead of 1, an outcome not 
rectifiable by C-11 reionizationqrotonation (3:. LITMP, then HOAc). Furthermore, the 
addition of dilithium propionate to 8 did not prove to be a practical route to 8,9-deoxy-1 - _. 
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