

Available online at www.sciencedirect.com

CARBOHYDRATE RESEARCH

Carbohydrate Research 338 (2003) 581-588

www.elsevier.com/locate/carres

Synthesis of octyl arabinofuranosides as substrates for mycobacterial arabinosyltransferases

Jeongseok Han, Rajendrakumar Reddy Gadikota, Patrick R. McCarren, Todd L. Lowary*

Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA

Received 30 October 2002; accepted 10 December 2002

Abstract

A panel of octyl oligosaccharides comprised of arabinofuranose rings have been synthesized via efficient and readily scaleable routes. The key glycosylation reactions involved the coupling of octyl glycoside acceptors with the appropriate thioglycosides using N-iodosuccinimide and silver triflate activation. These syntheses were undertaken to provide substrates suitable for use in assays of mycobacterial arabinosyltransferases. \bigcirc 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Synthesis; Octyl arabinofuranosides; Mycobacterial arabinosyltransferases

1. Introduction

The cell wall of mycobacteria, including the pathogens Mycobacterium tuberculosis and Mycobacterium leprae, is comprised in large part of two polysaccharides, lipoarabinomannan (LAM) and arabinogalactan (AG).¹ Although these polysaccharides fulfill different roles in the cell-wall complex, a feature shared by both is an arabinan component that contains approx 70 arabinofuranose residues. A key structural motif in this arabinan is the hexasaccharide 1, which is found at the non-reducing ends of both polymers. Mycobacterial viability is critically dependent upon its ability to produce both polysaccharides, and ethambutol, a drug used to treat tuberculosis, acts by inhibiting at least one of the arabinosyltransferases (AraT's) that assemble the arabinan portions of AG and LAM.² The absence of arabinofuranose-containing oligo- or polysaccharides in humans (and all mammals) makes these enzymes particularly attractive drug targets.³ This fact, combined with the demonstration of the mode of action of ethambutol, has prompted increasing interest in identifying other inhibitors of these AraT's both by our group⁴ and others.5

In an earlier publication, we showed that fragments of hexasaccharide 1, which were protected at the 'reducing' end as a methyl glycoside, were substrates for mycobacterial AraT's.⁶ However, these methyl glycosides are relatively poor substrates when compared to analogs that are glycosides of longer-chain alcohols (e.g., octanol and decanol).⁷ Moreover, the assay used for evaluating potential substrates and inhibitors of these enzymes involves a butanol extraction of the assay mixture, a step that is significantly facilitated though the use of oligosaccharide substrates with more lipophilic aglycones. Therefore, in the interest of efficiently screening a wide range of potential inhibitors of these enzymes, it was necessary to synthesize the octyl glycoside fragments of 1, which could be used as substrates in these assays. In this paper, we describe the synthesis of these oligosaccharides (2-7, Fig. 1) via routes that are slightly modified compared to those used for the preparation of the corresponding methyl glycosides.6

2. Results and discussion

We endeavored to develop synthetic routes to 2-7 that involved a minimum number of protecting group classes and readily available monosaccharide building

^{*} Corresponding author

E-mail address: lowary.2@osu.edu (T.L. Lowary).

blocks. The monomers chosen for these syntheses were 8-13 (Fig. 2), which were prepared as previously reported.⁸ We note that we prefer the use of thioglycoside 11 over the corresponding peracetylated derivative⁶ as 11 is a readily crystalline material, which can be purified directly from the crude reaction mixture. This significantly facilitates not only the preparation of large amounts of 11 but also donors 12 and 13, which can be prepared in a few steps from 11.

trisaccharide 4, were carried out in two steps each by reacting the appropriate acceptor (8, 9, or 10) with thioglycoside 11 in the presence of *N*-iodosuccinimide and silver triflate (Scheme 1). The protected oligosaccharides 14–16 were obtained in 78–92% yields, and the stereochemistry of the nascent glycosidic bond was straightforwardly determined through the use of ¹H and ¹³C NMR spectroscopy.⁹ Deprotection of 14–16 was done under standard conditions using sodium methoxide giving 2–4 in excellent yield. This approach to 15 is

The synthesis of the disaccharides 2 and 3, as well as

Fig. 1. Hexasaccharide motif common to both mycobacterial arabinogalactan and lipoarabinomannan (1); synthetic targets (2-7).

Fig. 2. Monosaccharide building blocks used for the synthesis of (2-7).

Scheme 1. (a) **11**, *N*-iodosuccinimide, AgOSO₂CF₃, CH₂Cl₂, 0 °C, 90 (for **8**), 92 (for **9**), 78% (for **10**). (b) NaOCH₃, CH₃OH, rt, 93 (for **14**), 85 (for **15**), 84% (for **16**).

Scheme 2. (a) **12**, *N*-iodosuccinimide, $AgOSO_2CF_3$, CH_2Cl_2 , 0 °C, 82%. (b) *n*-Bu₄NF, THF, rt, 84%. (c) **11**, *N*-iodosuccinimide, $AgOSO_2CF_3$, CH_2Cl_2 , 0 °C, 80%. (d) BzOH, Ph₃P, DEAD, THF, 0 °C \rightarrow rt, 90%. (e) **11**, *N*-iodosuccinimide, $AgOSO_2CF_3$, CH_2Cl_2 , 0 °C, 88%. (f) NaOCH₃, CH₃OH, rt, 77 (for **20**), 87 (for **21**), 88% (for **24**). (g) **13**, *N*-iodosuccinimide, $AgOSO_2CF_3$, CH_2Cl_2 , 0 °C, 82%. (h) *n*-Bu₄NF, THF, rt, 88%. (i) **11**, *N*-iodosuccinimide, $AgOSO_2CF_3$, CH_2Cl_2 , 0 °C, 82%. (h) *n*-Bu₄NF, THF, rt, 88%. (i) **11**, *N*-iodosuccinimide, $AgOSO_2CF_3$, CH_2Cl_2 , 0 °C, 82%. (h) *n*-Bu₄NF, THF, rt, 88%. (i) **11**, *N*-iodosuccinimide, $AgOSO_2CF_3$, CH_2Cl_2 , 0 °C, 82%.

superior to our previously reported route⁶ to the corresponding methyl glycoside, which employed an acceptor with a silyl protecting group on O-5, thus necessitating a two-step deprotection protocol.

