Simple Analogues of Qinghaosu (Artemisinin)

Yun Li,^[a] Hong-Dong Hao,^[a] Sergio Wittlin,^[b, c] and Yikang Wu^{*[a]}

Abstract: A series of 1,2,4-trioxanes were synthesized in which the key peroxy bonds were installed through a molybdenum-catalyzed perhydrolysis of the epoxy rings. A core structure was identified that may serve as a promising lead structure for further investigations because of its high antimalarial activity (comparable to that of artesunate and chloroquine), apparent potential for scale-up and derivatization, and facile monitoring/tracing by using UV light.

Keywords: cyclization • epoxides • peroxides • ring-opening • terpenoids

Introduction

The sesquiterpenoid qinghaosu^[1] (QHS, artemisinin, **1**; Scheme 1), which was first isolated in the 1970s from the Chinese herb qinghao (*Artemisia annuua* L.), was a milestone^[2] compound in the chemotherapy of malaria. This organic peroxide does not contain any nitrogen atoms or aromatic rings in its structure and hence its potent antimalarial activity cannot be explained by previous theories, thereby strongly suggesting a new mode of action. At a time when cases of multi-drug-resistant malaria were increasing at an alarming rate and began to create a global panic, the appearance of QHS and its derivatives as antimalarial drugs that were highly effective against even the "drug-resistant strains" naturally raised enormous interest in the scientific community around the world.

In most cases, synthetic studies on QHS have been directed towards developing new bioactive derivatives and analogues. Pioneering efforts in this area have led to the appearance of many synthetic organic peroxides with potent antimalarial activity,^[3] including simple 1,2,4-trioxanes that were closely related to QHS (**2–8**).

In a continuation of our long-standing interest in the synthesis of organic peroxides, we recently developed a novel route to QHS,^[4] which did not involve singlet oxygen or

[a] Dr. Y. Li, Dr. H.-D. Hao, Prof. Dr. Y. Wu State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institution of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 (China) E-mail: yikangwu@sioc.ac.cn
[b] Dr. S. Wittlin

Dr. S. Wittin Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel (Switzerland)

- [c] Dr. S. Wittlin University of Basel CH-4051 Basel (Switzerland)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201200166.

Scheme 1. Structures of QHS (1) and several (synthetic) simplified analogues (2–8) that have been reported to have significant in vitro antimalarial activity. For the sake of comparison, the atom numbering of QHS was also used in the analogues when appropriate.

ozone during the installation of the key peroxy bond, as in all previous approaches. Herein, we prepared a range of simplified QHS analogues from their corresponding epoxy precursors by using the same perhydrolysis-based methodology. Some of these products were particularly interesting because of their facile accessibility and high antimalarial activity, which was comparable to that of chloroquine and artesunate.

Results and Discussion

The QHS analogues that were investigated herein all contained a bicyclic core structure that was similar to that in compounds 2–8, but with fewer substituents attached onto the fused-ring framework. To explore the scope and limitations of molybdenum complex 9, which was formed from the reaction of Na₂MoO₄ and glycine,^[4] the catalyzed-perhydrolysis and subsequent trioxane-formation procedure that

Chem. Asian J. 2012, 00, 0-0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WWILEY CONLINE LIBRARY

1

These are not the final page numbers! **77**

was recently developed in our laboratories, and to examine the effects of structural variation on antimalarial activity, we performed several structural changes that included: 1) changing the alkyl group at the C-3 position; 2) introducing a hydroxy group at the C-5 or C-7 positions; 3) replacing the C-5 CH₂ group with an oxygen atom; and 4) switching the positions of the C-12 and O-13 moieties (see below). Because of the convenience of our synthetic procedure and because of the potential advantages in biomedical studies that are associated with the introduction of a UV chromophore onto the trioxane structure, a substrate that contained a benzene ring was also investigated, which turned out to be the most promising drug candidate (see below).

The starting epoxy substrates (10a-10k) are shown in Scheme 2. O'Neill, Posner, and co-workers^[3h] have shown that the absolute configuration of the organic peroxides did not significantly affect their antimalarial activity; therefore, to speed up the synthesis, racemic epoxy substrates were used (except for compound $10h^{[5]}$).

Scheme 2. Starting epoxides for the perhydrolysis reaction; for the sake of comparison, the atom numbering of QHS (see Scheme 1) was also used.

