View Article Online View Journal

NJC Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: D. Chen, L. Lin, T. Sheng, Y. Wen, X. Zhu, L. Zhang, S. Hu, R. Fu and X. Wu, *New J. Chem.*, 2018, DOI: 10.1039/C7NJ04048B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/njc

Published on 10 January 2018. Downloaded by University of Frankfurt on 11/01/2018 04:52:36.

YAL SOCIETY CHEMISTRY

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Syntheses, structures, luminescence and magnetic properties of seven isomorphous metal-organic frameworks based on 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole

Dong-Hui Chen^{ab}, Ling Lin^{ab}, Tian-Lu Sheng^a, Yue-Hong Wen^a, Xiao-Quan Zhu^{ab}, Lin-Tao Zhang^{ab}, Sheng-Min Hu^a, Rui-Biao Fu^a and Xin-Tao Wu^{*a}

We report herein seven novel lanthanide metal-organic frameworks (Ln-MOFs), $[M(L_{27})(DMA)(H_2O)\cdot XH_2O]_n$ (**TCZ-M**), (**M** = Nd, Sm, Eu, Gd, Tb, Dy, Ho), (**X** = 2 or 3) (**H**₃**L**₂₇ = 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole, DMA = N,N-dimethylacetamide, TCZ = "T"-shape carbazole-based MOFs, L_{27} = fully deprotonated $H_3L_{27}^{3-1}$ ligand). X-ray crystallography showed that all of the **TCZ-M** (**M** = Nd, Sm, Eu, Gd, Tb, Dy, Ho) are isomorphous and possesses a 3,6-connected three-dimensional (3D) framework with a point symbol of $\{4\cdot 6^2\}_2\{4^2\cdot 6^{10}\cdot 8^3\}$. The photoluminescence measurement indicates that **TCZ-Eu** shows reddish-orange emission bands and **TCZ-Sm** shows both visible and near-infrared (NIR) emissions bands. Magnetic susceptibility measurements show deviations from the Curie law mainly owing to the split of the ground term due to the ligand field and spin–orbit coupling in **TCZ-Eu** and **TCZ-Sm**. The magnetic properties of **TCZ-M** (**M** = Nd, Gd, Tb, Dy, Ho) are also investigated, and the results indicate a ferromagnetic interaction between Tb³⁺ magnetic centers in TCZ-Tb and antiferromagnetic interactions in **TCZ-M** (**M** = Nd, Gd, Dy, Ho).

Introduction

Metal-organic frameworks (MOFs), assembled from organic linkers and metal nodes, have been explored for potential application in optical, magnetic, separation, gas sorption and catalysis fields.¹ The flexibility of organic linkers and metal nodes provides the opportunity for engineering the properties and structures of the MOFs.²

The research on lanthanide metal-organic frameworks (Ln-MOFs), usually composed of trivalent lanthanide ions and aromatic multicarboxylate ligands, is an important branch of the study in MOFs fields.³ Trivalent lanthanide ions have attracted great attention due to their intense and sharp $f \rightarrow f$ emissions. For example, Eu³⁺ ion and Sm³⁺ ion have rich spectroscopic properties as a result of multifold electronic transitions. The Ln-MOFs based on Eu³⁺ ions usually emit red luminescence due to the multifold electronic transitions from the ⁵D₀ energy level to ⁷F_J and the Ln-MOFs based on Sm³⁺ ions emit visible and near-infrared (NIR) emissions sometimes which due to the multifold electronic

transitions originating from the ${}^{4}G_{5/2}$ energy level to ${}^{6}H_{J}$ (visible) and ⁶F_J (NIR). The properties of Ln-MOFs could be used in potential applications in light-emitting diodes (LEDs), biological applications (such as immunoassay and magnetic resonance imaging), photoluminescent sensors.4 Unique magnetic properties are also one of the advantages of trivalent lanthanide ions.⁵ Thus, Ln-MOFs based on trivalent lanthanide ions are ideal multifunctional materials, as they are able to incorporate with the porous properties, magnetic properties and photoluminescent properties.⁶ However, the forbidden f-f transitions of lanthanide ions exhibit a very small molar absorption coefficient and relatively weak UV absorption with luminous efficiency.⁷ Fortunately, the aromatic low multicarboxylate compound is one of the most important organic ligands in construction of functionalized metal-organic frameworks.⁸ And it was often used as bridge ligands for construction of luminescent Ln-MOFs. Because it has strong absorption (conjugate with rigid structures) in the ultraviolet region which is called "antenna effect".9 The lanthanide metalorganic frameworks, assembled with aromatic multicarboxylate ligands, may perform excellent "antenna effect".10 Therefore, with excellent structural diversity and amazing physical properties related to unique 4f-electrons, Ln-MOFs occupy a special position among MOFs. Recently, there are some works about Ln-MOFs has been reported already according to these phenomena.¹¹