As illustrated in Scheme 2, the remaining targets (5-7) were synthesized with minimum difficulty, albeit less directly than 2-4. Glycosylation of alcohol 8 with 12 afforded disaccharide 17 in 82% yield. The siloxane protecting group was cleaved to give diol 18 (in 84%) yield), which was an intermediate for the preparation of both 5 and 7. Reaction of 18 with an excess of 11 afforded tetrasaccharide 20 (80%), which was then deprotected to give 7 (77%). Alternatively, reaction of 18 with benzoic acid under Mitsunobu conditions afforded disaccharide 19 (90%), which was then glycosylated with 11 and deprotected providing 5 (77% over two steps). The final target, trisaccharide 6, was also prepared from monosaccharide 8. Coupling of 8 with 13 provided disaccharide 22 (82%), which was then deprotected yielding 23 in 88% yield. Glycosylation of this disaccharide alcohol with thioglycoside 11 afforded an 87% yield of trisaccharide **24**, which was subsequently debenzoylated to give **6** (88%).

In conclusion, we have synthesized multi-milligram quantities of oligosaccharides 2-7 via efficient routes that are easily scaleable for the preparation of gramscale amounts of these glycans. The use of these oligosaccharides in investigations dedicated to identifying new inhibitors of mycobacterial arabinosyltransferases is currently in progress.^{4c}

3. Experimental

3.1. General procedures

Solvents were distilled from the appropriate drying agents before use. Unless stated otherwise, all reactions were carried out at room temperature (rt), under a positive pressure of argon and were monitored by TLC on Silica Gel 60 F_{254} (0.25 mm, E. Merck). Spots were detected under UV light or by charring with 10%

H₂SO₄ in EtOH. Solvents were evaporated at reduced pressure and below 40 °C (bath). Column chromatography was performed on silica gel 60 (40–60 μm). Iatrobeads refers to a beaded silica gel 6RS-8060, which is manufactured by Iatron Laboratories (Tokyo). The ratio between silica gel and product ranged from 100 to 50:1 (w/w). Optical rotations were measured at 22 ± 2 °C. ¹H NMR chemical shifts, $\delta_{\rm H}$, were referenced to Me₄Si ($\delta_{\rm H}$ 0.0, CDCl₃), CD₃OH ($\delta_{\rm H}$ 4.78, CD₃OD), HOD ($\delta_{\rm H}$ 4.78, D₂O). ¹³C chemical shifts, $\delta_{\rm C}$, were referenced to internal CDCl₃ ($\delta_{\rm C}$ 77.00, CDCl₃) internal CD₃OD ($\delta_{\rm C}$ 49.00, CD₃OD), or external dioxane ($\delta_{\rm C}$ 67.40, D₂O).

3.2. Octyl 5-O-(α -D-arabinofuranosyl)- α -D-arabinofuranoside (2)

Disaccharide 14 (130 mg, 0.14 mmol) was dissolved in 7:3 CH₃OH-CH₂Cl₂ (10 mL), and 1.0 M methanolic NaOCH₃ (2 mL) was added dropwise. After stirring for 6 h, the reaction mixture was neutralized with dry ice and concentrated. The crude residue was purified by chromatography (10:1 CH₂Cl₂-CH₃OH) to yield $2^{5f,7,8c}$ (53 mg, 93%) as an oil: R_f 0.48 (5:1 CH₂Cl₂-CH₃OH); $[\alpha]_{\rm D}$ + 120.4° (c 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD): δ_H 4.90 (d, 1 H, J 1.2 Hz), 4.80 (d, 1 H, J 1.6 Hz), 3.98-3.90 (m, 4 H), 3.85 (dd, 1 H, J 6.4, 3.8 Hz), 3.82-3.78 (m, 2 H), 3.70 (dd, 1 H, J 11.8, 3.3 Hz), 3.68–3.58 (m, 3 H), 3.37 (dt, 1 H, J 9.6, 6.6 Hz), 1.56–1.51 (m, 2 H), 1.34–1.26 (m, 10 H), 0.86 (t, 3 H, J 6.8 Hz); ¹³C NMR (100 MHz, CD₃OD): $\delta_{\rm C}$ 109.6, 109.5, 85.9, 83.6, 83.4, 83.1, 79.1, 78.8, 68.9, 68.0, 63.1, 33.0, 30.7, 30.5, 30.4, 27.2, 23.7, 14.4; ESIMS m/zCalcd for $[C_{18}H_{34}O_9]Na^+$: 417.2095. Found: 417.2086.

3.3. Octyl 3-O-(α -D-arabinofuranosyl)- α -D-arabinofuranoside (3)

Disaccharide **15** (91 mg, 0.099 mmol) was deacylated as described for the preparation of **2**. The product was purified by chromatography (10:1 CH₂Cl₂–CH₃OH) to yield **3** (33 mg, 85%) as an oil: R_f 0.33 (5:1 CH₂Cl₂–CH₃OH); [α]_D + 158.3° (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 5.02 (d, 1 H, *J* 1.6 Hz), 4.81 (d, 1 H, *J* 1.3 Hz), 4.05 (dd, 1 H, *J* 3.1, 1.5 Hz), 4.00–3.92 (m, 3 H), 3.90–3.86 (m, 1 H), 3.80–3.72 (m, 2 H), 3.70–3.63 (m, 3 H), 3.59 (dd, 1 H, *J* 11.9, 5.4 Hz), 3.37 (dt, 1 H, *J* 9.6, 6.5 Hz), 1.57–1.50 (m, 2 H), 1.34–1.26 (m, 10 H), 0.86 (t, 3 H, *J* 6.8 Hz); ¹³C NMR (100 MHz, CD₃OD): $\delta_{\rm C}$ 109.5, 109.0, 85.5, 84.0, 83.7, 83.6, 82.2, 78.6, 68.6, 63.0, 62.8, 33.0, 30.7, 30.5, 30.4, 27.2, 23.7, 14.4; ESIMS *m*/*z* Calcd for [C₁₈H₃₄O₉]Na⁺: 417.2095. Found: 417.2103.