The perhydrolysis of **10a–10k** was performed under the same conditions as in our synthesis of QHS (**9**/H₂O₂/Et₂O). Because the epoxy groups were installed through a Corey–Chaykovsky^[6] reaction of the corresponding ketones without much diastereoselectivity, only a percentage of the epoxy substrates were of the correct relative configuration for perhydrolysis. Therefore, the yields of the resulting β -hydroxy hydroperoxides (Table 1)^[7] were typically lower than those of the corresponding conversion in the synthesis of QHS (74%).^[4]

The conversion of compounds 11a-11k into compounds 12a-12k proceeded rather smoothly, although their yields were heavily dependent on the structure. In many cases, the isolated trioxanes were enriched in, or predominated by, one diastereomer, but the configuration of the C-12a position (where H_2O_2 opened the epoxy ring) with respect to the ring conjuncture could not be established experimentally. Nevertheless, judging from the striking structural similarity, the relative configurations in these cases were likely to be the same as that in QHS (Table 1).

The relative configuration of the C-7 atom with respect to the C-5a atom in compounds 12d-12g was confirmed by NOESY experiments on the precursors. In the case of compound (-)-12h, the selectivity of the well-established aldol reaction and the Mosher method allowed us to establish the configurations at the C-5 and C-5a positions. In the case of compound 12i, two diastereomers were isolated, but their relative configurations were not identified.

Because of its high antimalarial potency, the synthesis of compound **12k** appeared to merit particular attention. As shown in Scheme 3, alkylation of alcohol **13**^[8] with bromide **14**^[9] under NaH/THF/HMPA^[10] conditions afforded benzyl ether **15**. Then, the Heck reaction of compound **15** with Pd-(OAc)₂ in MeCN at 80 °C for 36 hours in the presence of Ph₃P/K₂CO₃^[10] afforded the desired alkene (**16**). Higher reaction temperatures (>110 °C) did not afford any improvements but rather caused an undesired partial migration of the C–C double bond and hydrolysis of the ketal protecting group. Notably, if the reaction was performed in *N*,*N*-dimethylformamide (DMF) instead of MeCN, the yield of compound **16** was dramatically reduced (41 %).

The C–C double bond was then converted into the corresponding epoxide, thereby setting a stage for the key transformation step: the incorporation of a hydroperoxy group into the carbon framework. The perhydrolysis^[11] of compound **10k** proceeded smoothly under our previously reported conditions for the synthesis of QHS.^[4] Intermediate compound **11k** readily underwent acid-catalyzed cyclization, thereby delivering compound **12k** in 75% yield.

Inspired by the conversion^[12] of deoxo-QHS into QHS and by the literature synthesis of artemether,^[13] we also performed similar transformations on compound **12k**. The oxidation of compound **12k** was realized by using a more recently reported procedure (KMnO₄/FeCl₃).^[14] The resulting lactone (**12l**) was then reduced with DIBAL-H into a hemiacetal intermediate, which, on exposure to *p*-TsOH/MeOH, yielded acetal **12m** as an inseparable mixture of two epimers.

The in vitro antimalarial activity of the synthesized trioxanes are given in Table 1. From the simplest compounds considered herein (12a-12c), a larger alkyl group at the C-3 position was beneficial (Table 1, entries 1-3). The introduction of an OBn group at the C-7 position (12d and 12e) led to an enhancement in activity that was comparable to that caused by the replacement of the C-3 methyl group with an n-butyl or iso-propyl group (Table 1, entries 4 and 5). This result, together with the observation that the stereochemistry at the C-7 position that was associated with the attachment of a substituent did not seem to make much difference in terms of antimalarial activity, revealed that this position could be potentially useful for further structural modification. In contrast, an unprotected hydroxy group at the C-7 position (12 f and 12 g) decreased the antimalarial activity significantly (Table 1, entries 6 and 7). Perhaps the presence of a free hydroxy group made the substrate more sensitive towards oxidation and other reactions that lead to decomposition of these molecules. Indeed, the attachment of a hy-

. 2

www.chemasianj.org

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

CHEMISTRY

Entry	Epoxide		β-Hydroxy perhydroxide				Tric	Trioxane		IC ₅₀	
	10		R	11		Yield [%]	12		Yield [%]	$[ngmL^{-1}]^{[b]}$	
1 2 3		10 a 10 b 10 c	Me <i>i</i> Pr <i>i</i> Bu	HO HO HO	11 a 11 b 11 c	61 68 61	R O O U H	12 a 12 b 12 c	74 74 78	1.8×10^{2} 5.3×10 4.8×10	
4 5 6 7		10d 10e 10f 10g	α-OBn β-OBn α-OTBS β-OTBS		11 d 11 e 11 f 11 g	42 49 59 52		12 d 12 e 12 f 12 g	78 58 62 68	4.8×10 4.9×10 7.0×10^{2} 4.8×10^{2}	
8	TBS O H H	10 h			11 h	53	O-O H H	12 h	92	$2.1 \times 10^{3[c]}$ $(6.4 \times 10^2)^{[d]}$	
9		10 i			11i	54		12i 12i'	20 20	$\begin{array}{l} 3.7 \times 10^{2[e]} \\ 5.3 \times 10^{2[f]} \end{array}$	
10		10j		O O OH OH O O O O	11j	71	og o O O O O O O O O O O O O O H	12j	30	1.6×10^{3}	
11) 10k			11 k	50		12 k	75	3.9	
12		101			111			121		5.7	
13		10 m			11 m			12 m		5.0	
14 15							artesunate chloroquine diphosph	ate		1.2 6.7	

Table 1. Conversion of the epoxides into trioxanes and the IC_{50} values of the products.^[a]

droxy group at the C-5 position (12h) also showed similar adverse effects (Table 1, entry 8).

