# Spinner.

3855

### The Electronic Spectra of Some Monosubstituted Pyridines 716. and Pyridinium Ions.

By E. Spinner.

The electronic spectra of the monomethyl-, monochloro-, monobromo-, and monocyano-pyridines and their cations in the range 208-300 mµ are reported and discussed. Some conclusions previously reached concerning the structures of certain pyridine ions are examined.

COMPLETE near-ultraviolet spectra are available for pyridines and pyridinium ions containing the substituents NH<sub>2</sub>,<sup>1,2</sup> O<sup>-,3</sup> S<sup>-,4</sup> SMe,<sup>4</sup> and OMe,<sup>3</sup> the first four of which exert large spectral effects, but for substituents exerting small or intermediate-sized spectral effects, such as alkyl,<sup>5</sup> halogen,<sup>6-8</sup> and cyano,<sup>9</sup> data are more limited and few extend as far as the K-<sup>10</sup>  $(E_{-}, 1^{12} \not \to -, 1^{22})$  band.\* It is known that spectral substituent effects in pyridine and the pyridinium ion do not always parallel those found in substituted benzenes, e.g., the methyl group in 4-picoline and its cation shifts the  $B^{-11}$  ( $\alpha^{-12}$ ) band to shorter wavelengths.<sup>5</sup> For the 4-methoxypyridinium ion an unexpected cation structure has been inferred from the ultraviolet spectrum.<sup>13</sup> A fuller study of pyridinium ions containing substituents with intermediate spectral effects, and a closer comparison between the spectra of substituted benzene, pyridine, and pyridinium ions seemed indicated.

*Experimental.*—*Materials.* The methyl-, chloro-, bromo-, and cyano-pyridines were purified commercial specimens, the methyl, 4-chloro-,<sup>14</sup> and 4-bromo-derivatives <sup>14</sup> being purified both by fractional distillation (the last two compounds at  $70^{\circ}/40$  mm. and  $89^{\circ}/30$  mm., respectively) and fractional freezing. 4-Methoxypyridine had b. p. 107°/50 mm. and m. p. 4°.

4-Iodopyridine was obtained by a modification of the method of Haitinger and Lieben.<sup>15</sup> Heating of 4-chloropyridine (2 g.) and hydriodic acid ( $d \cdot 94$ ) (10 ml.) in a sealed tube at 145° for 18 hr., followed by extraction of the precipitate obtained with boiling water (25 ml.) containing some sulphur dioxide, gave, on cooling of the extract to  $-5^{\circ}$ , pure 4-iodopyridine hydriodide (1.2 g., 20%). To this, in water (10 ml.) at 60°, were added sodium hydrogen carbonate (0.4 g.) and sodium sulphite (0.1 g.) in water (2 ml.). The (steam-volatile) precipitate of 4-iodopyridine was recrystallised from water at  $60^{\circ}$  containing some sodium hydrogen carbonate and sodium sulphite. The compound is stable for several weeks if kept beneath this recrystallisation liquor in a refrigerator, and for several days in the dark when dry. It had m. p. 93° (decomp.) (Found: C, 29.1; H, 1.8; N, 6.6. Calc. for C<sub>5</sub>H<sub>4</sub>IN: C, 29.3; H, 1.9; N, 6·8%).

Spectral examination. The substances were examined in aqueous solutions buffered at the appropriate pH values; all were stable under the conditions used. 4-Chloro-, 4-bromo-, and 4-iodo-pyridine were found (by spectroscopy) to have ionisation constants, in  $pK_a$  values, of  $3.88 \pm 0.04$ ,  $3.82 \pm 0.04$ , and  $4.06 \pm 0.03$ , respectively (the author thanks Dr. D. D. Perrin

- \* Several <sup>10-12</sup> band nomenclatures are in common use.
- <sup>1</sup> Steck and Ewing, J. Amer. Chem. Soc., 1948, 70, 3397.
- <sup>2</sup> Mason, J., 1960, 219.
   <sup>3</sup> Mason, J., 1959, 1253.
- <sup>4</sup> Albert and Barlin, J., 1959, 2384. <sup>5</sup> Andon, Cox, and Herington, Trans. Faraday Soc., 1954, 50, 918.
- 6 Stephenson, J. Chem. Phys., 1954, 22, 1077.
- <sup>7</sup> Brown and McDaniel, J. Amer. Chem. Soc., 1955, 77, 3752.
   <sup>8</sup> Tsubomura, J. Chem. Soc. Japan, 1957, 78, 293.

- Mason, J., 1959, 1247.
  Burawoy, J., 1939, 1177.
  Braude, Ann. Reports, 1945, 42, 105.
- <sup>12</sup> Clar, "Aromatische Kohlenwasserstoffe," Springer, Berlin, 2nd edn., 1952, p. 186; Mason, Quart. Rev., 1961, 15, 287.
   <sup>13</sup> Tsubomura, J. Chem. Phys., 1958, 28, 355.
   <sup>14</sup> Wibaut and Broekman, Rec. Trav. chim., 1939, 58, 885.