3.4. Octyl 3,5-di-O-(α -D-arabinofuranosyl)- α -D-arabinofuranoside (4)

Trisaccharide 16 (57 mg, 0.045 mmol) was deacylated as described for the preparation of 2. The product was purified by chromatography (10:1 CH₂Cl₂-CH₃OH) to yield 4 (20 mg, 84%) as an oil: $R_f 0.23$ (5:1 CH₂Cl₂-CH₃OH); $[\alpha]_{\rm D}$ + 147.6° (*c* 0.8, CH₃OH); ¹H NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 5.00 (d, 1 H, J 1.5 Hz), 4.90 (d, 1 H, J 1.2 Hz), 4.80 (d, 1 H, J 1.2 Hz), 4.08-4.06 (m, 1 H), 4.03 (dd, 1 H, J 2.9, 1.5 Hz), 4.00-3.93 (m, 4 H), 3.89–3.85 (m, 2 H), 3.77 (dd, 2 H, J 6.1, 3.6 Hz), 3.71 (t, 1 H, J 3.1 Hz), 3.69–3.59 (m, 4 H), 3.57 (dd, 1 H, J 5.3, 2.6 Hz), 3.36 (dt, 1 H, J 9.5, 6.5 Hz), 1.54–1.49 (m, 2 H), 1.34–1.25 (m, 10 H), 0.85 (t, 3 H, J 6.8 Hz); ¹³C NMR (100 MHz, CD₃OD): $\delta_{\rm C}$ 110.0, 109.9, 109.5, 86.3, 85.9, 84.7, 84.0, 83.5, 82.9, 82.6, 79.3, 79.2, 69.1, 68.1, 63.5, 63.4, 33.4, 31.1, 30.9, 30.8, 27.6, 24.1, 14.8; ESIMS m/z Calcd for $[C_{23}H_{42}O_{13}]Na^+$: 549.2518. Found: 549.2469.

3.5. Octyl 5-O-[3-O-(α -D-arabinofuranosyl)- α -D-arabinofuranosyl]- α -D-arabinofuranoside (5)

Trisaccharide 21 (500 mg, 0.39 mmol) was deacylated as described for the preparation of 2. Purification of the product was achieved by chromatography on Iatrobeads (10:1 CH₃Cl-CH₃OH) to yield 5 (180 mg, 87%) as a foam: R_{f} 0.27 (5:1, CH₂Cl₂-CH₃OH); $[\alpha]_{D}$ +156.2° (c 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 5.11 (d, 1 H, J 1.1 Hz), 5.04 (s, 1 H), 4.91 (d, 1 H), 4.22 (br s, 1 H), 4.14–3.94 (m, 7 H), 3.90–3.74 (m, 4 H), 3.72–3.60 (m, 4 H), 3.46 (ddd, 1 H, J 6.8, 9.6. 9.6 Hz), 1.58-1.52 (m, 2 H), 1.30-1.18 (m, 10 H), 0.82 (t, 3 H, J 6.5 Hz); ¹³C NMR (100 MHz, D₂O): $\delta_{\rm C}$ 107.8, 107.7, 107.4, 84.2, 83.4, 82.4, 82.0, 81.7, 81.6, 79.6, 76.9, 76.9, 68.6, 66.0, 61.5, 61.4, 32.0, 29.6, 29.5, 29.4, 26.1, 22.8, 14.1; ESIMS m/z Calcd for [C₂₃H₄₂O₁₃]Na⁺: 549.2517. Found: 549.2565.

3.6. Octyl 5-O-[5-O-(α -D-arabinofuranosyl)- α -D-arabinofuranosyl]- α -D-arabinofuranoside (6)

Trisaccharide **24** (450 mg, 0.35 mmol) was deacylated as described for the preparation of **2**. The product was purified by chromatography on Iatrobeads (3:1 CH₃Cl–CH₃OH) to yield **6** (162 mg, 88%) as a foam: R_f 0.24 (5:1, CH₂Cl₂–CH₃OH); $[\alpha]_D$ + 133.2° (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD): δ_H 5.01 (s, 2 H), 4.96 (d, 1 H, *J* 1.7 Hz), 4.20–4.10 (m, 1 H), 4.10–3.92 (m, 7 H), 3.90 (dd, 1 H, *J* 3.3, 5.9 Hz), 3.87–3.62 (m, 7 H), 3.46 (ddd, 1 H, *J* 6.8, 6.8, 9.6 Hz), 1.58–1.52 (m, 2 H), 1.30–1.18 (m, 10 H), 0.82 (t, 3 H, *J* 6.5 Hz); ¹³C NMR (100 MHz, D₂O): δ_C 108.0, 107.9, 107.7, 84.3, 82.8, 82.1, 81.5, 81.3, 81.2, 68.7, 77.3, 77.1, 76.9, 67.1, 67.0, 61.5, 31.8, 29.4, 29.3, 29.2, 25.9, 22.6, J. Han et al. / Carbohydrate Research 338 (2003) 581-588

14.0; ESIMS m/z Calcd for $[C_{23}H_{42}O_{13}]Na^+$: 549.2517. Found: 549.2413.

3.7. Octyl 5-O-[3,5-di-O-(α -D-arabinofuranosyl)- α -D-arabinofuranosyl]- α -D-arabinofuranoside (7)

Tetrasaccharide 20 (35 mg, 0.022 mmol) was deacylated as described for the preparation of 2. The product was purified by chromatography (10:1 CH₂Cl₂-CH₃OH) to yield 7 (11 mg, 77%) as an oil: $R_f 0.14$ (5:1 CH₂Cl₂-CH₃OH); $[\alpha]_{\rm D}$ + 140.0° (*c* 0.5, CH₃OH); ¹H NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 4.99 (d, 1 H, J 1.4 Hz), 4.90 (s, 2 H), 4.16-4.13 (m, 1 H), 4.09 (dd, 1 H, J 2.5, 1.1 Hz), 4.00 (dd, 1 H, J 5.8, 2.6 Hz), 3.98-3.91 (m, 4 H), 3.90-3.85 (m, 4 H), 3.78-3.75 (m, 3 H), 3.72-3.63 (m, 4 H), 3.61–3.56 (m, 3 H), 3.40–3.35 (m, 1 H), 3.29 (s, 1 H), 1.56–1.50 (m, 2 H), 1.34–1.23 (m, 10 H), 0.85 (t, 3 H, J 6.8 Hz); ¹³C NMR (100 MHz, CD₃OD): $\delta_{\rm C}$ 110.0, 109.9, 109.8, 109.5, 86.3, 86.0, 84.6, 84.0, 83.9, 83.8, 83.5, 83. 4, 82.1, 79.3, 79.2, 79.0, 69.4, 68.1, 67.9, 63.5, 63.4, 33.4, 31.1, 30.9, 30.8, 27.7, 24.1, 14.8; ES-IMS m/z Calcd for $[C_{28}H_{50}O_{17}]Na^+$: 681.2940. Found: 681.2952.