Considering all of the above-mentioned, 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H_3L_{27}) , a conjugated tricarboxylic acid ligand, was employed as an organic linker. And its reaction with the nitrates of trivalent lanthanide ions

^{a.} State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, PR China.

E-mail: wxt@fjirsm.ac.cn

^{b.} University of the Chinese Academy of Sciences, Beijing, 100049, China.

Electronic Supplementary Information (ESI) available: Selected bond lengths and angles, PXRD curve, TGA curve, IR spectra, UV-Vis spectra. CCDC-1553995 for TCZ-Nd, CCDC-1553996 for TCZ-Sm, CCDC-1553997 for TCZ-Eu, CCDC-1553998 for TCZ-Gd, CCDC-1553999 for TCZ-Tb, CCDC-1554000 for TCZ-Dy, CCDC-1554001 for TCZ-Ho. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x.

DOI: 10.1039/C7NJ04048B Journal Name

ARTICLE

was predicted to form novel functional Ln-MOFs. Herein, we present seven three-dimensional Ln-MOFs, $[M(L_{27})(DMA)(H_2O)\cdot XH_2O]_n$ (TCZ-M), (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho), (X = 2 or 3) (DMA = N,N-dimethylacetamide, TCZ = "T"-shape carbazole-based MOFs), which exhibit good luminescent and magnetic properties, respectively.

Experimental

Materials and Methods

Potassium tert-butoxide, 4,4'-dibromobiphenyl, ethyl 4fluorobenzoate, potassium carbonate, tetrakis(triphenylphosphine)palladium(0), $Nd(NO_3)_3 \cdot 6H_2O_1$ $Sm(NO_3)_3 \cdot 6H_2O_1$ Eu(NO₃)₃·6H₂O, Gd(NO₃)₃·6H₂O, Tb(NO₃)₃·6H₂O, Dy(NO₃)₃·6H₂O, Ho(NO₃)₃·6H₂O and solvents were purchased commercially and used directly. Elemental analyses (C, H and N) were performed with an Elementar Vario EL-Cube Element Analyzer. Powder Xray diffraction (PXRD) data were collected on a Rigaku MiniFlex 600 diffractometer using Cu K α radiation (λ = 0.154 nm). Infrared spectra were recorded with KBr pellets in the range 4000-400cm⁻¹ on a Perkin-Elmer Spectrum One FT-IR spectrometer. Thermogravimetric analysis (TGA) experiments were carried out on a NETZSCH STA 449C Jupiter thermogravimetric analyzer in flowing nitrogen with the sample heated in an Al₂O₃ crucible from room temperature to 1000 °C at a heating rate of 10 K·min⁻¹. Metal elemental analyses (for lanthanide metal ions) were performed with a

HORIBA Jobin Yvon Ultima2 Inductively Coupled Plasma OES spectrometer (ICP). Magnetic susceptibilities of crystalline samples were measured with a Quantum Design MPMS-XL SQUID susceptometer under an applied magnetic field of 1 kOe in the 2–300 K range. Diamagnetic corrections were made using Pascal's constants.¹²

Synthesize of 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H_3L_{27}) :

The synthesis in this work start from commercially available 4,4'-dibromobiphenyl. $H_{3}L_{27}$ was synthesized according to the literature procedure and the synthetic method is shown in Supporting Information. (Scheme S1)¹³

Synthesis of [Nd(L₂₇)(DMA)(H₂O)·3H₂O]_n (TCZ-Nd)

Solvothermal reaction of Nd(NO₃)₃·6H₂O (21.9 mg, 0.05 mmol), 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H_3L_{27}) (26.3 mg, 0.05 mmol) in the mixture of N,N'-dimethylacetamine (DMA) (2 ml) and H₂O (0.5 ml) at 348 K for 4 days gave rise to lavender prism crystals of **TCZ-Nd** (19.3 mg, Yield: 48.8%). Anal. Calcd (%) for C₃₇H₃₅N₂O₁₁Nd: C 53.67, H 4.26, N 3.38. Found: C 53.66, H 4.26, N 3.38.

