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The 1,2-migration of the thio group is an important chemical
transformation that is extensively used in carbohydrate
chemistry for stereoselective Mitsunobu-type substitution at
the anomeric center [Eq. (1)].[1] There are also reports on
employment of a 1,2-shift of the thio group in the synthesis of
heterocycles [Eq. (2)][1a,b] Known 1,2-migrations of the thio
group can be classified as one of two types: 1) An SN2-type
attack of the lone pair of electrons of the sulfur atom at the
adjacent sp3 center inA produces the thiiranium intermediate
B, which after subsequent nucleophile-assisted ring opening
affords C, a product of 1,2-migration of the thio group
[Eq. (1)].[1] 2) The migration is triggered by attack of the
sulfur atom at the sp2 carbon atom of the iminium[2a,b] or
imine[2c] moiety of D to form the thiiranium species E. The
latter either produces sulfide F through nucleophilic attack[2c]

or gives the thioenamine G as a result of a deprotonation/
ring-opening process [R1¼H, Eq. (2)].[2a,b] In all cases the
migrations of the thio group proceeded from an sp3 center to
either another sp3 [Eq. (1)][1] or to an sp2 [Eq. (2)][2] carbon
center. To the best of our knowledge, there are no reports of
1,2-migration of the thio group from an olefinic carbon atom.

Herein we wish to report a novel 1,2-migration of the thio
group from an sp2 carbon atom in allenyl sulfides. This
unprecedented migration allowed the development of an
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efficient method for the synthesis of 3-thio-substituted furans
and pyrroles.

During the investigation of the scope of the recently found
Cu-catalyzed transformation of alkynyl ketones and alkynyl
imines into 2,5-disubstituted furans[3] and pyrroles,[4] we
discovered that heating ketopropargyl sulfide 1 in N,N-
dimethylacetamide (DMA) in the presence of CuI
(10 mol%) not only gave the targeted 2,5-disubstituted furan
2, but also a small amount of the unexpected 2,4-disubstituted
furan 3 [Eq. (3)]. It was hypothesized that first, propargyl±
allenyl isomerization[5] produces an allenic intermediate 4
(Scheme 1).

Next, the allenyl sulfide 4, according to the ™standard∫
cycloisomerization scenario (Scheme 1, path a)[3] produces
the major reaction product, furan 2.[3] It was proposed that
alternatively, an intramolecular nucleophilic attack of the
lone pair of electrons of the sulfur atom at the central carbon
atom of the allene can transform it into the aromatic
thiirenium zwitterion 5.[6] The latter, either via AdN-E (5!
6) or through a direct SN2-Vin-type[7] process, affords the

minor isomeric furan 3 (Scheme 1, path b). Although the role
of the copper catalyst in this reaction is not completely
understood, there are some indications that it facilitates
propargyl±allenyl isomerization,[3, 4,8] and in some cases it is
also required for further transformations [Eq. (4)], probably
as a result of the stabilization of carbanionic intermediates.[8]

It occurred to us that if the above mechanistic proposal is
correct, then replacement of Hb in allene 4 with any other
nonmigrating group should enforce selective migration of the
thio group to produce 2,4-disubstituted furan 3 exclusively
(path b). To examine this proposal, thioallenes 7a,b were
prepared by independent methods and subjected to the
cycloisomerization conditions described above [Eq. (4)].
Remarkably, it was found that thioallenyl phenyl ketone 7a,
even in the absence of CuI, underwent quantitative thermal
transformation to 8a. In contrast, attempts to perform
analogous thermal cycloisomerization of thioallenyl alkyl
ketone 7b resulted in total decomposition of the starting
material, whereas 82% of 8b was isolated when the reaction
was performed at room temperature in the presence of CuI
(5 mol%) [Eq. (4)].

Naturally, we next attempted a selective migrative cyclo-
isomerization of substituted propargyl sulfides, undoubtedly
superior precursors when compared with allenyl sulfides from
a synthetic point of view. Accordingly, a series of alkyl-
substituted propargyl sulfides 9 were synthesized and sub-
jected to the cycloisomerization reaction [Eq. (5)].