3.8. Octyl 2,3-di-*O*-benzoyl-5-*O*-(2,3,5-tri-*O*-benzoyl-α-D-arabinofuranosyl)-α-D-arabinofuranoside (14)

A mixture of 8 (100 mg, 0.21 mmol) and 11 (155 mg, 0.27 mmol), and powdered molecular sieves (4 Å, 0.2 g) in dry CH₂Cl₂ (10 mL) was stirred at 0 °C for 20 min. To the mixture were added N-iodosuccinimide (61 mg, 0.27 mmol) and silver triflate (16 mg, 0.062 mmol). After stirring for 30 min at 0 °C, the reaction mixture was neutralized with Et₃N, diluted with CH₂Cl₂ (100 mL), and filtered through Celite. The filtrate was washed successively with satd aq Na₂S₂O₃, water, and brine. The solvent was dried (Na_2SO_4) and evaporated. The residue was purified by chromatography (3:1 hexanes-EtOAc) to yield 14^{10} (175 mg, 90%) as an oil: R_f 0.43 (3:1 hexanes–EtOAc); $[\alpha]_D = 0.9^\circ$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.10–7.98 (m, 10 H), 7.62 (t, 2 H, J 7.4 Hz), 7.56-7.41 (m, 9 H), 7.36-7.28 (m, 4 H), 5.69 (d, 1 H, J 1.0 Hz), 5.68–5.62 (m, 2 H), 5.56 (d, 1 H, J 1.2 Hz), 5.51 (s, 1 H), 5.27 (s, 1 H), 4.88 (dd, 1 H, J 11.8, 3.3 Hz), 4.80 (dd, 1 H, J 8.1, 4.7 Hz), 4.71 (dd, 1 H, J 11.8, 4.7 Hz), 4.50 (dd, 1 H, J 7.6, 4.6 Hz), 4.29 (dd, 1 H, J 11.2, 4.6 Hz), 4.02 (dd, 1 H, J 11.1, 2.9 Hz), 3.80 (dt, 1 H, J 9.4, 6.7 Hz), 3.55 (dt, 1 H, J 9.4, 6.3 Hz), 1.71–1.61 (m, 2 H), 1.47–1.28 (m, 10 H), 0.90 (t, 3 H, J 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ_C 166.2, 165.7 (2 C), 165.4, 165.2, 133.4 (3 C), 133.3, 133.0, 129.9, 129.8, 129.3, 129.1, 129.0, 128.5, 128.4, 128.3 (2 C), 105.9, 105.6, 81.9, 81.8 (2 C), 81.2, 77.8, 77.3, 67.4, 66.2, 63.7, 31.8, 29.5, 29.4, 29.2, 26.2, 22.6, 14.0; ESIMS m/z Calcd for $[C_{53}H_{54}O_{14}]Na^+$: 937.3406. Found: 937.3368.

3.9. Octyl 2,5-di-*O*-benzoyl-3-*O*-(2,3,5-tri-*O*-benzoyl-α-D-arabinofuranosyl)-α-D-arabinofuranoside (15)

Alcohol 9 (60 mg, 0.13 mmol) was glycosylated with 11 (96 mg, 0.17 mmol) using N-iodosuccinimide (38 mg, 0.17 mmol) and silver triflate (10 mg, 0.039 mmol) in CH_2Cl_2 (7 mL) with powdered molecular sieves (4 Å, 0.2 g) as described for the preparation of 14. The product was purified by chromatography (3:1 hexanes-EtOAc) to yield 15 (115 mg, 92%) as an oil: $R_f 0.41$ (3:1 hexanes–EtOAc); $[\alpha]_D$ + 9.3° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.15–8.00 (m, 10 H), 7.66–7.58 (m, 3 H), 7.53-7.46 (m, 4 H), 7.45-7.41 (m, 4 H), 7.31-7.25 (m, 4 H), 5.76 (s, 1 H), 5.70 (d, 1 H, J 1.1 Hz), 5.61 (d, 1 H, J 4.0 Hz), 5.44 (s, 1 H), 5.30 (s, 1 H), 4.77 (dd, 2 H, J 10.9, 2.8 Hz), 4.67-4.60 (m, 3 H), 4.56-4.52 (m, 2 H), 3.81 (dt, 1 H, J 9.6, 6.9 Hz), 3.58 (dt, 1 H, J 9.6, 6.6 Hz), 1.73–1.64 (m, 2 H), 1.43–1.39 (m, 2 H), 1.34–1.29 (m, 8 H), 0.90 (t, 3 H, J 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.1 (2 C), 165.6, 165.5 (2 C), 133.5 133.4 (2 C), 133.0 (3 C), 129.8, 129.7, 129.6 (2 C), 129.3, 129.1, 128.5, 128.4, 128.3, 128.2, 105.8, 105.3, 82.6, 81.8, 81.7, 81.1, 80.8, 77.7, 67.7, 63.8, 63.3, 31.8, 29.4, 29.3, 29.2, 26.0, 22.6, 14.0; ESIMS m/zCalcd for [C₅₃H₅₄O₁₄]Na⁺: 937.3406. Found: 937.3408.