Substitution of the C-5 CH₂ group with an oxygen atom greatly facilitated the reaction (**12i** and **12i'**). However, unfortunately, this change in what was seemingly a non-functional unit resulted in substantially reduced antimalarial activity compared to that of compound **12a** (Table 1, entry 9). If the C-5 oxy substituent was accompanied by a switch of the C-12 CH₂ group and the C-13 oxygen atom (**12j**), even poorer activity was observed (Table 1, entry 10). Thus, structural variation along this line was not pursued further. The trioxanes that contained a fused benzene ring (12k-12m) were significantly dissimilar to QHS than the other trioxanes considered herein. Nevertheless, these three peroxides all showed much higher potency (Table 1, entries 12– 14) than those that were expected to be the most active because of their stronger structural resemblance to QHS. These results, together with the potential advantages of their facile synthesis and UV-detectable nature owing to the presence of a benzene ring, strongly suggested that the core structure that was shared by compounds 12k-12m may be a promising lead structure for further studies.

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemasianj.org

3

These are not the final page numbers! **77**

[[]a] All of the compounds were racemic except for compounds (-)-12h and its precursors; the relative configurations (see text) are shown when major diastereomers were observed. [b] Tested on *P. falciparum* (strain NF45); these data are the averages of 2–3 independent experiments (for further details of the procedure, see Ref. [7]). [c] For compound (\pm) -12h. [d] For compound (-)-12h. [e] The less-polar diastereomer. [f] The more-polar diastereomer.

Scheme 3. Synthesis of compounds 12k-12m. HMPA = hexamethyl-phosphoramide, *p*-TsOH = *para*-toluenesulfonic acid, DIBAL-H = diisobutylaluminum hydride, *m*-CPBA = *meta*-chloroperbenzoic acid.

Conclusions

A series of simplified QHS analogues were synthesized with remarkable ease by using hydrogen peroxide in the key formation of the peroxy bonds. The incorporation of the inorganic peroxy unit into the organic frameworks was achieved through perhydrolysis of the epoxy rings under very mild conditions that were recently developed in our laboratories. Apart from demonstrating the distinct potential of this procedure in the synthesis of other organic peroxides, these newly accessed trioxanes also helped to unveil some previously unknown facets of the structure-activity relationship (SAR) of QHS-related antimalarial compounds, thereby contributing to the existing knowledge of SAR of organic peroxy antimalarial compounds. A new core structure that was remarkably dissimilar to QHS compared with the other trioxanes studied herein was identified, which might serve as a promising lead compound for further investigation because of its unexpectedly high antimalarial activity (comparable to that of artesunate and chloroquine), apparent potential for scale-up and derivatization, and facile monitoring/tracing by using UV light.

Experimental Section

General

THF and Et_2O (for the moisture-sensitive reactions) were distilled over Na/benzophenone under an argon atmosphere prior to use. CH_2Cl_2 and

MeCN were distilled over CaH₂ prior to use. HMPA and DMSO were stirred with CaH₂ at ambient temperature for several days (in a sealed flask with a flat balloon to collect the H₂ gas evolved), distilled under a vacuum, and kept over activated 4 Å molecular sieves under an argon atmosphere. Ethereal H₂O₂^[15] and molybdenum catalyst **9**^[4] were prepared according to literature procedures.