We were very pleased to find that thiopropargyl aldehyde
9c underwent smooth and selective cycloisomerization,
producing 2-butyl-3-phenylsulfanyl-furan (8c) in 71% yield
as a single reaction product (Table 1, entry 1). Cycloisomeri-

zation of thiopropargyl ketones 9a,d,e proceeded
provided the trisubstituted furans 8a,d,e in very
good yields (Table 1, entries 2±4).[9] Cycloisomeri-
zation of phenylsulfanyl propargyl ketones pos-
sessing alkenyl (9 f), ester (9g), and protected
alcohol (9h) functionalities in the side chain
proceeded readily to afford the corresponding
trisubstituted furans 8 f±h in good to very high
yields (Table 1, entries 5±7). The alkyl sulfanyl
group migrated with an efficiency comparable to
that of its phenylsulfanyl analogue to give the
corresponding furan 8 i in 72% yield (Table 1,
entry 8).

Inspired by the successful synthesis of trisub-
stituted furans, the cycloisomerization of thiopro-
pargyl imines was then investigated. It was found
that thiopropargyl imines 9 j±o in the presence of

Scheme 1. Different routes for the cyclization of the ketopropargyl sulfide 1 to give
either furan 2 or 3. Based on this mechanistic proposal, the reaction of ketoproparg-
yl sulfides in which Hb of 4 is replaced with any other nonmigrating group should ex-
clusively follow path b.
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CuI underwent a similar transformation to give the corre-
sponding 3-thio-substituted pyrroles 8j±o in very good yields
(Table 1, entries 9±14).[10] Again, the dodecyl sulfanyl group
(Table 1, entry 10) migrated comparably to the phenyl

sulfanyl analogue (Table 1, entry 9) and the THP-protected
alcohol functionality was tolerated (Table 1, entry 14). It is
worth mentioning that all synthesized pyrroles have remov-
able groups at the nitrogen atom, for example, the tert-butyl
(8j,k, Table 1, entries 9, 10),[11] trityl (8 l, Table 1, entry 11),[12]

and 3-ethylbutyryl[4,13] (8m±o, Table 1, entries 12±14) groups,
and thus can be easily functionalized further at the nitrogen
site.[14]

In conclusion, a novel 1,2-migration of the thio group in
thioallenyl ketones and thioallenyl imines was discovered. An
efficient method for the synthesis of di- and trisubstituted

Table 1: Cu-catalyzed synthesis of 3-substituted furans and pyrroles.

Entry Substrate Product Yield [%][a]

9 R1 R2 R3 X 8

1 c nBu Ph H O 71

2 d nBu Ph Me O 76

3 e nBu Ph tBu O 89

4 a nBu Ph Ph O 91

5 f nBu Ph O 95

6 g Me Ph (CH2)2CO2Me O 71

7 h (CH2)3OTHP Ph Me O 93

8 i nBu (CH2)11CH3 Me O 72

9 j nBu Ph H N-tBu 78

10 k nBu (CH2)11CH3 H N-tBu 86

11 l nBu Ph H N-Tr 85

12 m nBu Ph H 74

13 n nBu (CH2)11CH3 H N-EB 67

14 o (CH2)3OTHP Ph H N-EB 78

[a] Yield of isolated product. THP¼ tetrahydropyran, Tr¼ trityl¼ triphenylmethyl, EB¼ ethyl butyryl.
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furans and trisubstituted pyrroles that possess an aryl sulfanyl
or alkyl sulfanyl substituent at C3 has been developed.
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Many beautiful cyclic metal structures have been reported
recently, for example, the giant wheels from M¸ller and co-
workers,[1] the wheels using carboxylate ligands made by,
among others, the Lippard group,[2] and the metallocoronands
reported by Saalfrank and co-workers.[3] One question that
intrigued us based on this chemistry was whether hetero-
metallic rings could be made? A recent theoretical paper by
Meier and Loss[4] suggests that such wheels may show
interesting quantum coherence phenomena. We have found
that an extensive family of such wheels can be made
straightforwardly, and in good yield, based on the fundamen-
tal chemical principle that a cation±anion pair will have
different crystallization properties than a neutral molecule.

The neutral homometallic wheel, [Cr8F8(O2CCMe3)16]
(1)[5] has been widely studied, both because of its magnetic
properties[6] and because it can act as a host for small organic
molecules.[7] As we understand the chemistry of 1 thoroughly,
it seemed a good candidate for preparing heterometallic
analogues. The approach adopted was straightforward; if we
replace a single chromium(iii) center by a dication (M) the
monoanionic species [Cr7MF8(O2CCMe3)16]� will be formed.
In the presence of a suitable cation, we should then be able to
separate the salt from 1, which may also be present. Using this
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