3.10. Octyl 2-*O*-benzoyl-3,5-di-*O*-(2,3,5-tri-*O*-benzoylα-D-arabinofuranosyl)-α-D-arabinofuranoside (16)

Alcohol 10 (30 mg, 0.082 mmol) was glycosylated with 11 (114 mg, 0.20 mmol) using N-iodosuccinimide (45 mg, 0.20 mmol) and silver triflate (10 mg, 0.039 mmol) in CH₂Cl₂ (8 mL) with powdered molecular sieves (4 A, 0.2 g) as described for the preparation of 14. The product was purified by chromatography (2:1 hexanes-EtOAc) to yield 16 (80 mg, 78%) as an oil: R_f 0.46 (2:1 hexanes-EtOAc); $[\alpha]_{D}$ + 18.0° (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.09–7.98 (m, 14 H), 7.47-7.26 (m, 21 H), 5.66 (d, 1 H, J 1.2 Hz), 5.60-5.56 (m, 4 H), 5.45 (d, 1 H, J 1.5 Hz), 5.42 (s, 1 H), 5.23 (s, 1 H), 4.83 (dd, 1 H, J 11.0, 2.6 Hz), 4.78 (dd, 1 H, J 8.2, 3.6 Hz), 4.69-4.60 (m, 4 H), 4.56 (dd, 1 H, J 6.1, 0.9 Hz), 4.31–4.40 (m, 1 H), 4.19–4.12 (m, 1 H), 3.95 (dd, 1 H, J 11.4, 2.3 Hz), 3.76 (dt, 1 H, J 9.6, 6.9 Hz), 3.51 (dt, 1 H, J 9.6, 6.6 Hz), 1.66-1.60 (m, 2 H), 1.38–1.27 (m, 10 H), 0.89 (t, 3 H, J 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.1, 166.0, 165.6 (3 C), 165.1 (2 C), 133.5, 133.4, 133.3 (2 C), 133.0, 129.9 (2 C), 129.8 (2 C), 129.7 (3 C), 128.5, 128.4, 128.3, 128.2, 106.0, 105.8, 105.5, 82.8, 81.7 (3 C), 81.6, 81.3, 80.9, 77.8, 77.7, 67.5, 65.8, 63.7, 63.7, 31.8, 29.4, 29.3, 29.2, 26.0, 25.6, 14.0; ESIMS m/z Calcd for $[C_{72}H_{70}O_{20}]Na^+$: 1277.4353. Found: 1277.4431.

3.11. Octyl 2,3-di-*O*-benzoyl-5-*O*-(2-*O*-benzoyl-3,5-*O*-(1,1,3,3-tetraisopropylsiloxane-1,3-diyl)-α-D-arabino-furanosyl)-α-D-arabinofuranoside (17)

Alcohol 8 (800 mg, 1.70 mmol) was glycosylated with thioglycoside 12 (1.30 g, 2.16 mmol) using N-iodosuccinimide (497 mg, 2.20 mmol) and silver triflate (131 mg, 0.51 mmol) in CH₂Cl₂ (20 mL) containing 4 A molecular sieves (0.5 g) as described for the preparation of 14. The product was purified by chromatography (6:1 hexanes-EtOAc) to provide 17 (1.32 g, 82%) as an oil: $R_f 0.23$ (6:1 hexanes-EtOAc); $[\alpha]_D + 4.2^\circ$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.04–7.91 (m, 6 H), 7.52-7.34 (m, 9 H), 5.48-5.45 (m, 2 H), 5.40 (d, 1 H, J 1.2 Hz), 5.15 (s, 1 H), 5.09 (d, 1 H, J 1.4 Hz), 4.43-4.40 (m, 2 H), 4.09-3.81 (m, 5 H), 3.71-3.67 (m, 1 H), 3.46-3.40 (m, 1 H), 1.61-1.49 (m, 2 H), 1.38-0.59 (m, 41 H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 165.6, 165.5, 165.3, 133.3, 133.3, 133.2, 133.0, 130.0, 129.9, 129.8, 129.7, 129.5, 129.3, 129.0, 128.5, 128.4, 128.4, 128.2, 128.2, 128.1, 105.7, 105.6, 84.1, 81.7, 81.6, 81.2, 77.7, 76.0, 67.5, 67.4, 61.5, 31.8, 29.6, 29.5, 29.4, 29.4, 29.3, 26.2, 22.6, 17.4, 17.3, 17.0, 16.9, 16.9, 14.1, 13.5, 13.1, 12.8, 12.4; ESIMS m/z Calcd for $[C_{51}H_{72}O_{13}-$ Si₂]Na⁺: 971.4404. Found: 971.4459.

3.12. Octyl 2,3-di-O-benzoyl-5-O-(2-O-benzoyl-α-D-arabinofuranosyl)-α-D-arabinofuranoside (18)

Disaccharide 17 (1.3 g, 1.4 mmol) was dissolved in THF (20 mL), and the solution was cooled to 0 C before n-Bu₄NF·3H₂O (710 mg, 2.7 mmol) was added. After 15 min, the reaction mixture was concentrated, and the residue was purified by chromatography (1:3 EtOAc-toluene) to give 18 (811 mg, 84%) as an oil: R_f 0.46 (1:1 EtOAc-toluene); $[\alpha]_{D}$ + 51.0° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.09–7.98 (m, 6 H), 7.60-7.42 (m, 9 H), 5.55 (d, 1 H, J 5.0 Hz,), 5.51 (d, 1 H, J 1.4 Hz), 5.39 (s, 1 H), 5.26 (s, 1 H), 5.17–5.16 (m, 1 H), 4.47-4.40 (m, 1 H), 4.33-4.30 (m, 1 H), 4.21-4.13 (m, 2 H), 3.99–3.92 (m, 2 H), 3.81–3.74 (m, 2 H), 3.56-3.46 (m, 1 H), 2.06 (br s, 1 H), 1.78 (br s, 1 H), 1.68–1.61 (m, 2 H), 1.42–1.25 (m, 10 H), 0.86 (t, 3 H, J 6.7 Hz); ¹³C NMR (CDCl₃, 100 MHz): $\delta_{\rm C}$ 166.6, 165.9, 165.3, 133.6, 133.5, 129.9, 129.9, 129.8, 129.8, 129.0, 128.5, 128.5, 105.6, 105.1, 86.0, 84.9, 84.5, 83.6, 81.9, 81.7, 67.6, 65.9, 62.2, 31.8, 29.5, 29.4, 29.3, 26.1, 22.6, 14.1; ESIMS m/z Calcd for $[C_{39}H_{46}O_{12}]Na^+$: 729.2881. Found: 729.2875.

