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6,69-Bis(diethylboryl)-2,29-bipyridine (1a) was obtained in functional donor–acceptor compounds have been used for
the formation of the copper complex 4 and of the adduct 5low yield by in situ deprotonation of 2,29-bipyridine in the

presence of diethyl(methoxy)borane. 6,69-Dilithio-2,29-bipy- which is built from diborylbipyridine and a dihydroxydiboro-
xan derivative. The composition of the products follows fromridine reacts with various alkoxyboranes leading to bipyridi-

nediborates 2 in good yields. The derivatives 2b and 2c allow spectroscopic data and from X-ray structure analyses for 2f,
4, and 5.the formation of the free diborylbipyridines 1b and 1c. The

coordination properties of the diboryl–bipyridines as tetra-

in 6,69-diborylated bipyridines with respect to their donor-Introduction
acceptor properties and their potential of forming the mac-

The intramolecular presence of Lewis basic (nitrogen) rocycle D.
and Lewis acidic centers (boron) results in interesting
properties of borylated pyridines and bipyridines. A small
number of borylpyridines has been reported, [1] which were
synthesized as starting compounds for Suzuki coupling re-
actions. [2] 2-(Diethylboryl)pyridine[3] and 3-(diethylboryl)-
pyridine[4] are known for their stability towards moisture
and oxygen. The reason for this is their assembly by inter-

Scheme 2molecular boron2nitrogen coordination. 2-(Diethylboryl)-
pyridine exists as a dimer (A) in solution and in the solid

From spectroscopic data the formation of the cyclic ad-state, [5] and 3-(diethylboryl)pyridine as a cyclic tetramer
duct E, based on the donor2acceptor pattern of 2-(diethyl-(B).
boryl)pyridine was postulated. [3] For the tetrafunctional
6,69-diboryl-2,29-bipyridines 1 one may expect a complex
donor2acceptor behavior due to their geometric require-
ments. In the following the coordination properties of the
donor2acceptor molecules 1 will be presented. In addition
the formation of bipyridinediborates 2 and their behavior as
N2O2 tetradentate ligands are studied, of which numerous
examples have been reported.[10213]

Scheme 1
Results and Discussion

Bipyridines have been the subject of many studies. [6] [7]

SynthesisThe π-acceptor properties of this bidentate σ-donor are
weak. By introducing electron-withdrawing groups the π*-

Following a general procedure, [14] we synthesized the di-level is lowered as has been demonstrated with acyl- and
borylbipyridine 1a by in situ deprotonation of 2,29-bipyri-carboxybipyridines (C). [8] The dπRπ* absorption bands in
dine with lithium diisopropylamide (LDA) in the presenceL3RuII complexes (L 5 bipyridines) are shifted toward the
of an excess of diethyl(methoxy)borane. In this reaction 1ared region of the spectra and this shift increases the quality
was obtained in very low yield (1%) besides the monoboryl-of these metal complexes as sensitizers in solar energy con-
ated product 3a (6%). 1a is a colorless, high-melting solidverting processes. [9] 6,69-Diboryl-2,29-bipyridines 1 should
of low solubility whereas 3a is a viscous oil. Both sub-also have increased π-acceptor qualities relative to that of
stances are stable toward moisture and air. Their 11B-NMRnon-substituted bipyridines. We are in particular interested
spectra (δ 5 3) indicate tetracoordinate boron atoms in as

[a] Anorganisch-Chemisches Institut der Universität, yet unknown assembly, most likely 1a and 3a form donor2
Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany acceptor compounds similar to A. In the EI mass spectraFax: (internat.) 1 49(0)6221/54-5609
E-mail: ci5@ix.urz.uni-heidelberg.de the fragments of the monomeric species with loss of one
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ethyl group appear as highest masses at m/z 5 263 [1a 2 could be stabilized by thf molecules forming donor2ac-

ceptor adducts.Et]1 and 195 [3a 2 Et]1.

Scheme 3
Scheme 5

To improve the yields a stepwise synthesis was carried The reaction of the diisobutoxy derivative 2c with chloro-
out. 6,69-Dilithio-2,29-bipyridine, obtained by a metal/hal- bis(dimethylamino)borane results in the formation of 6,69-
ogen exchange, [15] was treated with various alkoxyboranes bis[bis(dimethylamino)boryl]-2,29-bipyridine (1c). It is ob-
to give the borate derivatives 2a2f. tained in 64% yield as a red oil of limited solubility in thf.