Alkylation of Compound 13 with Compound 14 to Afford Compound 15

A solution of alcohol 13 (103 mg, 0.60 mmol) in dry THF (2 mL) was added to NaH (60% in mineral oil, 77 mg, 1.92 mmol, washed 3×petroleum ether). The mixture was stirred at ambient temperature for 1 h. Dry HMPA (0.24 mL, 1.2 mmol) was added, followed by a solution of bromide 14 (300 mg, 1.2 mmol) in dry THF (1 mL). The orange-yellow mixture was stirred at ambient temperature overnight. The mixture was portioned between Et₂O (10 mL) and saturated aqueous NH₄Cl (5 mL). The phases were separated and the aqueous layer was back-extracted with Et_2O (3×30 mL). The combined organic layers were washed with brine (2×15 mL) and dried over anhydrous Na₂SO₄. Removal of the solvent by rotary evaporation and column chromatography on silica gel (EtOAc/petroleum ether, 1:50) gave ether 15 as a colorless oil (160 mg, 0.47 mmol, 78% from compound **13**). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.51$ (t, J =7.0 Hz, 2H), 7.30 (t, J=7.3 Hz, 1H), 7.13 (t, J=7.7 Hz, 1H), 5.70-5.82 (m, 1H), 5.27 (d, J=6.4 Hz, 1H), 5.23 (s, 1H), 4.61 (d, J=13 Hz, 1H), 4.43 (d, J=13 Hz, 1 H), 3.90-3.95 (m, 4 H), 3.80 (dd, J=5.3, 7.5 Hz, 1 H), 1.74–1.88 (m, 2H), 1.62–1.74 (m, 2H), 1.32 ppm (s, 3H); ¹³C NMR (75 MHz, CDCl₃): *δ*=138.6, 138.1, 132.4, 129.1, 128.7, 127.3, 122.6, 117.5, 109.9, 81.1, 69.5, 64.6, 34.7, 29.8, 23.9 ppm; FTIR (film): v=2981, 2876, 1568, 1470, 1441, 1376, 1207, 1066, 927, 750 cm⁻¹; MS (ESI): m/z: 363.1 $[M+Na]^+$; elemental analysis calcd (%) for C₁₆H₂₁O₃Br: C 56.32, H 6.20; found: C 56.49, H 66.20.

Cyclization of Compound 15 to Afford Compound 16

PPh₃ (60 mg, 0.23 mmol), K₂CO₃ (480 mg, 3.50 mmol), and Pd(OAc)₂ (26 mg, 0.12 mmol) were added sequentially to a solution of compound 15 (200 mg, 0.58 mmol) in degassed MeCN (12 mL). The red-orange mixture was frozen in liquid N2, evacuated with an oil pump, and warmed to ambient temperature after releasing the vacuum with argon gas (repeated three times). The mixture was then stirred at 80°C under an argon atmosphere for 36 h. After cooling to ambient temperature, Et₂O (50 mL) was added, followed by water (20 mL). The phases were separated and the aqueous layer was back-extracted with Et₂O (3×30 mL). The combined organic layers were washed with brine (2×15 mL) and dried over anhydrous Na2SO4. Removal of the solvent by rotary evaporation and column chromatography on silica gel (EtOAc/petroleum ether, 1:20) gave ether 16 as a yellowish oil (114 mg, 0.44 mmol, 76% from 15). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.62 - 7.65$ (m, 1 H), 7.20-7.26 (m, 2 H), 7.00-7.03 (m, 1H), 5.64 (s, 1H), 5.08 (s, 1H), 4.87 (d, J=15.2 Hz, 1H), 4.75 (d, J=15.3 Hz, 1 H), 4.33 (t, J=6.2 Hz, 1 H), 3.89-3.98 (m, 4 H), 1.72–2.06 (m, 4H), 1.37 ppm (s, 3H); 13 C NMR (75 MHz, CDCl₃): $\delta =$ 141.7, 134.3, 131.4, 127.7, 126.9, 124.3, 123.8, 109.9, 107.0, 65.6, 64.6, 34.8, 26.9, 23.9 ppm; FTIR (film): $\tilde{\nu} = 2980$, 2880, 1635, 1485, 1449, 1375, 1255, 1065, 891, 776 cm⁻¹; MS (EI): m/z: 260 [M]+; HRMS (EI): m/z calcd for C₁₆H₂₀O₃: 260.1412 [M]⁺; found: 260.1425.

Epoxidation of Alkene 16 into Epoxide 10k

Na₂CO₃ (8.0 mg, 0.07 mmol) and *m*-CPBA (75%, 34 mg, 0.15 mmol) were added to a stirring solution of alkene **16** (35 mg, 0.13 mmol) in dry CH₂Cl₂ (2 mL) in an ice-water bath. The mixture was then stirred at ambient temperature until TLC showed the complete consumption of the alkene. Saturated aqueous NaHCO₃ (2 mL) was added and the mixture was extracted with Et₂O (3×30 mL). The combined organic layers were washed with saturated aqueous Na₂SO₃ (15 mL) and brine (2×20 mL) before being dried over anhydrous Na₂SO₄. Removal of the solvent by rotary evaporation and column chromatography on silica gel (EtOAc/petroleum ether, 1:10) gave epoxide **10k** as a colorless sticky oil (32 mg, 0.12 mmol, 89% from compound **16**). ¹H NMR (300 MHz, CDCl₃): δ = 7.21–7.31 (m, 2H), 7.13 (t, *J*=3.8 Hz, 1H), 7.03 (t, *J*=3.7 Hz, 1H), 4.92 (s, 2H), 3.82–4.03 (m, 5H), 3.31 (d, *J*=4.4 Hz, 1H), 2.92 (d, *J*=4.7 Hz,

www.chemasianj.org

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

N These are not the final page numbers!