3.13. Octyl 2,3-di-*O*-benzoyl-5-*O*-(2,5-di-*O*-benzoyl-α-D-arabinofuranosyl)-α-D-arabinofuranoside (19)

Diol 18 (600 mg, 0.84 mmol), Ph_3P (330 mg, 1.25 mmol), and benzoic acid (150 mg, 1.25 mmol) were dissolved in THF (10 mL), and the solution was cooled

to 0 °C. Diethylazodicarboxylate (0.2 mL, 1.25 mmol) was added dropwise over 10 min. The reaction mixture was brought to rt and was then stirred for 30 min. After concentration of the reaction mixture to an oil, the product was purified by chromatography (2:1 hexane-EtOAc) to provide 19 (621 mg, 90%) as an oil: R_f 0.41 (2:1 hexane–EtOAc); $[\alpha]_{D}$ + 18.5° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ_{H} 8.25–7.90 (m, 8 H), 7.75–7.30 (m, 12 H), 5.55 (d, 1 H, J 4.5 Hz), 5.53 (s, 1 H), 5.43 (s, 1 H), 5.26 (s, 1 H), 5.22 (d, 1 H, J 2.1 Hz), 4.63 (dd, 1 H, J 2.8, 10.7 Hz), 4.59-4.40 (m, 3 H), 4.25–4.15 (m, 2 H), 3.96 (dd, 1 H, J 3.2, 10.9 Hz), 3.77 (ddd, 1 H, J 6.7, 6.7, 9.4 Hz), 3.53 (ddd, 1 H, J 6.7, 6.7, 9.4 Hz), 1.55–1.70 (m, 2 H), 1.55–1.19 (m, 10 H), 0.85 (t, 3 H, J 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.4, 166.2, 165.8, 165.4, 133.6, 133.4, 133.0, 130.1, 129.9, 129.8, 129.7, 129.2, 129.1, 129.0, 128.5, 128.4, 128.3, 105.6, 105.2, 85.3, 82.3, 81.9, 81.7, 77.3, 76.7, 67.6, 66.0, 63.8, 31.8, 29.5, 29.4, 29.2, 26.1, 22.6, 14.0; ESIMS m/z Calcd for $[C_{46}H_{50}O_{13}]Na^+$: 833.3144. Found: 833.3112.

3.14. Octyl 5-O-[3,5-di-O-(2,3,5-tri-O-benzoyl- α -D-arabinofuranosyl)-2-O-benzoyl- α -D-arabinofuranosyl]-2,3-di-O-benzoyl- α -D-arabinofuranoside (20)

Alcohol 18 (25 mg, 0.035 mmol) was glycosylated with 11 (5 mg, 0.019 mmol) using N-iodosuccinimide (20 mg, 0.089 mmol) and silver triflate (131 mg, 0.51 mmol) in CH₂Cl₂ (8 mL) containing 4 Å molecular sieves (0.2 g) as described for the preparation of 14. The product was purified by chromatography (2:1 hexanes-EtOAc) to yield **20** (44 mg, 80%) as an oil: R_f 0.38 (2:1) hexanes-EtOAc); $[\alpha]_{D}$ + 12.3° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.14–7.94 (m, 18 H), 7.64-7.21 (m, 27 H), 5.69 (d, 1 H, J 4.4 Hz), 5.61-5.50 (m, 6 H), 5.45 (d, 2 H, J 1.4 Hz), 5.27 (s, 1 H), 4.87-4.74 (m, 2 H), 4.73-4.59 (m, 6 H), 4.54-4.30 (m, 1 H), 4.23 (dd, 1 H, J 11.2, 4.4 Hz), 4.19-4.14 (m, 2 H), 4.01-3.94 (m, 2 H), 3.80 (dt, 1 H, J 9.4, 6.7 Hz), 3.55 (dt, 1 H, J 9.4, 6.3 Hz), 1.70-1.62 (m, 2 H), 1.46-1.28 (m, 10 H), 0.90 (t, 3 H, J 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.1, 165.2, 165.6, 165.5 (3 C), 165.4, 165.1, 164.9, 133.3, 129. 9, 129.8 (4 C), 129.7, 129.6, 128.5, 128.4, 128.4, 128.3 (3 C), 128.2 (2 C), 105.9, 105.7, 105.6, 105.4, 82.0, 81.9, 81.9 (2 C), 81.7 (2 C), 81.6, 81.4, 77.8, 77.7, 77.3, 67.5, 65.6, 65.5, 63.7, 63.5, 60.3, 31.8, 29.5, 29.4, 29.2, 26.1, 22.6, 14.0; ESIMS m/z Calcd for $[C_{91}H_{86}O_{26}]Na^+$: 1618.5333. Found: 1618.5459.

3.15. Octyl 2,3-di-*O*-benzoyl-5-*O*-(2,5-di-*O*-benzoyl-3-*O*-(2,3,5-tri-*O*-benzoyl- α -D-arabinofuranosyl)- α -D-arabinofuranosyl)- α -D-arabinofuranoside (21)

Alcohol **19** (600 mg, 0.74 mmol) was glycosylated with thioglycoside **11** (500 mg, 0.88 mmol) using *N*-iodosuc-

cinimide (200 mg, 0.88 mmol) and silver triflate (57 mg, 0.22 mmol) in CH₂Cl₂ (10 mL) containing 4 Å molecular sieves (0.3 g) as described for the preparation of 14. The product was purified by chromatography (4:1 hexanes-EtOAc) to provide 21 (0.82 g, 88%) as an oil: R_f 0.22 (4:1 hexanes-EtOAc); $[\alpha]_{D}$ + 16.0° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.20–7.80 (m, 15 H), 8.60-7.05 (m, 20 H), 5.85-5.56 (m, 2 H), 5.56-5.53 (m, 5 H), 5.10 (s, 1 H), 4.85–4.38 (m, 8 H), 4.23 (d, 1 H, J 9.6 Hz), 3.96 (d, 1 H, J 10.9 Hz), 3.75 (ddd, 1 H, J 6.7, 6.7, 9.4 Hz), 3.50 (ddd, 1 H, J 6.7, 6.7, 9.4 Hz), 1.70-1.50 (m, 2 H), 1.45-1.19 (m, 10 H), 0.83 (t, 3 H, J 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.1, 165.7, 165.6, 164.9, 133.4, 133.4, 133.3, 132.9, 130.0, 129.9, 129.8, 129.7, 129.6, 128.5, 128.4, 128.3, 105.6, 105.5 (2), 82.7, 82.0, 81.9, 81.8, 81.5, 81.4, 81.3, 77.8, 77.1, 67.5, 65.7, 63.7, 63.0, 31.8, 29.5, 29.4, 29.2, 26.1, 22.6, 14.0; ESIMS m/z Calcd for $[C_{72}H_{70}O_{20}]Na^+$: 1277.4352. Found: 1277.4390.