In comparison to bis(dimethylamino)organoboranes (δ 5
34236)[16] the 11B-chemical shift of 1c appears at higher
field (δ 5 31). Most likely this is caused by π-interaction
between the pz orbital of the boron atom and the π system
of the heterocycle. In the 1H NMR there is only one signal
for the dimethylamino groups which indicates a free ro-
tation around the B2N and the B2C bonds on the NMR
time scale.

In general the reactivity of 2a2f is high toward HCl/Et2O
and ClSiMe3 (except 2b), resulting in the cleavage of the
boron2bipyridine bond. Because of their high sensitivity
toward moisture, no satisfactory C,H,N analysis could be
obtained.

Scheme 4

Regardless of the steric and electronic properties of the
substituents, the products 2a2f are thermally stable and

Scheme 6isolated in 64289% yields. All are colorless, crystalline sub-
stances, which, however, are very sensitive toward hydrolysis
to give bipyridine and the corresponding boron com-
pounds. They are characterized by 1H-, 13C-, 11B-NMR Complex Formation
spectroscopy and by an X-ray structure analysis of 2f (see

In the borates 2 the bipyridine has an anti conformationbelow). In these molecules the expected leaving groups
and acts as a tetradentate ligand toward two lithium cat-LiOR are bound to the diborylbipyridines. There are inter-
ions. Treatment of 2b with one equivalent of (Et4N)2CuCl4actions between the acceptor function (boron) with the al-
results in the formation of the deep green-blue coordinationkoxy group and between the donor function (nitrogen) with
compound 4. The copper ion is coordinated by two nitro-the lithium ion. The formation of this five-membered he-
gen and two oxygen atoms of the alkoxy groups. Becauseterocyclic arrangement enhances the stability of the ad-
of the paramagnetism of the d9-CuII ion the NMR spectraducts.
of 4 could not be used for characterization. The cyclovol-Attempts to synthesize 1a from 2a failed. Reaction of
tammetry of 4 shows a reversible oxidation at E1/2 5 0.652b with ClSiMe3 yields the 6,69-bis-di(2-thienyl)boryl]-2,29-
V and an irreversible reduction at 21.1 V.bipyridine (1b) in 36% yield. The combination of steric (iPr)

and electronic effects (thienyl) of the substituents destabi-
lizes the coordination in the dianionic borate 2b and thus
allows the formation of the free diborylbipyridine 1b. Based
on the 11B-NMR spectrum in thf (δ 5 21), its low solu-
bility and high melting point (> 250°C) we propose an ag-
gregation via N2B donor acceptor interactions to give an Scheme 7
oligomer of unknown structure and number of diborylbipy-
ridine units. The appearence of only one 11B-NMR signal An unprecedented coordination mode is observed in the

adduct 5. It is formed by the interaction of 1a with 1,3-may indicate a cyclic arrangement. In a chain-like donor2
acceptor compound (1b)n the two terminal BTh2 groups diethyl-1,3-dihydroxydiboroxane. The unknown dihydroxy-
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diboroxane molecule is stabilized by the intermolecular ag- in CH2Cl2. Figure 2 shows its structure in the crystal. The

copper center has a distorted square-planar coordinationgregation. Treatment of 6,69-dilithio-2,29-bipyridine with an
excess of diethyl(methoxy)borane and aqueous workup by two nitrogen and two oxygen atoms. One of the oxygen

atoms (O2) deviates strongly from the plane. The geometryleads to 5 in 42% yield. The Lewis donor2acceptor pattern
of 1a induces the formation of the matching partner with around O2 differs much from that around O1. The distance

Cu12O2 [2.016(3) Å] is larger than Cu12O1 [1.962(3) Å].the inverted Lewis functionality. Hydrolysis of the diethyl-
(methoxy)borane yields 1,3-diethyl-1,3-dihydroxydiborox- The oxygen atom O1 shows a planar coordination, while