Synthesis of [Sm(L₂₇)(DMA)(H₂O)·3H₂O]_n (TCZ-Sm)

Solvothermal reaction of Sm(NO₃)₃·6H₂O (22.2 mg, 0.05 mmol), 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H_3L_{27}) (26.3 mg, 0.05 mmol) and 69% concentrated nitric acid (10 μ L),

Compound	TCZ-Nd	TCZ-Sm	TCZ-Eu	TCZ-Gd
Empirical formula	C37H35N2O11Nd	C37H33N2O10Sm	C37H33N2O10Eu	C37H33N2O10Gd
Formula weight	827.91	816.00	817.60	822.90
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	15.986(7)	15.793(7)	15.776(3)	15.696(4)
b(Å)	8.403(3)	8.363(3)	8.3587(16)	8.307(2)
c(Å)	28.487(13)	28.515(12)	28.529(5)	28.470(8)
<i>α</i> (°)	90	90	90	90
$\beta(^{\circ})$	96.253(5)	96.516(7)	96.501(4)	96.418(5)
γ(°)	90	90	90	90
$V(\text{\AA}^3)$	3804(3)	3742(3)	3737.9(12)	3689.0(17)
Ζ	4	4	4	4
Temperature(K)	293(2)	293(2)	293(2)	293(2)
$D(Mg m^{-3})$	1.445	1.448	1.453	1.517
$\mu(\text{mm}^{-1})$	1.414	1.619	1.727	1.848
F(000)	1676	1644	1648	1652
R_1^a , $wR2b(I \ge 2\sigma(I))$	0.0879,0.1979	0.0770,0.1846	0.0530,0.1253	0.0496, 0.1199
$\theta_{\text{ranges}}(\text{deg})$	2.53 to 27.51	2.59 to 27.46	2.54 to 27.52	2.55 to 27.49
h,k,l ranges	$-20 \le h \le -20$	$-20 \le h \le 20$	$-20 \le h \le 20$	$-17 \le h \le 20$
	$-10 \le k \le 8$	$-10 \le k \le 10$	$-10 \le k \le 10$	$-10 \le k \le 10$
	-36≤ <i>l</i> ≤36	-36≤ <i>k</i> ≤33	-36≤ <i>k</i> ≤35	$-36 \le k \le 36$
GOF on F^2	1.169	1.125	1.108	1.133

This journal is © The Royal Society of Chemistry 20xx

Jo	urr	nal	Na	m	e

Compound	TCZ-Tb	TCZ-Dy	TCZ-Ho		
Empirical formula	C37H33N2O10Tb	C ₃₇ H ₃₃ N ₂ O ₁₀ Dy	C ₃₇ H ₃₅ N ₂ O ₁₁ Ho		
Formula weight	824.57	828.15	848.60		
Crystal system	Monoclinic	Monoclinic	Monoclinic		
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$		
<i>a</i> (Å)	15.729(4)	15.735(7)	15.682(5)		
$b(\text{\AA})$	8.3089(18)	8.290(3)	8.316(3)		
$c(\text{\AA})$	28.483(7)	28.436(12)	28.526(11)		
<i>α</i> (°)	90	90	90		
β (°)	96.448(4)	96.414(8)	96.325(9)		
γ(°)	90	90	90		
$V(\text{\AA}^3)$	3699.1(14)	3686(3)	3697(2)		
Ζ	4	4	4		
Temperature(K)	293(2)	293(2)	293(2)		
$D(Mg m^{-3})$	1.481	1.492	1.524		
$\mu(\text{mm}^{-1})$	1.962	2.077	2.19		
F(000)	1656	1660	1704		
R_1^{a} ,w $R2b(I \ge 2\sigma(I))$	0.0573,0.1373	0.0511,0.1250	0.0842,0.1685		
$\theta_{\text{ranges}}(\text{deg})$	2.55 to 27.51	2.56 to 27.47	2.55 to 27.50		
h,k,l ranges	$-20 \le h \le 20$	$-20 \le h \le 20$	$-17 \le h \le 20$		
	$-10 \le k \le 10$	$-10 \le k \le 10$	$-10 \le k \le 10$		
	-35≤ <i>l</i> ≤36	-36≤ <i>l</i> ≤36	-36≤ <i>l</i> ≤36		
GOF on F^2	1.119	1.094	1.183		
^a $R = \sum F_0 - F_C / \sum F_0 $. ^b $wR_2 = [P[w(F_0^2 - F_C^2)^2] / \sum [(F_0^2)^2]]^{1/2}$.					