3.16. Octyl 2,3-di-*O*-benzoyl-5-*O*-(2,3-di-*O*-benzoyl-5-*O-tert*-butyldiphenylsilyl-α-D-arabinofuranosyl)-α-Darabinofuranoside (22)

Alcohol 8 (500 mg, 1.1 mmol) was glycosylated with 13 (970 mg, 1.4 mmol) using N-iodosuccinimide (311 mg, 1.4 mmol) and silver triflate (81 mg, 0.32 mmol) in CH_2Cl_2 (20 mL) containing 4 Å molecular sieves (0.5 g) as described for the preparation of 14. The product was purified by chromatography (4:1 hexanes-EtOAc) to provide 22 (910 mg, 82%) as an oil: R_f 0.30 (4:1 hexanes–EtOAc); $[\alpha]_D$ – 2.7° (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.10–7.25 (m, 30 H), 5.45–5.54 (m, 2 H), 5.35 (s, 1 H), 5.25 (s, 1 H), 5.19 (s, 1 H), 4.43 (dd, 1 H, J 4.5, 4.5 Hz), 4.32–4.20 (m, 2 H), 4.14 (dd, 1 H, J 5.0, 11.0 Hz), 3.92 (dd, 1 H, J 3.4, 11.0 Hz), 3.86 (d, 2 H, J 4.5 Hz), 3.76 (ddd, 1 H, J 6.7, 6.7, 9.4 Hz), 3.52 (ddd, 1 H, J 6.7, 6.7, 9.4 Hz), 1.68–1.49 (m, 2 H), 1.45–1.21 (m, 10 H), 1.10–0.90 (m, 9 H), 0.82 (t, 3 H, J 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.8, 166.2, 165.9, 136.0 (2), 133.9, 133.8, 133.7, 130.4, 130.3, 130.2, 130.1, 129.7, 129.6, 128.9, 128.8, 128.1, 106.0, 105.7, 85.2, 85.6, 82.4, 82.1, 78.0, 77.2, 68.0, 66.4, 63.9, 32.3, 30.0, 29.8, 29.7, 27.2, 26.6, 23.1, 19.7, 14.5; ES-IMS m/z Calcd for $[C_{62}H_{68}O_{13}Si]Na^+$: 1071.4321. Found: 1071.4286.

3.17. Octyl 2,3-di-*O*-benzoyl-5-*O*-(2,3-di-*O*-benzoyl-α-D-arabinofuranosyl)-α-D-arabinofuranoside (23)

Disaccharide **22** (850 mg, 0.81 mmol) was dissolved in THF (20 mL) and then $n-Bu_4F\cdot 3H_2O$ (254 mg, 0.97 mmol) was added. After stirring for 4 h, the reaction mixture was concentrated, and the resulting residue was purified by chromatography (3:1 hexanes-EtOAc) to give **23** (581 mg, 88%) as an oil: R_f 0.25 (3:1 hexanes-

EtOAc); $[α]_D - 8.6^\circ$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $δ_H 8.10-7.85$ (m, 8 H), 7.60–7.20 (m, 12 H), 5.65 (d, 1 H, *J* 1.3 Hz), 5.61 (d, 1 H, *J* 4.9 Hz), 5.51 (d, 1 H, *J* 1.2 Hz), 5.44 (dd, 1 H, *J* 0.8, 4.8 Hz), 5.36 (s, 1 H), 5.22 (s, 1 H), 4.51–4.40 (m, 2 H), 4.19 (dd, 1 H, *J* 4.5, 11.2 Hz), 3.91–4.07 (m, 3 H), 3.74 (ddd, 1 H, *J* 6.4, 6.4, 9.5 Hz), 3.49 (ddd, 1 H, *J* 6.4, 6.4, 9.5 Hz), 1.70–1.50 (m, 2 H), 1.45–1.19 (m, 10 H), 0.83 (t, 3 H, *J* 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃): $δ_C$ 166.1, 165.7, 165.4, 165.1, 133.5, 133.5, 133.4, 133.3, 129.9 (2), 129.8, 129.3, 129.2, 129.1, 129.0, 128.6, 128.5, 128.4, 128.3, 105.8, 105.6, 83.7, 81.9, 81.8, 81.7, 77.8, 77.4, 67.4, 66.2, 62.3, 31.8, 29.5, 29.4, 29.3, 26.2, 22.6, 14.1; ESIMS *m*/*z* Calcd for $[C_{46}H_{50}O_{13}]Na^+$: 833.3149. Found: 833.3106.