  - <sup>15</sup> Haitinger and Lieben, Monatsh., 1885, 6, 320.

and Mr. H. Satrapa for these determinations). The ionisation constants of the other compounds examined are known.<sup>7,9,16</sup> Spectra were determined with a Perkin-Elmer Spectracord model 4000 A, and peak intensities were checked with an Optica CF4 manual spectrophotometer. The wavelength at which the Spectracord slit width was 1 mm.  $(206-208 \text{ m}\mu)$  was taken to be the limit of the accessible spectrum.

## DISCUSSION

All the substances examined show the *B*-band, which usually exhibits fine structure here even in aqueous solution, and most of them show the (one) K-band in the accessible spectral region (see Table). As is normally the case for disubstituted benzenes, there is no correlation between B- and K-band shifts. meta- and ortho-Disubstituted benzenes frequently show two <sup>17</sup> K-bands; if 3- and 2-substituted pyridines do give rise to a second K-band (which seems unlikely) it is below 210 mµ. Some generalisations that also embrace previous data <sup>1-4</sup> for saturated substituents with large effects follow.

K-Bands.—All substituents, in any position, seem to displace the K-band of pyridine and the pyridinium ion to longer wavelengths. For saturated substituents,  $\lambda_{max}$  increases in the order 2-X·C<sub>5</sub>H<sub>4</sub>N (by up to 5 mµ) < X·C<sub>6</sub>H<sub>5</sub> < 3-X·C<sub>5</sub>H<sub>4</sub>N < 4-X·C<sub>5</sub>H<sub>4</sub>N, but for the electron-withdrawing unsaturated substituents CN and CHO<sup>18</sup> in the order  $4-X\cdot C_5H_4N < 3-X\cdot C_5H_4N < 2-X\cdot C_5H_4N < X\cdot C_6H_5.$  Cation formation always displaces the band to longer wavelengths, only slightly so in 2-substitued pyridines, but much more strongly if there is a saturated substituent in the 3- and even more in the 4-position; in the last-mentioned case the shift on ionisation is roughly correlated with the bathochromic effect of X in neutral  $4-X \cdot C_5 H_4 N$ .

B-Bands.—In the 2- and 3-positions of pyridine and the pyridinium ion all substituents seem to displace the B-band to longer wavelengths. In the 4-position methyl and, even more so, methoxyl displace the band to shorter wavelengths (the latter, however, not by as much as a previous spectrum<sup>3</sup> at lower resolution seemed to indicate); halogen,  $\rm NH_{2}$ ,<sup>2</sup> and perhaps also O<sup>-</sup>,<sup>3</sup> displace the band to slightly longer, and electron-withdrawing unsaturated substituents (CN, CHO, <sup>18</sup> NO<sub>2</sub> <sup>19</sup>) to much longer wavelengths. For saturated substituents in pyridines and pyridinium ions,  $\lambda_{max}$ , increases in the order <sup>2,8</sup> 4-X·C<sub>5</sub>H<sub>4</sub>N < $X \cdot C_6 H_5 < 2 - X \cdot C_5 H_4 N \ll 3 - X \cdot C_5 H_4 N$ , but for electron-withdrawing unsaturated substitutents the order is exactly the reverse. Cation formation in pyridines containing saturated substituents generally displaces the B-band to longer wavelengths in the 2- and, even more so, in the 3-position, whereas in 4-substituted pyridines, and also in 2- and 3-picoline, it results in small short-wavelength shifts. In the cyanopyridines, cation formation produces hardly any displacements.

Theoretical Explanations.—Several molecular-orbital treatments of the electronic spectra of pyridines containing saturated substituents have appeared. Mason's treatment,<sup>2,3</sup> in which the substituted pyridine is regarded as a perturbed benzyl anion, yields the correct sequence of transition energies between 2-, 3-, and 4-substituted compounds (unlike Murrell's charge-transfer model<sup>20</sup> which predicts<sup>2</sup> the reverse sequence for the B-band), but it does not seem able to predict the substituent effects on the B-band in 4-substituted pyridines. Chandra and Basu's calculations for the *B*-band in picolines<sup>21</sup> by perturbation theory give the result that in 4-, but not in 2- or 3-picoline, the inductive effect outweighs the hyperconjugation effect; this explanation of the hyperconjugation effect of 4-methyl does not, however, account for the precisely analogous (though larger) hypsochromic effect of 4-methoxyl on the B-band. Favini and Simonetta's Pariser-Parr

 <sup>&</sup>lt;sup>16</sup> Albert, "Heterocyclic Chemistry," Athlone Press, London, 1959, pp. 343—344.
 <sup>17</sup> Forbes, Canad. J. Chem., 1958, 36, 1350; Dearden and Forbes, *ibid.*, p. 1362; Forbes and Leckie, *ibid.*, p. 1371. <sup>18</sup> Nakamoto and Martell, J. Amer. Chem. Soc., 1959, **81**, 5857.