Table 2 Crystal and X-ray experimental data for compounds TCZ-Tb, TCZ-Dy, TCZ-Ho.

which is used for regulating the *pH* value, in the mixture of DMA (2 ml) and H₂O (0.5 ml) at 348 K for 4 days gave rise to lavender prism crystals of **TCZ-Sm** (17.8 mg, Yield: 44.9%). Anal. Calcd (%) for $C_{37}H_{35}N_2O_{11}Sm$: C 53.28, H 4.23, N 3.36. Found: C 53.28, H 4.25, N 3.35.

Synthesis of $[Eu(L_{27})(DMA)(H_2O)\cdot 2H_2O]_n$ (TCZ-Eu)

Solvothermal reaction of Eu(NO₃)₃·6H₂O (22.3 mg, 0.05 mmol), 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H_3L_{27}) (26.3 mg, 0.05 mmol) and 69% concentrated nitric acid (10 μ L) in the mixture of DMA (2 ml) and H₂O (0.5 ml) at 348 K for 4 days gave rise to lavender prism crystals of **TCZ-Eu** (24.3 mg, Yield: 60.9%). Anal. Calcd (%) for C₃₇H₃₃N₂O₁₀Eu: C 54.35, H 4.07, N 3.42. Found: C 54.36, H 4.06, N 3.41.

Synthesis of [Gd(L₂₇)(DMA)(H₂O)·2H₂O]_n (TCZ-Gd)

Solvothermal reaction of Gd(NO₃)₃·6H₂O (22.5 mg, 0.05 mmol), 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H₃L₂₇) (26.3 mg, 0.05 mmol) and 69% concentrated nitric acid (20 μ L) in the mixture of DMA (2 ml) and H₂O (0.5 ml) at 348 K for 4 days gave rise to lavender prism crystals of **TCZ-Gd** (20.6 mg,

Yield: 51.0%). Anal. Calcd (%) for $C_{37}H_{33}N_2O_{10}Gd$: C 54.00, H 4.04, N 3.40. Found: C 54.06, H 4.05, N 3.39.

Synthesis of [Tb(L₂₇)(DMA)(H₂O)·2H₂O]_n (TCZ-Tb)

Solvothermal reaction of Td(NO₃)₃·6H₂O (22.6 mg, 0.05 mmol), 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H_3L_{27}) (26.3 mg, 0.05 mmol) and 69% concentrated nitric acid (20 μ L) in the mixture of DMA (2 ml) and H₂O (0.5 ml) at 348 K for 4 days gave rise to lavender prism crystals of **TCZ-Tb** (20.4 mg, Yield: 50.6%). Anal. Calcd (%) for C₃₇H₃₃N₂O₁₀Tb: C 53.89, H 4.03, N 3.40. Found: C 53.90, H 4.02, N 3.40.

Synthesis of [Dy(L₂₇)(DMA)(H₂O)·2H₂O]_n (TCZ-Dy)

Solvothermal reaction of Dy(NO₃)₃·6H₂O (22.8 mg, 0.05 mmol), 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H_3L_{27}) (26.3 mg, 0.05 mmol) and 69% concentrated nitric acid (20 μ L) in the mixture of DMA (2 ml) and H₂O (0.5 ml) at 348 K for 4 days gave rise to lavender prism crystals of **TCZ-Dy** (22.1 mg, Yield: 54.5%). Anal. Calcd (%) for C₃₇H₃₃N₂O₁₀Dy: C 53.66, H 4.01, N 3.38. Found: C 54.36, H 4.06, N 3.38.

Synthesis of [Ho(L₂₇)(DMA)(H₂O)·3H₂O]_n (TCZ-Ho)

Fig.1 (a) Secondary building units (SBUs) of TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho); (b) The coordination environment of deprotonated L_{27} ligand molecule; (c) View of the 3D frameworks in TCZ-M(M=Nd, Sm, Eu, Gd, Tb, Dy, Ho).