O2 is pyramidalized. The five-membered cycle of O1 isane coordinated to the diborylbipyridine 1a. The free di-
hydroxydiboroxane is unstable and is expected to give give planar, that of O2 has an envelope form. The isopropyl

group at O1 lies approximately symmetrical to the planecyclic 1,3,5-boroxine. 5 is characterized by 1H-, 13C-, 11B-
NMR spectroscopy and an X-ray structure analysis (see be- through the ring, while in the case of O2 it is strongly bent

to one side, and one of the methyl groups reaches a positionlow). In the 11B-NMR spectrum appears only one broad
signal at δ 5 9. Therefore all four boron atoms are quat- above the copper ion. A weak agostic interaction with one

of its hydrogen atoms to the copper ion [Cu12H 2.48(4) Å]ernized. The Lewis acidic diethylboryl groups act as ac-
ceptor for the terminal oxygen atoms and the electron pair is observed. The distances between the boron atoms and

the bridging oxygen atoms [1.558(5), 1.575(5) Å] are aboutof the nitrogen atoms donate to the boron atoms of the
dihydroxydiboroxane. The chemical shift of the methylene 0.1 Å longer than in regular B2O bonds of uncoordi-

nated borates.groups of the diethylboroxane at δ 5 20.2 corresponds
with the high electron density at the boron atoms.

Crystal Structures

Single crystals of 2f were grown from a tetrahydrofuran
solution at room temperature. Figure 1 shows a molecule
of 2f, its lithium centers are tetracoordinated. Besides the
bonding to the oxygen atom of the alkoxy group [Li2O:
1.87(1) Å] there is an interaction with the nitrogen atom
[Li2N: 2.08(1) Å] of the bipyridine unit. The coordination
sphere is completed by two thf molecules [Li2O: 1.97(1)
Å]. The five-membered heterocycles are approximately

Figure 2. Structure of 4 in the crystal; selected bond lengths [Å]planar with deviations from the best plane being less than
and angles [°]: B12C1 1.630(6), B12O1 1.558(5), B22O2 1.575(5),

0.02 Å. The bond length B12C1 is 1.64 Å. The two pyri- Cu12N1 1.938(3), Cu12N2 1.938(3), Cu12O1 1.962(3), Cu12O2
2.016(3), C52C6 1.483(6), C12B12O1 103.7(3), C102B22O2dine units are twisted by 149.6°.
104.8(3), N12Cu12N2 80.8(1), N12Cu12O1 83.1(1),
O12Cu12O2 114.8(1), O22Cu12N2 83.4(1), B12O12C27
116.6(3), C272O12Cu1 126.5(3), Cu12O12B1 116.9(2),
N12C52C62N2 7.4, N12C12B12O1 2.1, N22C102B22O2
23.7

Figure 3 shows the molecule structure of 5 in the crystal.
Crystals suitable for X-ray structure analysis were obtained
by slow diffusion of n-hexane in a CH2Cl2 solution of 5.
The molecules of 5 form dimers in the solid state by hydro-
gen bonds. There are two independent dimers (four mol-
ecules) in the cell. They may be described as a donor2ac-
ceptor coordination product of 1a with 1,3-diethyl-1,3-di-
hydroxydiboroxane, with the nitrogen atoms of the bipyri-
dine and the hydroxy groups of the boroxane acting as
donors to the boron atoms. All boron atoms are tetra-Figure 1. Structure of 2f in the crystal; selected bond lengths [Å]

and angles [°]: B12C1 1.642(8), B12O1 1.506(7), B12O2 1.479(7), hedrally coordinated. Three groups of B2O bonds are
Li12O1 1.87(1), Li12N1 2.08(1), Li12O5 1.97(1), C12B12O1 found, which are clearly distinguished in their distances:
106.4(4), C12B12O2 112.5(5), C12B12C11 107.0(4),

One type in the seven-membered ring with the two-coordi-N12C52C62N2 30.6
nated oxygen atoms varying from 1.41521.445 Å, two types
in the five-membered rings with three-coordinated oxygenThe large variety of possible coordination modes of