1 H), 1.94–2.08 (m, 1 H), 1.55–1.78 (m, 2 H), 1.39–1.54 (m, 1 H), 1.34 ppm (s, 3 H); ¹³C NMR (75 MHz, CDCl₃): δ =137.5, 133.6, 127.7, 127.1, 123.5, 123.2, 109.8, 68.1, 64.7, 64.6, 55.9, 54.0, 35.1, 23.9, 23.7 ppm; FTIR (film): $\tilde{\nu}$ =2979, 2878, 1696, 1494, 1447, 1375, 1256, 1207, 1062, 869, 757 cm⁻¹; MS (EI): *m/z*: 276 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₆H₂₀O₄: 276.1362 [*M*]⁺; found: 276.1358.

Perhydrolysis of Compound 10k to Afford Compound 11k

Catalyst 7 (4 mg, 0.009 mmol) was added to a stirring solution of epoxide 10k (37 mg, 0.13 mmol) in ethereal H₂O₂ (1 M, 1.5 mL) at ambient temperature. The mixture was stirred at ambient temperature for 4 h then water (5 mL) was added to the reaction mixture. The mixture was extracted with EtOAc (3×20 mL) and the combined organic layers were washed with brine and dried over anhydrous Na2SO4. The drying agent was removed by filtration and the filtrate was concentrated on a rotary evaporator and column chromatography on silica gel (petroleum ether/ EtOAc, 1:1) gave compound 11k as a colorless oil (20 mg, 0.063 mmol, 50% from compound 10k) along with recovered compound 10k (10 mg, 0.035 mmol, 27 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.24$ (s, 1 H), 7.63 (d, J=7.3 Hz, 1 H), 7.27-7.39 (m, 2 H), 7.06 (d, J=7.8 Hz, 1 H), 4.85 (s, 2 H), 4.15 (dd, J=2.3, 9.9 Hz, 1 H), 3.90–4.04 (m, 5 H), 3.83 (dd, J=8.3, 11.2 Hz, 1H), 1.99-2.19 (m, 3H), 1.67-1.89 (m, 2H), 1.37 ppm (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 136.1$, 134.2, 127.7, 127.1, 126.4, 123.6, 109.9, 82.3, 67.6, 64.5, 64.0, 40.6, 35.7, 23.8, 22.9 ppm; FTIR (film): $\tilde{\nu} =$ 3360, 2927, 1455, 1377, 1211, 1099, 1060, 762, 728 cm⁻¹; MS (ESI): m/z: 333.2 $[M+Na]^+$; HRMS (ESI): m/z calcd for $C_{16}H_{22}O_6$: 333.13086 [*M*+Na]⁺; found: 333.12989.

Cyclization of Compound 11k to Afford Trioxane 12k

p-TsOH (4 mg, 0.02 mmol) was added into a solution of 11k (12 mg, 0.038 mmol) in CH₂Cl₂ (1 mL). The mixture was stirred at ambient temperature overnight until TLC showed complete consumption of the starting compound 11k. Saturated aqueous NaHCO3 (3 mL) was added and the mixture was extracted with Et_2O (3 $\times 25\,mL).$ The combined organic layers were washed with brine and dried over anhydrous Na2SO4. The drying agent was removed by filtration, the filtrate was concentrated on a rotary evaporator, and column chromatography on silica gel (EtOAc/ petroleum ether, 1:20) gave trioxane 12k as a white solid (7 mg, 0.028 mmol, 75 %). M.p.: 74–76 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.70 (d, J=6.8 Hz, 1 H), 7.23-7.38 (m, 2 H), 6.98 (d, J=6.4 Hz, 1 H), 4.81 (s, 2 H), 4.27 (d, $J\!=\!11.7$ Hz, 1 H), 4.21 (dd, $J\!=\!11.6,\,1.7$ Hz, 1 H), 3.69–3.90 (m, 1H), 2.31-2.52 (m, 1H), 1.84-2.19 (m, 3H), 1.43 ppm (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 136.0$, 134.1, 128.6, 127.8, 127.2, 123.5, 103.7, 78.5, 73.4, 68.1, 65.2, 35.8, 34.4, 25.9, 25.4 ppm; FTIR (KBr): $\tilde{\nu} =$ 2927, 2853, 1490, 1448, 1372, 1255, 1215, 1147, 1104, 1078, 756 cm⁻¹; MS (EI): m/z: 248 (0.5) $[M]^+$, 216 (18), 204 (21); HRMS (EI): m/z calcd for C₁₄H₁₆O₄: 248.1049 [*M*]⁺; found: 248.1042.