Solvothermal reaction of Ho(NO₃)₃·6H₂O (22.8 mg, 0.05 mmol), 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole (H₃L₂₇) (26.3 mg, 0.05 mmol) and 69% concentrated nitric acid (30 μ L) in the mixture of DMA (2 ml) and H₂O (0.5 ml) at 348 K for 4 days gave rise to lavender prism crystals of TCZ-Ho (21.4 mg, Yield: 52.7%). Anal. Calcd (%) for C₃₇H₃₅N₂O₁₁Ho: C 52.37, H 4.16, N 3.30. Found: C 52.38, H 4.14, N 3.31.

Single-Crystal Structure Determination.

The X-ray single-crystal structure analyses for the TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) were collected on a Rigaku Saturn 724HG CCD diffractometer (Mo K α radiation λ = 0.71073Å graphite-monochromator) at 293(2) K. All of the structure were solved by direct methods and refined by full matrix leastsquares of F^2 using the SHELXL-2018/1 program.¹⁴ Hydrogen atoms were added in idealized positions. The SQUEEZE routine of the PLATON software suite was used in removing highly disordered solvent molecules.¹⁵ The final formulas were calculated according to the Squeeze results combined with the results from elemental analyses and thermogravimetric

Fig. 2 Topological representation of the 3, 6-connected network in TCZ-M (M=Nd, Sm, Eu, Gd, Tb, Dy, Ho).

analysis (TGA).¹⁶ Crystal data for TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) are presented in Table 1 and Table 2. Selected

The solid-state luminescence emission/excitation spectra and solid-state luminescence lifetimes were recorded on an Insruments FLS980 Edingburgh fluorescence spectrophotometer. The quantum yields of the solid-state samples were determined by an absolute method using an integrating sphere on an Edingburgh Insruments FLS920 spectrometer. The lifetimes of the solid-state samples were acquired on an Edinburgh Analytical FLS920 instrument with a Picoseconds Laser Diode.

Results and discussion

Crystal structure of TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho)

Structural analysis according to single crystal X-ray diffraction indicates TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) are isomorphous, crystallize in the monoclinic $P2_1/c$ space group. As shown in Fig.1, TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) exhibit 3D frameworks and the asymmetric unit includes a fully deprotonated L₂₇ ligand, a respective lanthanide metal cation, a coordinated DMA molecule, a coordinated H₂O molecule and two or three free H₂O molecules. Each lanthanide metal cation is eight coordinated by four O atoms from two carboxyl groups of L_{27} ligands, an O atom from a DMA molecule, an O atom from a H₂O molecule and two O atoms from two carboxyl groups which are the bridge between two lanthanide metal cations.

Topologically, the L_{27} ligand could be regard as 3-connected node and two lanthanide metal cations bridged by two carboxyl groups of L₂₇ ligands could be simplified as a 6connected node. As shown in Fig.2, the structure of TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) can be described as a rtl rutile 3, 6-connected network with a Schläfli symbol of ${4 \cdot 6^2}_2 {4^2 \cdot 6^{10} \cdot 8^3}.^{17}$

Fig. 3 Solid-state emission spectra of TCZ-Eu.

Journal Name

4 | J. Name., 2012, 00, 1-3

Published on 10 January 2018. Downloaded by University of Frankfurt on 11/01/2018 04:52:36.

X-ray powder diffraction and thermal analysis

Powder X-ray diffraction (PXRD) for the bulk samples of TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) were carried out at room temperature. The experimental PXRD patterns also proves that TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) are isomorphous structures and all of them correspond well with the simulated from the data of single crystal X-ray diffraction and are shown in Fig. S2 and Fig. S3. To estimate the thermal stability, thermogravimetric analysis (TGA) experiments were performed on polycrystalline samples of TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) under a N_2 atmosphere with a heating rate of 10 °C·min⁻¹ in the range of 30 - 800 °C. From room temperature to 170 $^{\circ}$ C, a weight loss of 3 – 5 % is ascribed to the loss of the free solvent molecules between the crystals. From 175 to 275 °C, free solvent molecules and coordinated DMA molecules were removed generally with a weight loss of 19 - 22%. The frame work collapses and decomposes after 540 °C. (Fig. S4)