 <sup>&</sup>lt;sup>19</sup> Gruber, Canad. J. Chem., 1953, **31**, 1020.
 <sup>20</sup> Murrell, J., 1959, 296.
 <sup>20</sup> Murrell, J., 1959, 296.

<sup>&</sup>lt;sup>21</sup> Chandra and Basu, J., 1959, 1623,

|                                                                                                                                    |                                                                                                                                                   |            |                 |            |                                                             |                                                                                                                                                               | -                                                                                          | i spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |              |              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                                                                    |                                                                                                                                                   |            | $\lambda_{max}$ | .* (m/     | u)                                                          |                                                                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | log ε        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| v                                                                                                                                  | X K-Band                                                                                                                                          |            |                 | B-Band     |                                                             |                                                                                                                                                               |                                                                                            | K-Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              | B-Band       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 25 A-Danu                                                                                                                          |                                                                                                                                                   |            | D-Dand          |            |                                                             |                                                                                                                                                               | 17.1900                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | D Dand       |              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
|                                                                                                                                    |                                                                                                                                                   |            |                 |            | Sub                                                         | stitute                                                                                                                                                       | 1 burid                                                                                    | ines (X-C <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H.N)             |              |              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
|                                                                                                                                    |                                                                                                                                                   |            |                 |            |                                                             |                                                                                                                                                               |                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4)               |              |              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| H                                                                                                                                  | 198 †                                                                                                                                             |            | 240             | 246        | 251                                                         | 257                                                                                                                                                           | 263                                                                                        | 3.9 †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 3.05         | $3 \cdot 22$ | 3.37                                                         | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.25                                                                                 |
| 2-Me                                                                                                                               | $<\!206$                                                                                                                                          |            |                 |            | 257                                                         | 262                                                                                                                                                           | 268                                                                                        | >3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              | 3.48                                                         | 3.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.41                                                                                 |
| 2-C1                                                                                                                               | 209                                                                                                                                               |            |                 |            | 258                                                         | 264                                                                                                                                                           | 270                                                                                        | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |              | 3.43                                                         | 3.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.33                                                                                 |
| 2-Br                                                                                                                               | 212                                                                                                                                               | ~          |                 |            | 260                                                         | 265                                                                                                                                                           | 272                                                                                        | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00             |              |              | 3.48                                                         | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.40                                                                                 |
| 2-CN                                                                                                                               | 212                                                                                                                                               | 217        |                 |            | 0.00                                                        | 0.0 -                                                                                                                                                         | 050                                                                                        | 3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.96             |              | 0.40         | 0 50                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 51                                                                                 |
|                                                                                                                                    | 220                                                                                                                                               | 224        |                 | 253        | 260                                                         | 265                                                                                                                                                           | 272                                                                                        | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.86             |              | 3.40         | 3.56                                                         | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.51                                                                                 |
| 3-Me                                                                                                                               | $<\!208$                                                                                                                                          |            |                 | 251        | 257                                                         | 263                                                                                                                                                           | 269                                                                                        | >3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | 3.23         | 3.39                                                         | 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.30                                                                                 |