Oxidation of Compound 12k to Afford Lactone 12l

FeCl₃ (77 mg, 0.48 mmol) and KMnO₄ (122 mg, 0.77 mmol) were added to a stirring solution of compound 12k (21 mg, 0.077 mmol) in acetone (6 mL) at -78 °C. The bath was allowed to warm to ambient temperature and stirring was continued for 12 h before Et₂O (10 mL) and water (5 mL) were added. The phases were separated and the aqueous layer was back-extracted with Et₂O (3×15 mL). The combined organic phases were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Filtration and rotary evaporation gave a crude residue, which was purified by column chromatography on silica gel (EtOAc/petroleum ether, 1:10) to afford compound 121 as a colorless oil (20 mg, 0.076 mmol, 99 % from compound **12k**). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.07 - 8.14$ (m, 1H), 7.64-7.82 (m, 2H), 7.47-7.58 (m, 1H), 4.56-4.67 (m, 1H), 4.50 (d, J= 7.9 Hz, 0.3 H), 4.14-4.26 (m, 1.3 H), 3.52 (d, J=7.9 Hz, 0.3 H), 2.25-2.55 (m, 2H), 2.11-2.53 (m, 1.3H), 1.84-2.06 (m, 0.7H), 1.63 (s, 2H), 1.46 ppm (s, 1 H); FTIR (film): v=2935, 1736, 1603, 1458, 1275, 1150, 1136, 1076, 1039, 845, 757 cm⁻¹; MS (EI): m/z (%): 267 (2) $[M]^+$, 230 (28), 189 (55), 104 (100), 76 (57); HRMS (EI): m/z calcd for $C_{14}H_{14}O_5$: 262.0841 [M]+; found: 262.0838.

DIBAL-H (1 M, in cyclohexane, 0.13 mL, 0.13 mmol) was added to a stirring solution of lactone 121 (15 mg, 0.057 mmol) in dry CH₂Cl₂ (2 mL) at -78°C under N2. The mixture was stirred at -78°C until TLC showed complete consumption of the lactone. MeOH (1 mL) was carefully added to quench the excess hydride, followed by saturated aqueous potassium sodium tartrate (5 mL) and Et₂O (5 mL). Stirring was continued at ambient temperature until the mixture became transparent. The mixture was extracted with Et₂O (3×15 mL) and the combined organic layers were washed with brine (5 mL) and dried over anhydrous Na₂SO₄. The drying agent was removed by filtration and the filtrate was concentrated on a rotary evaporator. The crude material was dissolved in anhydrous MeOH (4 mL) that contained p-TsOH (2 mg, 0.01 mmol) and the solution was stirred at ambient temperature for 2 h, after which time TLC analysis showed that the reaction had gone to completion. Saturated aqueous NaHCO3 (3 mL) was added and the mixture was extracted with Et₂O (3×15 mL). The combined organic layers were washed with brine (5 mL) and dried over anhydrous Na₂SO₄. Removal of the solvent by rotary evaporation and column chromatography on silica gel (EtOAc/petroleum ether, 1:50) gave compound 12m as a colorless oil (15 mg, 0.054 mmol, 95% from compound **121**). ¹H NMR (300 MHz, CDCl₃): $\delta =$ 7.68 (d, J=7.6 Hz, 0.7 H), 7.57 (d, J=7.6 Hz, 0.3 H), 7.43-7.29 (m, 2 H), 7.25-7.17 (m, 1H), 5.45 (s, 0.3H), 5.43 (s, 0.7H), 4.42 (d, J=7.6 Hz, 0.3 H), 4.34-4.14 (m, 2.4 H), 3.56 (s, 3 H), 3.53 (d, J=7.6 Hz, 0.3 H), 2.53-2.39 (m, 1H), 2.20-2.04 (m, 2H), 2.01-1.82 (m, 1H), 1.59 (s, 1H), 1.44 ppm (s, 2 H); FTIR (film): $\tilde{v} = 2934$, 2887, 1453, 1271, 1257, 1149, 1094, 1053, 1039, 1013, 759 cm⁻¹; MS (EI): m/z (%): 278 (2) $[M]^+$, 262 (16), 246 (3), 149 (48), 43 (100); HRMS (EI): m/z calcd for C₁₅H₁₈O₅: 278.1154 [M]+; found: 278.1158.

Acknowledgements

This work was supported by the National Basic Research Program of China (the 973 Program, 2010CB833200), the National Natural Science Foundation of China (21172247, 21032002, 20921091, 20672129, 20621062, 20772143), and the Chinese Academy of Sciences (KJCX2.YW.H08). We thank Christian Scheurer for his assistance in performing the antimalarial assays.