CuII [17] are known. Therefore it is of interest to obtain atoms, where they differ in the coordination of the boron
atoms; 1.50321.536 Å for the boron atoms connected tostructural information on the copper coordination in 4. Sin-

gle crystals suitable for an X-ray diffraction study were the nitrogen atoms, and 1.56121.620 Å for the boron atoms
connected to three carbon atoms.grown by slow diffusion of n-hexane into the solution of 4
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6 h at 275°C and was allowed to warm up to room temp. over-
night. The red solution was hydrolysed with 100 ml of brine (satu-
rated NaCl solution) and the organic layer was extracted with ethyl
acetate (3 3 100 ml). The combined extracts were dried with anhy-
drous sodium sulfate and the solvent was removed in high vacuo.
The residue was column-chromatographed with silica gel (2 3 30
cm) with a mixture of n-hexane and ethyl acetate (4:1) to give 27
mg (0.09 mmol, 1%) 1a and 97 mg (0.4 mmol, 6%) of 3a. 2 1a: 1H
NMR (200.1 MHz, [D8]thf): δ 5 0.55 (t, 12 H, CH2CH3), 0.82 (q,
8 H, CH2CH3), 6.93 (m, 2 H, C10H6N2), 7.63 (m, 2 H, C10H6N2),

Figure 3. Structure of 5 in the crystal; selected bond lengths [Å] 8.02 (m, 2 H, C10H6N2). 2 11B NMR (64.2 MHz, CDCl3): δ 5
[mean values and range given (esd. 0.00620.009 Å)]: BX2OX 1.440

3.2. 2 13C NMR (50.3 MHz, [D8]thf): δ 5 8.7 (CH2CH3), 10.5(1.41521.445), BX2OY 1.525 (1.50321.536), BY2OY 1.595
(CH2CH3), 16 (br., CH2CH3), 123.8, 127.7, 139.0, 147.4 (C10H6N2).(1.56121.620), BX2N 1.626 (1.61121.650), CA2CB 1.486

(1.47921.494) 2 MS (70 eV, EI); m/z (%): 263 (26) [M 2 Et]1, 235 (8) [M 2 Et
2 C2H4]1, 167 (100) [M 2 BEt2 2 HCN]1, 78 (16) [C5H4N]1. 2

M. p. > 250°C. 2 3a: 1H NMR (200.1 MHz, [D8]thf: δ 5 0.50 (t,
6 H, CH2CH3), 0.78 (q, 4 H, CH2CH3), 7.24 (m, 1 H, C10H7N2),
7.50 (m, 1 H, C10H7N2), 7.96 (m, 1 H, C10H7N2), 8.06 (m, 1 H,
C10H7N2), 8.40 (m, 2 H, C10H7N2), 8.52 (m, 1 H, C10H7N2). 2 13C
NMR (50.3 MHz, CDCl3): δ 5 9.9 (CH2CH3), 13.4 (br., CH2CH3),
118.9, 123.1, 124.5, 136.9, 138.1, 139.8, 141.9, 146.9, 149.2
(C10H7N2). 2 11B NMR (64.2 MHz, CDCl3): δ 5 3.4. 2 MS (70
eV, EI); m/z (%): 195 (40) [M 2 Et]1, 180 (3) [M 2 Et 2 Me]1,
167 (100) [M 2 HCN 2 C2H4]1,78 (4) [C5H4N1].