| 3-C1                                                                                                                               | 211                                                                                                                                               |            |                 | 254        | 261                                                         | 267                                                                                                                                                           | 274                                                                                        | 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              | $3 \cdot 19$ | 3.37                                                         | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.29                                                                                 |
| 3-Br                                                                                                                               | 216                                                                                                                                               |            |                 |            | 262                                                         | 268                                                                                                                                                           | 274                                                                                        | 3.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |              | 3.35                                                         | 3.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.31                                                                                 |
| 3-CN                                                                                                                               | 213                                                                                                                                               | 217        |                 | 0.50       |                                                             | 0.0 -                                                                                                                                                         | 070                                                                                        | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00             |              | 9.00         | 0.00                                                         | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                 |
|                                                                                                                                    | 221                                                                                                                                               | <b>226</b> |                 | 252        | 259                                                         | 265                                                                                                                                                           | 272                                                                                        | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3 \cdot 84$     |              | 3.22         | 3.36                                                         | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.30                                                                                 |
| 4-Me                                                                                                                               | < 207                                                                                                                                             |            |                 | 244        | 251                                                         | 255                                                                                                                                                           | 262                                                                                        | >3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              | 3.08         | 3.23                                                         | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.20                                                                                 |
| 4-C1                                                                                                                               | 210                                                                                                                                               |            | 240             | 246        | 252                                                         | 258                                                                                                                                                           | 265                                                                                        | 3.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 2.94         | 3.10         | 3.25                                                         | 3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.22                                                                                 |
| 4-Br                                                                                                                               | 219                                                                                                                                               |            | 240             | 246        | 252                                                         | 258                                                                                                                                                           | 265                                                                                        | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 3.02         | 3.13         | 3.27                                                         | 3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.20                                                                                 |
| 4-I ‡                                                                                                                              | 239                                                                                                                                               |            |                 |            | 255                                                         | 262                                                                                                                                                           | 269                                                                                        | 3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.05             |              |              | 3.62                                                         | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.36                                                                                 |
| 4-CN                                                                                                                               | 208                                                                                                                                               | 211        |                 |            | 0.110                                                       | 0 = 0                                                                                                                                                         |                                                                                            | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.05             |              |              | 0.47                                                         | 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |
| 1.11.0                                                                                                                             | 216                                                                                                                                               | <b>220</b> |                 | 0.40       | 270                                                         | 276                                                                                                                                                           | 284                                                                                        | 3.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.01             |              | 2 00         | 3.47                                                         | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.39                                                                                 |
| 4-MeO                                                                                                                              | 218                                                                                                                                               |            |                 | 240        | <b>245</b>                                                  | 250                                                                                                                                                           | 258                                                                                        | 3.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              | 3.00         | $2 \cdot 96$                                                 | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.30                                                                                 |
|                                                                                                                                    |                                                                                                                                                   |            |                 | Sul        | bstitute                                                    | ed pyr                                                                                                                                                        | ridiniur                                                                                   | n ions (X-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C_5H_4N$        | H+)          |              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