- J.-M. Liu, M.-Y. Ni, J.-F. Fan, Y.-Y. Tu, Z.-H. Wu, Y.-L. Wu, W.-S. Chou, Acta Chim. Sin. 1979, 37, 129–143. [Chem. Abstr. 1980, 92, 94594w].
- [2] For selected reviews, see: a) D. L. Klayman, Science 1985, 228, 1049–1055; b) R. K. Haynes, S. C. Vonwiller, Acc. Chem. Res. 1997, 30, 73–79; c) J. A. Vroman, M. Alvim-Gaston, M. A. Avery, Curr. Pharm. Des. 1999, 5, 101–138; d) A. Robert, O. Dechy-Cabaret, J. M. Cazalles, B. Meunier, Acc. Chem. Res. 2002, 35, 167–174; e) Y. Li, Y.-L. Wu, Curr. Med. Chem. 2003, 10, 2197–2230; f) P. M. O'Neill, G. H. Posner, J. Med. Chem. 2004, 47, 2945–2964; g) G. H. Posner, P. M. O'Neill, Acc. Chem. Res. 2004, 37, 397–404; h) Y. Tang, Y. Dong, J. L. Vennerstrom, Med. Res. Rev. 2004, 24, 425–448; i) K. M. Muraleedharan, M. A. Avery, Comprehensive Med. Chem. II 2006, 7, 765–814; j) Y. Li, Y.-L. Wu, Front. Chem. China 2010, 5, 357–422.
- [3] a) G. H. Posner, C. H. Oh, L. Gerena, W. K. Milhous, J. Med. Chem.
 1992, 35, 2459-2467; b) G. H. Posner, C. H. Oh, D. S. Wang, L. Gerena, W. K. Milhous, S. R. Meshnick, W. Asawamahasadka, J. Med. Chem. 1994, 37, 1256-1258; c) C. A. Haraldson, J. M. Karle, S. G. Freeman, R. K. Duvadie, M. A. Avery, Bioorg. Med. Chem. Lett. 1997, 7, 2357-2362; d) G. H. Ponser, C. H. Oh, Heteroat. Chem. 1995, 6, 105-116; e) C. Jefford, J. Velarde, G. Bernardinelli, D. H. Bray, D. C. Warhurst, W. K. Milhous, Helv. Chim. Acta 1993, 76, 2775-2788; f) J. Cazelles, B. Camuzat-Dedenis, O. Provot, A. Robert, J. Mayrargue, M. Meunier, J. Chem. Soc. Perkin Trans. 1 2000, 1265-1270; g) G. H. Posner, H. B. Jeon, P. Ploypradith, M.

Chem. Asian J. 2012, 00, 0-0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemasianj.org

5

These are not the final page numbers! **77**

Krasavin, I.-H. Paik, K. Borstnik, S. Xie, T. A. Shapiro, J. Med. Chem. 2002, 45, 3824-3828; h) P. M. O'Neill, S. L. Rawe, K. Borstnik, A. Miller, S. A. Ward, P. G. Bray, J. Davies, C. H. Oh, G. H. Posner, ChemBioChem 2005, 6, 2048-2054; i) H.-S. Kim, K. Begum, N. Ogura, Y. Wataya, Y. Nonami, T. Ito, A. Masuyama, M. Nojima, K. J. McCullough, J. Med. Chem. 2003, 46, 1957-1961; j) M. Jung, X. Li, D. A. Bustos, H. N. Elsohly, J. D. McChesney, W. K. Milhous, J. Med. Chem. 1990, 33, 1516-1518; See also related peroxides: k) J. L. Vennerstrom, S. Arbe-Barnes, R. Brun, S. A. Charman, F. C. K. Chiu, J. Chollet, Y. Dong, A. Dorn, D. Hunziker, H. Matile, K. McIntosh, M. Padmanilayam, J. Santo Tomas, C. Scheurer, B. Scorneaux, Y. Tang, H. Urwyler, S. Wittlin, W. N. Charman, Nature 2004, 430, 900-904; 1) D. C. Martyn, A. P. Ramirez, M. J. Beattie, J. F. Cortese, V. Patel, M. A. Rush, K. A. Weorpel, J. Clardy, Bioorg. Med. Chem. Lett. 2008, 18, 6521-6524; m) P. Ghorai, P. H. Dussault, C. Hu, Org. Lett. 2008, 10, 2401-2404; n) C. Singh, V. P. Verma, N. K. Naikade, A. S. Singh, M. Hassam, S. K. Puri, J. Med. Chem. 2008, 51, 7581-7592; o) R. K. Haynes, B. Fugmann, J. Stetter, K. Rieckmann, H.-D. Heilmann, H.-W. Chan, M.-K. Cheung, W.-L. Lam, H.-N. Wong, S. L. Croft, L. Vivas, L. Rattray, L. Stewart, W. Peters, B. L. Robinson, M. D. Edstein, B. Kotecka, D. E. Kyle, B. Beckermann, M. Gerisch, M. Radtke, G. Schmuck, W. Steinke, U. Wollborn, K. Schmeer, A. Romer, Angew. Chem. Int. Ed. 2006, 45, 2082-2088; p) For simple trioxane, see also: A. P. Ramirez, A. M. Thomas, K. A. Woerpel, Org. Lett. 2009, 11, 507-510; q) M. A. Avery, W. K. M. Chong, G. Detre, Tetrahedron Lett. 1990, 31, 1799-1802; r) M. A. Avery, F. Gao, W. K. M. Chong, S. Mehrotra, W. K. Milhous, J. Med. Chem. 1993, 36, 4264-4275; s) S. A. Charman, S. Arbe-Barnes, I. C. Bathurst, R. Brun, M. Campbell, W. N. Charman, F. C. K. Chiu, J. Chollet, J. C. Craft, D. J. Creek, Y. Dong, H. Matile, M. Maurer, J. Morizzi, T. Nguyen, P. Papastogiannidis, C. Scheurer, D. M. Shackleford, K. Sriraghavan, L. Stingelin, Y. Tang, H. Urwyler, X. Wang, K. L. White, S. Wittlin, L. Zhou, J. L. Vennerstrom, Proc. Natl. Acad. Sci. USA 2011, 108, 4400-4405.