Photoluminescence properties

The photoluminescence properties of **TCZ-M** (**M** = Nd, Sm, Eu, Gd, Tb, Dy, Ho) and **H₃L₂₇** ligand were investigated under room temperature. The photophysical data are summarized in **Table 3**. The free solid-state **H₃L₂₇** ligand show a blue fluorescent emission band at 459 nm under 375 nm wavelength excitation with decay lifetime $\tau_{H_{3L_{27}}}$ = 3.78 ns, which is probably due to $\pi^* \rightarrow \pi$ transitions.¹⁸ Under excitation at 399 nm, the solid-state emission spectrum of **TCZ-Eu** was observed with sharp and well resolved emission peak (**Fig. 3**). **TCZ-Eu** displays emission bands at 580, 592, 617, 652, 699 nm in the visible region with decay lifetimes about 470 µs, coming from the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (*J* = 0,

Fig. 5 Solid-state emission spectra of TCZ-M (M = Nd, Gd, Tb, Dy, Ho).

1, 2, 3, 4) transitions of Eu³⁺ ions. The most intense emission peak at 618 nm is due to the electric dipole induced ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition, which is highly sensitive to the coordination environment of Eu³⁺ ions. With lower site symmetry of Eu³⁺ ions, the intensity of the emission peak at 618 nm increase obviously. The second intense emission at 594 nm corresponds to the magnetic dipole induce ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition, which is fairly insensitive to the environment of the Eu³⁺ ions.¹⁹

The Sm³⁺ ion in **TCZ-Sm** has rich spectroscopic properties as a result of multifold electronic transitions originating from the ${}^{4}G_{5/2}$ energy level to ${}^{6}H_{J}$ (J = 5/2, 7/2, 9/2, 11/2, 13/2, 15/2) and ${}^{6}F_{J}$ (J = 1/2, 3/2, 5/2, 7/2, 9/2, 11/2). Both visible and nearinfrared (NIR) luminescence could be produced by the multifold electronic transitions. So far, Sm³⁺-based emitting compounds are rather limited and even less are concerned about their near-infrared emissions. Upon excitation at 370 nm at room temperature, the solid sample of **TCZ-Sm** displays multiple emission peaks at 427 (ligand), 562 (${}^{6}H_{5/2}$), 598 (${}^{6}H_{7/2}$), 644 (⁶H_{9/2}), 704 (⁶H_{11/2}), 786 (⁶H_{13/2}), 872 (⁶F_{1/2}), 896 (⁶F_{3/2}), 914 (${}^{6}H_{13/2}$), 940 (${}^{6}F_{5/2}$), 1020 (${}^{6}F_{7/2}$), 1162 (${}^{6}F_{9/2}$), 1287 (${}^{6}F_{11/2}$) nm (Fig. 4). The nature of these emissions can be confirmed by the measurement of their decay. The broad band centered at 427 nm is attributable to the emission of the L_{27} ligand with a decay lifetime 2.22 ns, which is probably due to $\pi^* \rightarrow n \text{ or } \pi^*$ $\rightarrow \pi$ transitions. The remaining five narrow peaks (562, 598, 644, 699, 808 nm) has decay lifetimes approximately 4.0 µs, which are correlated with the transitions from ${}^{4}G_{5/2}$ to ${}^{6}H_{5/2}$, ⁶H_{7/2}, ⁶H_{9/2}, ⁶H_{11/2}, ⁶H_{13/2}, respectively.²⁰

	Table 3	Table 3 Photophysical Parameters of H ₃ L ₂₇ and compounds TCZ-M (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho).						
	${ m H}_{3}{ m L}_{27}$	TCZ-Nd	TCZ-Sm	TCZ-Eu	TCZ-Gd	TCZ-Tb	TCZ-Dy	TCZ-Ho
λ _{em} (nm) 459	426	427, 562, 598, 644, 704, 786, 872, 896, 914, 940, 1020, 1162, 1287	580, 592, 617, 652, 699	430	429	429	413
τ (ns)	3.78	1.63	2.22 and 4×10 ³	4.7×10 ⁵	1.15	1.27	1.10	0.83
Ф (%)	14.26	2.11	0.92 (in visible light range)	15.46	7.86	6.63	6.25	< 0.5

DOI: 10.1039/C7NJ04048B Journal Name

Fig. 6 Plots of χ_{M} (black), $\chi_{M}T$ and χ_{M}^{-1} vs. *T* for **TCZ-Nd** (a), **TCZ-Gd** (b), **TCZ-Tb**(c), **TCZ-Dy**(d), **TCZ-Ho**(e).