6,69-Bis-di(2-thienyl)boryl]-2,29-bipyridine (1b): 630 mg (0.68 mmol)
of 2b was dissolved in 5 ml of CH2Cl2. 147 mg (1.36 mmol) of
ClSiMe3 in 5 ml of CH2Cl2 was added dropwise at 0°C. The yellow
solution was stirred at room temp. for 15 h. The mixture was fil-
tered and 20 ml of thf was added to the precipitate. The mixture
was again filtered from LiCl. After recrystallisation in thf, 124 mgFigure 4. Hydrogen-bridged dimer of 5 in the crystal
(0.24 mmol, 36%) of 1b was obtained as an amorphus solid. 2 1H
NMR (200.1 MHz, [D8]thf): δ 5 7.39 (dd, 2 H, C4H3S), 7.65 (dd,
1 H, C10H6N2), 7.8227.89 (m, 3 H, C10H6N2/C4H3S), 8.05 (dd, 2Experimental Section
H, C4H3S), 8.42 (dd, 1 H, C10H6N2). 2 13C NMR (50.3 MHz,General: Reactions were carried out under dry argon, using stand-
CDCl3): δ 5 120.4, 126.1, 131.0, 133.5, 138.5, 140.1, 141.6ard Schlenk techniques. Solvents were dried, distilled, and satu-
(C10H6N2/C4H3S). 2 11B NMR (64.2 MHz, [D8]thf): δ 5 1.0. 2rated with nitrogen. Glassware was dried with a heat-gun in high
MS (70 eV, EI): m/z (%): 342 (28) [M 2 2 (C4H3S)]1, 259 (11)vaccum. 2 1H, 13C, 11B NMR: Bruker AC 200 spectrometer, NMR
[M 2 3 (C4H3S)]1, 84 (100) [C4H4S1]. 2 MS (FAB); m/z (%): 509references are (CH3)4Si and BF3 · Et2O. 2 Mass spectra were ob-
[M 1 11]. 2 M.p. > 250°C.tained with a Finnigan MAT 8200 plus spectrometer using EI tech-
6,69-Bis[bis(dimethyamino)boryl]-2,29-bipyridine (1c): To a solutionnique. 2 Melting points (uncorrected) were obtained with a Büchi
of 500 mg (0.79 mmol) of 2c in 5 ml of thf 211 mg (2 mmol) ofapparatus, using capillaries which were filled under argon and
ClB(NMe2)2 in 5 ml of Et2O was added dropwise at room. temp.sealed.
After some min, a red solid started to precipitate. After stirring at

Crystal-Structure Determination: Unique sets of intensity data were room temp. overnight, the mixture was filtered. The residue was
collected at 270°C with a four-circle diffractometer (Mo-Kα radi- destilled in high vacuo (1022 mbar, 220°C) yielding 179 mg (0.51
ation λ 5 0.71073 Å, graphite monochromator, ω-scan). Empirical mmol, 64%) of 1c as a red oil. 2 1H NMR (200.1 MHz, [D8]thf):
absorption corrections (ψ-scans) for 2f and 4 were applied. The δ 5 2.52 (s, 12 H, NMe2), 7.60 (d, 2 H, C10H6N2), 7.76 (dd, 2 H,
structures were solved by direct methods [SHELXS86][18] and re- C10H6N2), 8.38 (d, 2 H, C10H6N2). 2 13C NMR (50.3 MHz,
fined by least-squares methods based on F2 with all measured re- [D8]thf): δ 5 40.4, [N(CH3)2], 120.9, 129.8, 140.8, 142.6 (C10H6N2).
flections [SHELXL97]. [19] All non-hydrogen atoms were refined an-

2 11B NMR (64.2 MHz, [D8]thf): δ 5 31.0. 2 EI-MS; m/z (%):
isotropically. 253 (25) [M 2 B(NMe2)2]1, 226 (46) [M 2 B(NMe2)2 2 HCN]1,

79 (100) [C5H5N1].Crystallographic data (excluding structure factors) for the struc-
tures reported in this paper have been deposited with the Cam- 2,29-Bipyridine-6,69-diborates 2: 1.57g (5 mmol) of 6,69-dibromo-
bridge Crystallographic Data Center: CCDC-102722 (2f), -102723 2,29-bipyridine, dissolved in 75 ml of thf, was added dropwise
(4), and -102724 (5). Copies of the data can be obtained free within 20 min to a solution of 10 mmol nBuLi in 50 ml of thf at
of charge and by application to CCDC, 12 Union Road, 280°C. After stirring for 45 min, the alkoxyborane, dissolved in
Cambridge CB2 1EZ, UK [Fax: int. code 1 44-1223/336-001; 30 ml of Et2O, was added dropwise within 30 min to the red solu-
E-mail: deposit@ccdc.cam.ac.uk]. tion The mixture was allowed to warm up to room temp. overnight.