[4] H.-D. Hao, Y. Li, W.-B. Han, Y.-K. Wu, Org. Lett. 2011, 13, 4212– 4215.

- [5] This epoxy substrate, which had an enantiopure stereogenic center at the C-5 position, was readily obtained from the L-proline-catalyzed aldol reaction of cyclohexanone (see the Supporting Information).
- [6] E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364.
- [7] For further details of the method, see: C. Snyder, J. Chollet, J. Santo-Tomas, C. Scheurer, S. Wittlin, *Exp. Parasitol.* 2007, 115, 296–300.
- [8] G. H. Lee, E. B. Choi, E. Lee, C. S. Pak, J. Org. Chem. 1994, 59, 1428-1443.
- [9] Y. Yoshimi, H. Maeda, M. Hatanaka, K. Mizuno, *Tetrahedron* 2004, 60, 9425–9431.
- [10] S. Ma, B. Ni, J. Org. Chem. 2002, 67, 8280-8283.
- [11] For selected recent syntheses of organic peroxides, see: a) S. Gemma, E. Gabellieri, S. Sanna Coccone, F. Marti, O. Taglialatela-Scafati, E. Novellino, G. Campiani, S. Butini, J. Org. Chem. 2010, 75, 2333–2340; b) J. R. Harris, S. R. Waetzig, K. A. Woerpel, Org. Lett. 2009, 11, 3290–3293; c) A. O. Terent'ev, I. A. Yaremenko, V. V. Chernyshev, V. M. Dembitsky, G. I. Nikishin, J. Org. Chem. 2012, 77, 1833–1842; d) C. Xu, J. M. Raible, P. H. Dussault, Org. Lett. 2005, 7, 2509–2511; e) K. Žmitek, S. Stavber, M. Zupan, D. Bonnet-Delpon, J. Iskra, Tetrahedron 2006, 62, 1479–1484; f) A. Ramirez, K. A. Woerpel, Org. Lett. 2005, 7, 4617–4620; g) A. Ahmed, P. H. Dussault, Tetrahedron 2005, 61, 4657–4670; h) P. M. O'Neill, S. L. Rawe, R. C. Storr, S. A. Ward, G. H. Posner, Tetrahedron Lett. 2005, 46, 3029–3032.
- [12] B. Ye, Y.-L. Wu, Chem. Commun. 1990, 726-727.
- [13] a) Y. Li, P. Yu, Y. Chen, L. Li, Y. Gai, D. Wang, Y. Zheng, *Yaoxue Xuebao* **1981**, *16*, 429–439 (CAN 97:92245); b) A. J. Lin, D. L. Klayman, W. K. Milhous, *J. Med. Chem.* **1987**, *30*, 2147–2150.
- [14] D. G. Lee, S. Lai, *Tetrahedron* **2002**, *58*, 9879–9887.
- [15] a) Y. Li, H.-D. Hao, Y.-K. Wu, Org. Lett. 2009, 11, 2691–2694; b) Y. Li, H.-D. Hao, Q. Zhang, Y.-K. Wu, Org. Lett. 2009, 11, 1615–1618.

Received: February 1, 2012 Published online: ■ ■ ↓, 0000

The temple of artemisinin: The key peroxy bonds in a series of 1,2,4-trioxanes were installed by molybdenumcatalyzed perhydrolysis of the epoxy rings. A novel core structure with potent antimalarial activity was identified.

Terpenoids

Yun Li, Hong-Dong Hao, Sergio Wittlin, Yikang Wu* - •••••

Simple Analogues of Qinghaosu (Arte- 🛄 misinin)

7