|                                                                                                                                    |                                                                                                                                                   |            |                 |            |                                                             |                                                                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| н                                                                                                                                  | 200.5                                                                                                                                             | 8          |                 |            | 251                                                         | 256                                                                                                                                                           | 261                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |              |              | 3.63                                                         | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.53                                                                                 |
| H<br>2-Me                                                                                                                          | 200.5 < 206                                                                                                                                       | §          |                 |            | 251                                                         | $\frac{256}{262}$                                                                                                                                             | 261<br>270                                                                                 | >3.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              | 3.63                                                         | $3.70 \\ 3.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3.53 \\ 3.61$                                                                       |
| 2-Me                                                                                                                               | $200.5 \\ < 206 \\ 211$                                                                                                                           | §          |                 |            | 251                                                         |                                                                                                                                                               |                                                                                            | $> 3 \cdot 49 \\ 3 \cdot 61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |              |              | 3.63                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
|                                                                                                                                    | $<\!206$                                                                                                                                          | §          |                 |            | 251                                                         | 262                                                                                                                                                           |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |              | 3.63                                                         | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |
| 2-Me<br>2-Cl                                                                                                                       | $\substack{<206\\211}$                                                                                                                            | §          |                 |            | 251<br>261                                                  | $\begin{array}{c} 262 \\ 271 \end{array}$                                                                                                                     |                                                                                            | 3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |              |              | 3·63<br>3·81                                                 | $3.80 \\ 3.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 2-Me<br>2-Cl<br>2-Br                                                                                                               | ${<}206\ {211}\ {212}$                                                                                                                            | §          |                 |            |                                                             | $262 \\ 271 \\ 275$                                                                                                                                           | 270                                                                                        | $3.61 \\ 3.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |              |              |                                                              | 3·80<br>3·80<br>3·76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61                                                                                 |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN                                                                                                       | ${<}206 \\ {211} \\ {212} \\ {222}$                                                                                                               | §          |                 |            | 261                                                         | $262 \\ 271 \\ 275 \\ 267$                                                                                                                                    | 270<br>273                                                                                 | $3.61 \\ 3.76 \\ 3.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              |              | 3·81                                                         | 3·80<br>3·80<br>3·76<br>3·91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83                                                                         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me                                                                                               | ${<}206 \\ {211} \\ {212} \\ {222} \\ {209} \end{cases}$                                                                                          | ş          |                 |            | 261                                                         | 262<br>271<br>275<br>267<br>262                                                                                                                               | 270<br>273<br>269                                                                          | $     \begin{array}{r}       3 \cdot 61 \\       3 \cdot 76 \\       3 \cdot 64 \\       3 \cdot 50     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              | 3·81                                                         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61<br>3.83<br>3.55                                                                 |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl                                                                                       | ${<}206 \\ {211} \\ {212} \\ {222} \\ {209} \\ {215}$                                                                                             | §<br>221   | 226             |            | 261                                                         | 262<br>271<br>275<br>267<br>262<br>270                                                                                                                        | 270<br>273<br>269                                                                          | $     \begin{array}{r}       3.61 \\       3.76 \\       3.64 \\       3.50 \\       3.60 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.75             | <b>3</b> ∙65 |              | 3·81                                                         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55                                                                 |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br                                                                               | $<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                       | -          | 226             |            | 261<br>258<br>259                                           | 262<br>271<br>275<br>267<br>262<br>270<br>274                                                                                                                 | 270<br>273<br>269<br>277                                                                   | $ \begin{array}{r} 3.61 \\ 3.76 \\ 3.64 \\ 3.50 \\ 3.60 \\ 3.68 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>3</b> ∙75     | 3.65         |              | 3·81<br>3·67                                                 | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61<br>3.83<br>3.55<br>3.53                                                         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN                                                                       | $<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                       | -          | 226             |            | 261<br>258<br>259<br>252                                    | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265                                                                                                          | 270<br>273<br>269<br>277<br>271                                                            | $\begin{array}{c} 3.61 \\ 3.76 \\ 3.64 \\ 3.50 \\ 3.60 \\ 3.68 \\ 3.75 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>3</b> ∙75     | 3.65         |              | 3.81<br>3.67<br>3.59<br>3.58                                 | 3.80<br>3.80<br>3.76<br>3.91<br>3.68<br>3.68<br>3.68<br>3.65<br>3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61<br>3.83<br>3.55<br>3.53<br>3.53                                                 |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me                                                               | $<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                       | -          | 226             |            | 261<br>258<br>259                                           | $\begin{array}{c} 262 \\ 271 \\ 275 \\ 267 \\ 262 \\ 270 \\ 274 \\ 265 \\ 252 \end{array}$                                                                    | 270<br>273<br>269<br>277<br>271<br>258                                                     | $\begin{array}{c} 3.61 \\ 3.76 \\ 3.64 \\ 3.50 \\ 3.60 \\ 3.68 \\ 3.75 \\ 3.71 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.75             | 3.65         |              | 3.81<br>3.67<br>3.59                                         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.68<br>3.67<br>3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53                                         