Half of the solvent was removed in vacuo and 30 ml of n-hexane6,69-Bis(diethylboryl)-2,29-bipyridine (1a) and 6-Diethylboryl-2,29-
was added. After 36 h at 0°C, the mixture was filtered. The boratesbipyridine (3a): 3.00 g (30 mmol) of Et2BOMe and 900 mg (7.5
were obtained as colorless solids.mmol) of 2,29-bipyridine were dissolved in 30 ml of Et2O and co-

oled to 275°C. 15 mmol of LiNiPr2 in 30 ml of Et2O was added 2a: (2.10 g, 3.2 mmol, 64%). 2 1H NMR (200.1 MHz, [D8]thf):
δ 5 0.19 (q, 4 H, CH2CH3), 0.71 (t, 6 H, CH2CH3), 3.14 (s, 3 H,dropwise within 1 h. The resulting yellow solution was stirred for
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Table 1. Crystal data and structure refinement for 2f, 4, and 5

2f 4 5

Empirical formula C46H72B2Li2N2O8S2 C32H32B2Cu1N2O2S4 C22H38B4N2O3
Formula weight 880.7 690.0 421.8
Crystal system monoclinic triclinic triclinic
Space group P21 P1̄ P1̄
Unit cell
a [Å] 10.418(6) 9.950(5) 13.051(7)
b [Å] 14.443(7) 13.434(7) 17.295(9)
c [Å] 17.001(8) 13.389(7) 22.120(11)
α [°] 90 82.29(4) 89.28(3)
β [°] 90.66(4) 68.38(3) 79.56(3)
γ [°] 90 76.47(4) 88.84(3)
V [Å3] 2558(2) 1615(1) 4909(4)
Z 2 2 8
Calcd. density [g/cm3] 1.14 1.42 1.14
Absorp.coeff. [mm21] 0.15 0.97 0.07
F(000) 948 714 1824
Crystal size [mm] 0.2 3 0.9 3 1.0 0.1 3 0.3 3 0.7 0.4 3 0.4 3 0.7
Θmax [°] 25 25 24
Index ranges 212/112, 0/117, 0/120 210/111, 215/115, 0/115 214/114, 219/119, 0/125
No. of reflections
Unique 4711 5660 15383
Observed [I > 2σ(I)] 3129 4285 8919
Transmission 0.9121.00 0.8221.00 2
Parameters 562 469 1188
Final R indices
R1 [I > 2σ(I)] 0.052 0.047 0.086
wR2 0.140 0.123 0.274
Largest diff.peak/hole [e/Å3] 0.27/20.25 0.56/20.42 0.39/20.40

OCH3), 7.2627.41 (m, 1 H, C10H6N2), 7.8027.89 (m, 1 H, H, ar). 2 13C NMR (50.3 MHz, [D8]thf): δ 5 26.3 (CH3), 26.5
(CH3), 62.8 [CH(CH3)2], 118.9, 124.3, 126.4, 128.6, 130.9, 133.8,C10H6N2), 8.4228.46 (m, 1 H, C10H6N2). 2 13C NMR (50.3 MHz,

[D8]thf): δ 5 9.6 (br., CH2CH3), 11.1(CH2CH3), 49.5 (OCH3), 156.9 (ar). 2 11B NMR (64.2 MHz, [D8]thf): δ 5 5.1. 2 M. p.
1992201°C.121.0, 124.5, 137.4, 149.9 (C10H6N2). 2 11B NMR (64.2 MHz,

[D8]thf): δ 5 8.1. 2 M. p. 2122215°C.
{2,29-Bipyridine-6,69-bisdiisopropoxydi(2-thienyl)borato]}-2b: (4.08 g, 4.4 mmol, 87%). 2 1H NMR (200.1 MHz, [D8]thf):
copper(II) (4): 928 mg (1 mmol) of 2b and 456 mg (1 mmol) ofδ 5 0.91 (d, 6 H, CH3), 3.93 [sept, 1 H, CH(CH3)2], 7.0427.56 (m,
(Et4N)2CuCl4 were dissolved in 10 ml of CH2Cl2 at room temp.10 H, CH). 2 13C NMR (50.3 MHz, [D8]thf): δ 5 18.9 (CH3), 61.3
After stirring for 12 h, the green-blue solution was filtered from[CH(CH3)2], 111.3 (C10H6N2), 118.3 (C4H3S), 120.6 (C4H3S), 122.1
Et4NCl. The solvent was removed in vacuo yielding 650 mg (0.95(C10H6N2), 123.4 (C4H3S), 128.0 (C10H6N2), 148.9 (C10H6N2). 2
mmol, 95%) of 4 as a deep green-blue air-sensitive solid. m. p. >11B NMR (64.2 MHz, [D8]thf): δ 5 0.7. 2 M. p. 1892191°C.
250°C. Cyclic voltammetry data (EG&G PARC 175 potentiostat):