3.18. Octyl 2,3-di-*O*-benzoyl-5-*O*-(2,3-di-*O*-benzoyl- α -D-arabinofuranosyl-(5-*O*-(2,3,5-tri-*O*-benzoyl- α -D-arabinofuranosyl))- α -D-arabinofuranoside (24)

Alcohol 23 (550 mg, 0.67 mmol) was glycosylated with thioglycoside 11 (460 mg, 0.81 mmol) using N-iodosuccinimide (180 mg, 0.80 mmol) and silver triflate (52 mg, 0.20 mmol) in CH₂Cl₂ (20 mL) containing 4 Å molecular sieves (0.5 g) as described for the preparation of 14. The product was purified by chromatography (4:1 hexanes-EtOAc) to provide 24 (0.74 g, 87%) as a solid: R_f 0.34 (4:1 hexanes-EtOAc); $[\alpha]_{D}$ + 6.2° (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.05–7.80 (m, 14 H), 7.55–7.10 (m, 21 H), 5.64–5.59 (m, 4 H), 5.57 (d, 1 H, J 4.8 Hz), 5.50 (s, 1 H), 5.46 (s, 1 H), 5.41 (s, 1 H), 5.21 (s, 1 H), 4.82 (dd, 1 H, J 3.2, 11.8 Hz), 4.72–4.60 (m, 3 H), 4.43-4.38 (m, 1 H), 4.28-4.15 (m, 2 H), 3.97 (dd, 1 H, J 3.0, 11.3 Hz), 3.92 (dd, 1 H, J 2.8, 11.2 Hz), 3.74 (ddd, 1 H, J 6.6, 6.6, 9.7 Hz), 3.48 (ddd, 1 H, J 6.6, 6.6, 9.7 Hz), 1.70–1.50 (m, 2 H), 1.45–1.19 (m, 10 H), 0.83 (t, 3 H, J 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.2, 165.8, 165.7, 165.5, 165.2, 165.1, 133.4, 133.3, 133.2, 133.0, 129.9, 132.4, 129.8, 129.3, 129.1, 129.1, 128.9, 128.8, 128.4, 128.4, 128.2, 105.9, 105.8, 105.8, 82.0, 81.9, 81.8, 81.7, 81.5, 81.2, 77.8, 77.4, 67.5, 66.0 (2), 63.7, 31.8, 29.5, 29.4, 29.2, 26.2, 22.6, 14.1; ESIMS m/z Calcd for $[C_{72}H_{70}O_{20}]Na^+$: 1277.4352. Found: 1277.4235.

Acknowledgements

This work was supported by the National Institutes of Health (AI 44045) and the National Science Foundation (REU Fellowship to PRM).

References

1. (a) Lowary, T. L. Mycobacterial cell wall components. In *Glycoscience: Chemistry and Chemical Biology*; Fraser-

Reid, B.; Tatsuta, K.; Thiem, J., Eds.; Springer-Verlag: Berlin, 2001; pp 2005–2080;

(b) Lowary, T. L. D-Arabinofuranosides from mycobacteria. Synthesis and conformation. In *Glycochemistry*, *Principles, Synthesis and Applications*; Wang, P. G.; Bertozzi, C. R., Eds.; Marcel Dekker: New York, 2001; pp 133–162;

(c) Brennan, P. J.; Nikaido, H. Annu. Rev. Biochem. 1995, 64, 29–63.

 (a) Mikusová, K.; Slayden, R. A.; Besra, G. S.; Brennan, P. J. Antimicrob. Agents Chemother. 1995, 39, 2484–2489;
 (b) Deng, L.; Mikusová, K.; Robuck, K. G.; Scherman, M.; Brennan, P. J.; McNeil, M. R. Antimicrob. Agents Chemother. 1995, 39, 694–701;

(c) Khoo, K.-H.; Douglas, E.; Azadi, P.; Inamine, J. M.;
Besra, G. S.; Mikusová, K.; Brennan, P. J.; Chatterjee,
D. J. Biol. Chem. 1996, 271, 28 682–28 690.

- 3. (a) Besra, G. S.; Brennan, P. J. J. Pharm. Pharmacol. 1997, 49 (Suppl. 1), 25–30;
 (b) Crick, D. C.; Mahapatra, S.; Brennan, P. J. Glycobiology 2001, 11, 107R-118R.
- (a) McGurk, P.; Chang, G. X.; Lowary, T. L.; McNeil, M.; Field, R. A. *Tetrahedron Lett.* 2001, 42, 2231–2234;
 (b) Centrone, C.; Lowary, T. L. J. Org. Chem. 2002, 67, 8862–8870:
- (c) Cociorva, O.M.; Gurcha, S.S.; Besra, G.S.; Lowary, T.L. *Bioorg. Med. Chem.*, manuscript in preparation.
- (a) Reynolds, R. C.; Bansal, N.; Rose, J.; Friedrich, J.; Suling, W. J.; Maddry, J. A. *Carbohydr. Res.* 1999, 317, 164–179;

(b) Maddry, J. A.; Suling, W. J.; Reynolds, R. C. Res. Microbiol. **1996**, 147, 106–112;

(c) Bouix, C.; Bisseret, P.; Eustache, J. *Tetrahedron Lett.* **1998**, *39*, 825–828;

(d) Maddry, J. A.; Bansal, N.; Bermudez, L. E.; Comber, R. N.; Orme, I. M.; Suling, W. J.; Wilson, L. N.; Reynolds, R. C. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 237– 242;

(e) Häusler, H.; Kawakami, R. P.; Mlaker, E.; Severn, W. B.; Stütz, A. E. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 1679–1681;

(f) Pathak, A. K.; Pathak, V.; Maddry, J. A.; Suling, W. J.; Gurcha, S. S.; Besra, G. S.; Reynolds, R. C. *Bioorg. Med. Chem.* 2001, *9*, 3145–3151.

- Ayers, J. D.; Lowary, T. L.; Morehouse, C. B.; Besra, G. S. Bioorg. Med. Chem. Lett. 1998, 9, 437–442.
- 7. Lee, R. E.; Brennan, P. J.; Besra, G. S. *Glycobiology* **1997**, *7*, 1121–1128.
- (a) 8-10: Cociorva, O.M.; Lowary, T.L. J. Org. Chem. submitted;
 (b) 11: Callam, C. S.; Gadikota, R. R.; Lowary, T. L. J. Org. Chem. 2001, 66, 4549-4558;
 (c) 12, 13: D'Souza, F. W.; Ayers, J. D.; McCarren, P. R.; Lowary, T. L. J. Am. Chem. Soc. 2000, 122, 1251-1260.
- Mizutani, K.; Kasai, R.; Nakamura, M.; Tanaka, O.; Matsuura, H. Carbohydr. Res. 1989, 185, 27–38.
- 10. Pathak, A. K.; Pathak, V.; Khare, N. K.; Maddry, J. A.; Reynolds, R. C. *Carbohydr. Lett.* **2001**, *4*, 117–122.