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-CN<br>4-Me<br>4-Cl<br>4-Br                                                       | <206<br>211<br>212<br>209<br>215<br>221<br>217<br>217<br>230<br>244<br>279                                                                        | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256                      | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>257<br>262                                                                              | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268                                | 3.61<br>3.76<br>3.64<br>3.50<br>3.60<br>3.68<br>3.75<br>3.71<br>3.96<br>4.03<br>3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.75             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87                 | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.65<br>3.65<br>3.68<br>3.65<br>3.91<br>3.91<br>3.70<br>3.68<br>3.92<br>3.93<br>3.93<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.68<br>3.68<br>3.68<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92 | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90                 |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Cl<br>4-I ‡¶<br>4-CN                             | <206<br>211<br>212<br>222<br>209<br>215<br>227<br>217<br>217<br>217<br>217<br>230<br>244<br>279<br>222                                            | -          | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256<br>269               | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>257<br>262<br>276                                                                | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282                         | 3.61<br>3.76<br>3.64<br>3.50<br>3.60<br>3.68<br>3.75<br>3.71<br>3.96<br>4.03<br>3.79<br>3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.68<br>3.65<br>3.65<br>3.68<br>3.89<br>3.94<br>3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Br<br>4-I                                        | <206<br>211<br>212<br>222<br>209<br>215<br>227<br>217<br>217<br>217<br>217<br>230<br>244<br>279<br>222                                            | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256                      | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>257<br>262                                                                              | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268                                | 3.61<br>3.76<br>3.64<br>3.50<br>3.60<br>3.68<br>3.75<br>3.71<br>3.96<br>4.03<br>3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.87             | <b>3</b> .65 | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87                 | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.65<br>3.65<br>3.68<br>3.65<br>3.91<br>3.91<br>3.70<br>3.68<br>3.92<br>3.93<br>3.93<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.91<br>3.68<br>3.68<br>3.68<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92<br>3.92 | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90                 |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Cl<br>4-I ‡¶<br>4-CN                             | <206<br>211<br>212<br>222<br>209<br>215<br>227<br>217<br>217<br>217<br>217<br>230<br>244<br>279<br>222                                            | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256<br>269               | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>257<br>262<br>276                                                                | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282                         | 3.61<br>3.76<br>3.64<br>3.50<br>3.60<br>3.68<br>3.75<br>3.71<br>3.96<br>4.03<br>3.79<br>3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.68<br>3.65<br>3.65<br>3.68<br>3.89<br>3.94<br>3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Cl<br>4-I ‡¶<br>4-CN                             | <206<br>211<br>212<br>222<br>209<br>215<br>227<br>217<br>217<br>217<br>217<br>230<br>244<br>279<br>222                                            | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240        | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>257<br>262<br>276<br>245                                                         | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251                  | 3.61<br>3.76<br>3.64<br>3.50<br>3.60<br>3.68<br>3.75<br>3.71<br>3.96<br>4.03<br>3.79<br>3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.68<br>3.65<br>3.65<br>3.68<br>3.89<br>3.94<br>3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Br ¶<br>4-CN<br>4-I ‡¶<br>4-CN<br>4-MeO 1        | <206<br>211<br>212<br>222<br>209<br>215<br>227<br>217<br>217<br>217<br>217<br>230<br>244<br>279<br>222                                            | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240        | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>257<br>262<br>276<br>245                                                         | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251                  | $\begin{array}{c} 3.61\\ 3.76\\ 3.64\\ 3.50\\ 3.60\\ 3.68\\ 3.75\\ 3.71\\ 3.96\\ 4.03\\ 3.79\\ 3.92\\ 4.043\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.76<br>3.91<br>3.68<br>3.68<br>3.65<br>3.65<br>3.65<br>3.68<br>3.94<br>3.99<br>3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>4-Cl<br>4-Cl<br>4-I ‡¶<br>4-CN<br>4-MeO 1                                  | <206<br>211<br>212<br>209<br>215<br>221<br>217<br>217<br>230<br>244<br>279<br>222<br>236<br>203.5                                                 | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240        | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>257<br>262<br>276<br>245<br>bstitut<br>254                                       | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.68<br>3.65<br>3.68<br>3.68<br>3.94<br>3.70<br>3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Br ¶<br>4-CN<br>4-I ‡¶<br>4-CN<br>4-MeO 1        | <206<br>211<br>212<br>209<br>215<br>221<br>217<br>217<br>230<br>244<br>279<br>222<br>236<br>203.5<br>206.5                                        | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240        | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>276<br>245<br>bstitut<br>254<br>261                                              | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251<br>ed benz       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.70<br>3.68<br>3.68<br>3.68<br>3.65<br>3.65<br>3.65<br>3.68<br>3.99<br>3.93<br>3.93<br>2.31<br>2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>4-Cl<br>4-Cl<br>4-I ‡¶<br>4-CN<br>4-MeO 1                                  | <206<br>211<br>212<br>209<br>215<br>221<br>217<br>217<br>230<br>244<br>279<br>222<br>236<br>203.5                                                 | 221        | 226             | 249        | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240        | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>257<br>262<br>276<br>245<br>bstitut<br>254                                       | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251<br>ed benz       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.76<br>3.91<br>3.70<br>3.68<br>3.68<br>3.68<br>3.65<br>3.68<br>3.68<br>3.94<br>3.70<br>3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Br ¶<br>4-CN<br>4-MeO 1<br>H<br>Me               | <206<br>211<br>212<br>209<br>215<br>221<br>217<br>217<br>230<br>244<br>279<br>222<br>236<br>203.5<br>206.5<br>209.5                               | 221        | 226             | 249<br>246 | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240        | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>257<br>262<br>257<br>262<br>276<br>245<br>257<br>262<br>276<br>245<br>254<br>254<br>254<br>261<br>263 | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251<br>ed benz       | $ \begin{vmatrix} 3.61 \\ 3.76 \\ 3.64 \\ 3.50 \\ 3.60 \\ 3.68 \\ 3.75 \\ 3.71 \\ 3.96 \\ 4.03 \\ 3.79 \\ 3.92 \\ 4.043 \\ 3.92 \\ 4.043 \\ cnes (X-C_6 \\ 3.87 \\ 3.85 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.87 \\ 3.$ | 3-87             | 3.65         | 3.75         | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62         | 3.80<br>3.80<br>3.70<br>3.68<br>3.68<br>3.68<br>3.68<br>3.68<br>3.68<br>3.94<br>3.70<br>3.93<br>3.93<br>2.31<br>2.35<br>2.28<br>2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63         |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-I ‡¶<br>4-CN<br>4-MeO ‡<br>H<br>Me<br>Br         | <206<br>211<br>212<br>209<br>215<br>221<br>217<br>217<br>217<br>230<br>244<br>279<br>222<br>236<br>203.5<br>206.5<br>206.5<br>209.5<br>210        | 221<br>228 | 226             |            | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240<br>Sul | 262<br>271<br>275<br>267<br>262<br>270<br>274<br>265<br>252<br>257<br>262<br>276<br>245<br>257<br>262<br>276<br>245<br>254<br>261<br>261                      | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251<br>ed benz.<br>5 | $ \begin{vmatrix} 3.61 \\ 3.76 \\ 3.64 \\ 3.50 \\ 3.60 \\ 3.68 \\ 3.75 \\ 3.71 \\ 3.96 \\ 4.03 \\ 3.79 \\ 4.043 \\ 9.92 \\ 4.043 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464 \\ 0.464$                                   | 3·87<br>}<br>H₅) | 3.65         |              | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62<br>4.04 | 3.80<br>3.80<br>3.91<br>3.70<br>3.68<br>3.68<br>3.68<br>3.65<br>3.68<br>3.94<br>3.94<br>3.93<br>2.31<br>2.35<br>2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63<br>3.65 |
| 2-Me<br>2-Cl<br>2-Br<br>2-CN<br>3-Me<br>3-Cl<br>3-Br<br>3-CN<br>4-Me<br>4-Cl<br>4-Br ¶<br>4-CN<br>4-MeO 1<br>H<br>Me<br>Br<br>I ** | <206<br>211<br>212<br>222<br>209<br>215<br>221<br>217<br>217<br>230<br>244<br>279<br>222<br>236<br>203.5<br>206.5<br>209.5<br>209.5<br>210<br>227 | 221<br>228 | 226             |            | 261<br>258<br>259<br>252<br>250<br>256<br>269<br>240<br>Sul | $\begin{array}{c} 262\\ 271\\ 275\\ 267\\ 262\\ 270\\ 274\\ 265\\ 252\\ 257\\ 262\\ 276\\ 245\\ 245\\ 254\\ 261\\ 261\\ 263\\ 261\\ 256\\ \end{array}$        | 270<br>273<br>269<br>277<br>271<br>258<br>263<br>264<br>268<br>282<br>251<br>ed benz.<br>5 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3·87<br>}<br>H₅) | 3.65         |              | 3.81<br>3.67<br>3.59<br>3.58<br>3.98<br>3.87<br>3.62<br>4.04 | $3 \cdot 80$<br>$3 \cdot 80$<br>$3 \cdot 76$<br>$3 \cdot 91$<br>$3 \cdot 68$<br>$3 \cdot 68$<br>$3 \cdot 68$<br>$3 \cdot 65$<br>$3 \cdot 68$<br>$3 \cdot 63$<br>$3 \cdot 94$<br>$3 \cdot 70$<br>$3 \cdot 93$<br>$2 \cdot 31$<br>$2 \cdot 35$<br>$2 \cdot 28$<br>$2 \cdot 85$                                                                                                                                                                                                                                                                                                                                                                                         | 3.61<br>3.83<br>3.55<br>3.53<br>3.56<br>3.53<br>3.59<br>3.66<br>3.90<br>3.63<br>3.65 |