2c: (3.49 g, 3.9 mmol, 78%). 2 1H NMR (200.1 MHz, [D8]thf): Pt disc (1 mm) working electrode, CH2Cl2 solution, 0.1  Bu4NPF6
δ 5 0.83 (d, 6 H, CH3), 0.90 [d, 6 H, CH2CH(CH3)2], 1.70 [m, 2 as supporting electrolyte, Pt wire as auxiliar electrode, SCE as refer-
H, CH2CH(CH3)2], 3.0023.19 [m, 4 H, CH2CH(CH3)2], 6.8127.02 ence electrode. Reversible oxidation at E1/2 5 0.65 V, irreversible
(m, 3 H, CH), 7.3727.61 (m, 5 H, CH). 2 13C NMR (50.3 MHz, reduction at 21.1 V.
CDCl3): δ 5 19.6 (CH3), 32.2 [OCH2CH(CH3)2], 69.8
[OCH2CH(CH3)2], 124.6, 126.7, 133.9, 157.8 (C10H6N2). 2 11B 1,3-Diethyl-1,3-dihydroxydiboroxane Adduct 5 of 1a: 1.57g (5 mmol)
NMR (64.2 MHz, [D8]thf): δ 5 6.6. 2 M. p. 2422244°C. of 6,69-dibromo-2,29-bipyridine, dissolved in 75 ml of thf, was ad-

ded dropwise within 20 min to a solution of 10 mmol of nBuLi in2d: (2.95 g, 4.1 mmol, 82%). 2 1H NMR (200.1 MHz, [D8]thf):
50 ml of thf at 280°C. After stirring for 45 min, 2.50 g (25 mmol)δ 5 3.06 (s, 6 H, CH3), 6.7927.00 (m, 3 H, ar), 7.3427.52 (m, 5
of diethyl(methoxy)borane, dissolved in 30 ml of Et2O, was addedH, ar). 2 13C NMR (50.3 MHz, [D8]thf): δ 5 49.7 (OCH3), 118.8,
dropwise within 30 min to the red solution. The mixture was al-124.8, 126.9, 129.3, 133.6, 135.1, 158.3 (ar). 2 11B NMR (64.2
lowed to warm up to room temp. overnight. The red solution wasMHz, [D8]thf]): δ 5 6.7. 2 M. p. > 250°C (dec.).
hydrolysed with 100 ml of brine and the organic layer was extracted

2e: (3.49 g, 4.5 mmol, 89%). 2 1H NMR (200.1 MHz, [D8]thf): with ethyl acetate (3 3 100 ml). The combined extracts were dried
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(OCH3), 117.7 [br., BC(C10H6N2)], 129.2, 130.6, 132.2, 132.7 ing 884 mg (2.1 mmol, 42%) of 5. 2 1H NMR (200.1 MHz,
(C10H6N2). 2 11B NMR (64.2 MHz, [D8]thf): δ 5 5.1. 2 M. p. CD2Cl2): δ 5 20.21 [q, 2 H, OB(OH)CH2CH3], 0.52 [q, 4 H,
2122214°C. OB(CH2CH3)2], 0.64 [t, 3 H, OB(OH)CH2CH3], 0.79 [t, 6 H,

OB(CH2CH3)2], 3.93 (br., 0.8 H, OH), 7.4527.67 (m, 2 H,2f: (2.91g, 3.3 mmol, 65%). 2 1H NMR (200.1 MHz, [D8]thf): δ 5
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CD2Cl2): δ 5 7.8 (CH2CH3), 9.6 (CH2CH3), 9.8 (CH2CH3), 15 (br.,6.80 (m, 2 H, ar), 7.09 (d, 1 H, ar), 7.50 (m, 2 H, ar), 7.76 (dd, 1
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