Ultraviolet absorption spectra (in water).

\* Inflexions in italics. † Picket, Corning, McPherson, Wieder, and Semenow, reported in Weissberger, "The Technique of Organic Chemistry," Vol. IX, Interscience, Publ., Inc., New York, 1956, p. 666. ‡ For complete spectra of 2- and 3-methoxy- and -iodo-pyridine and their cations, see refs. 3 and 7. § Schubert, Craven, Minton, and Murphy, *Tetrahedron*, 1959, **5**, 194. ¶ The B-band is telescoped on top of the K-band. || Data from Doub and Vandenbelt, J. Amer. Chem. Soc., 1947, **69**, 2714, except for iodobenzene which is quoted from Dearden and Forbes, *Canad. J. Chem.*, 1959, **37**, 1305. **\*\*** Solvent cyclohexane.

calculations for the *B*-band in the chloropyridine  $^{22}$  spectra did not yield the correct sequence of shifts. No molecular-orbital treatment covering the whole range of substituents satisfactorily has been produced.

<sup>22</sup> Favini and Simonetta, Gazzetta, 1960, 90, 363.

## Spinner: The Electronic Spectra of

The model in which co-ordination of oscillations by localised  $\pi$ -electrons is assumed.<sup>23</sup> which is favoured by the author, at present permits no predictions regarding the B-band and only a few (qualitative ones) regarding the K-band. The decrease in inductomeric polarisabilities in the order  $C=C > C=N > C=NH^+$  should lead to displacements to shorter wavelengths from benzene to pyridine to pyridinium ion, but the increase in polarising power in the same order may often lead to long-wavelength displacements in this order. In unsymmetrical systems the  $(N \rightarrow V)$  transition, which gives rise to the K-band, is generally accompanied by some overall migration of electrons; <sup>23</sup> this is largely analogous to that postulated by the valence-bond resonance picture <sup>24</sup> and is often the most important factor to be considered.

Either theory would predict that this migration towards the CN group in benzonitrile [see (I)] would be rendered more difficult, that the K-band would be displaced to shorter wavelengths when a CH is replaced by the more electronegative N, and that this effect would be especially pronounced for 4-cyanopyridine. Even greater effects might be predicted for the cyanopyridinium ions. The prediction is borne out for the neutral cyanopyridines, but not for the ions. In the latter there is presumably no overall electron migration towards CN on excitation.

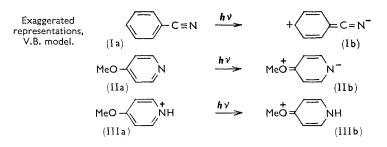
In pyridines and pyridinium ions containing saturated substituents the direction of the electron migration is undoubtedly towards the ring-nitrogen atom or NH<sup>+</sup> group, respectively [see (II) and (III)]. Here the bathochromic effect of a substituent (especially in the 4-position), on the K-band, should be determined by its mesomeric effect according to the valence-bond model, and by its inductomeric polarisability according to the author's model.

In this connection the strong bathochromic effects of the higher halogens in the pyridine series are noteworthy, bromine being equal to methoxyl, and iodine almost equal to amino in the neutral species, while 4-bromine actually has a greater effect than 4-methoxyl in the cations. A comparison between the ionisation constants of 4-bromo- $(pK_a 3.8)$  and 4-iodo- (4.1) with those <sup>16</sup> of 4-methoxy- (6.6) and 4-amino-pyridine (9.2) rules out the equalities in mesomeric effects Br = MeO and  $I = NH_2$ .

By contrast, in *para*-substituted nitrobenzenes the bathochromic effects, on the Kbands, of all halogens,<sup>25</sup> including iodine (34 mµ), are smaller than that of methoxyl <sup>26</sup> (45 mµ) and much smaller than that of amino  $^{27}$  (113 mµ). For *para*-disubstituted benzenes the facility of the overall electron migration which accompanies the  $N \longrightarrow V$  transition, and hence (in highly polar systems) the shift of the K-band, is paralleled by the "interaction dipole moment " (deviation from additivity) in the ground state. (This correlation is demanded equally by the valence-bond and the author's <sup>23</sup> theory.) In accord with this parallelism, the interaction moment  $^{28}$  is considerably greater in 4-methoxy- (0.32 D) than in 4-chloro- (0.19 D) or 4-bromo-nitrobenzene (0.21 D), but is about the same (0.12 ---)0.15 D) in 4-chloro-, 4-bromo-, and 4-methoxy-pyridine. These results illustrate the danger of attempts to establish a constant scale of electronic or spectral effect of substituents for apparently similar series of compounds.

Application to Some Structural Problems.—The electronic spectrum of the 4-methoxypyridinium ion now obtained shows the B-band which a previous spectrum under lower resolution<sup>3</sup> had not shown. This finding destroys the basis of the electronic-spectral argument by which Tsubomura <sup>13</sup> had deduced that the structure of this ion is represented mainly by the canonical form (IIIb) in the ground state. A normal pyridinium ion structure [*i.e.*, essentially (IIIa)] is thus indicated here (see also Spinner and White  $^{29}$ ).

 <sup>&</sup>lt;sup>23</sup> Spinner, Spectrochim. Acta, 1961, 17, 545; Spinner and Burawoy, *ibid.*, p. 558.
 <sup>24</sup> Lewis and Calvin, Chem. Rev., 1939, 25, 273.


<sup>&</sup>lt;sup>25</sup> Burawoy and Thompson, J., 1956, 4314.

<sup>&</sup>lt;sup>26</sup> Burawoy and Chamberlain, J., 1952, 2310.

 <sup>&</sup>lt;sup>27</sup> Burawoy and Critchley, *Tetrahedron*, 1959, **5**, 340.
 <sup>28</sup> Sharpe and Walker, *J.*, 1961, 4522.
 <sup>29</sup> Spinner and White, *J.*, 1962, 3115.

#### Some Monosubstituted Pyridines and Pyridinium Ions. [1963]3859

In connection with the controversy about the structure of the cation of 4-pyridone <sup>30,31</sup> it seemed desirable to look for signs of a B-band in its cation spectrum (none had been reported previously<sup>3</sup>). Inflexions at 239, 244, and (very faintly) at 251 mµ have, in



fact, now been found, as required for a 4-hydroxypyridinium structure (III; HO in place of MeO) for this ion. (However, while the spectrum of the 4-methoxypyridinium ion is merely displaced to slightly longer wavelengths in very strong sulphuric acid, that of the 4-pyridone cation is displaced to slightly shorter wavelengths, and two more inflexions, at 246 and 248 m $\mu$ , appear.)

The vibration spectra of 2- and 4-aminopyridine, unlike those of other 2- and 4-substituted pyridines,<sup>29,32</sup> change considerably on cation formation,<sup>33</sup> and the only really intense bands in the infrared spectra of the former two ions are those due to vibrations involving the exocyclic nitrogen atom. From this and other evidence it was concluded <sup>33</sup> that the positive charge there resides essentially on that atom [*i.e.*, the structure of the 4-substituted ion is essentially (IV). The electronic spectrum of the 2-aminopyridine cation 1,2 is equally compatible with this type and the normal pyridinium type of structure for this ion. On the other hand, in the light of the knowledge now obtained, the shift of the K-band on cation formation by 4-aminopyridine (22 m $\mu$ ) seems unexpectedly small in terms of a normal pyridinium ion structure (cf. the corresponding shifts of 35 m $\mu$  for 4-methylthio-,<sup>4</sup> 40 m $\mu$  for 4-iodo-, and 18 m $\mu$  for 4-methoxy-pyridine). In agreement with this view, Essery and Schofield <sup>34</sup> report long-wavelength shifts not greater than 25 m $\mu$  on cation formation by substituted 4-aminopyridines in which there is

essentially no steric hindrance, while there is a shift of at least \* 30 m $\mu$  in the case of 4-amino-N,N,3,5-tetramethylpyridine, the H (IV) cation of which should have a normal pyridinium ion structure because here the coplanarity required for (IV) is not sterically possible.

The author thanks Mr. A. Arandjelovic for technical assistance.

DEPARTMENT OF MEDICAL CHEMISTRY, INSTITUTE OF ADVANCED STUDIES, THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, A.C.T., AUSTRALIA. [Received, December 28th, 1962.]

\* The neutral species shows a double peak; the shift of the main peak is 50 m $\mu$ , but this figure is presumably misleading.

<sup>30</sup> Sensi and Gallo, Ann. Chim. appl. (Italy), 1954, 44, 232; Spinner, J., 1960, 1226.

<sup>31</sup> Jones, Katritzky, and Lagowski, Chem. and Ind., 1960, 870; Katritzky and Jones, Proc. Chem. Soc., 1960, 313. <sup>32</sup> Spinner, following paper.

<sup>33</sup> Spinner, J., 1962, 3119.
<sup>34</sup> Essery and Schofield, J., 1961, 3939.