As shown in **Fig.5**, the solid-state emission spectra of **TCZ-M** (**M** = Nd, Gd, Tb, Dy) display intense emission bands centered at 426, 430, 429, 429 nm respectively under excitation at 370 nm. The blue shifts of **TCZ-M** (**M** = Nd, Gd, Tb, Dy) are tentatively assigned strong electrostatic interaction between the **L**₂₇ ligands and metal ions by donation of the lone pair electrons of O atoms to the empty orbitals of the metal ions. ^{13,18a,18d,21}The crystals of **TCZ-Ho** exhibit the blue emission with an emission maximum at 413 nm and the blue shift may due to the absorption of the Ho³⁺ ions in **TCZ-Ho**. (**Fig.5**) The emission decay lifetimes of **TCZ-M** (**M** = Nd, Gd, Tb, Dy, Ho) were found to be $\tau_{TCZ-Nd} = 1.626$ ns, $\tau_{TCZ-Gd} = 1.147$ ns, $\tau_{TCZ-Tb} = 1.274$ ns, $\tau_{TCZ-Dy} = 1.103$ ns and $\tau_{TCZ-Ho} = 0.829$ ns.

Magnetic properties

The magnetic properties were measured using a crystalline sample, whose phase purity was confirmed by powder X-ray diffraction. The temperature-dependent magnetic susceptibility of **TCZ-M** (M = Nd, Sm, Eu, Gd, Tb, Dy, Ho) was investigated in the range of 2 – 300 K at a direct current field of 1.0 kOe.

Magnetic studies that this series of Ln-MOFs shows different magnetic properties. The results are illustrated in Fig. 6 as plots of $\chi_{\rm M} T$ and $\chi_{\rm M}$ versus *T*, where $\chi_{\rm M}$ is the molar magnetic susceptibility.

The magnetic properties of lanthanide (III) ions are obviously different from those of 3d ions. The 4f orbitals are shielded by the fully occupied 5s and 5p orbitals and the unfilled magnetic shell of electrons (the 4f shell) imbedded in the interior of the ion. The $4f^n$ electrons are almost not involved in the bonds between the lanthanide (III) ion and its nearest neighbors. This makes the energy states of the $4f^n$ configurations approximate to the energy states of the free ions in a first approximation. The influence of the environment

in Ln-MOFs is much less pronounced than in the 3d ions in most of MOFs. $^{\rm 22}$

As shown in **Fig. 6a**, the $\chi_{\rm M}T$ value at room temperature for **TCZ-Nd** is 2.96 cm³·K mol⁻¹ and the value is close to the expected values of 3.28 cm³·K·mol⁻¹ for two uncoupled Nd³⁺ ions ($g_{\rm Nd} = 8/11$, S = 9/2). The temperature dependence of the reciprocal molar susceptibility above 50 K follows the Curie-Weiss law with C = 3.18 cm³·K·mol⁻¹, $\theta = -48.03$ K. The relatively big negative Weiss constant indicates dominating antiferromagnetic interactions between Nd³⁺ ions.

The $\chi_{\rm M}T$ value of **TCZ-Gd** at 300 K is 14.00 cm³·K·mol⁻¹, which is slightly lower than the expected value (15.59 cm³·K·mol⁻¹) of two isolated spin-only Gd³⁺ ions ($g_{\rm Gd}$ = 1.99, S = 7/2). The $\chi_{\rm M}T$ value of **TCZ-Gd** keeps steadily from room temperature to 18 K with decreasing temperature. Upon cooling, the $\chi_{\rm M}T$ value of TCZ-Gd rapidly decreased to a value of 13.30 cm³·K·mol⁻¹. The magnetic behavior in the temperature range of 2-300 K follows the Curie–Weiss Law with C = 14.00 cm³·K·mol⁻¹ and Weiss constant θ = -0.398 K

Fig. 7 Plots of χ_M (black) and $\chi_M T$ (blue) vs. T for **TCZ-Sm**; the solid line corresponds to the best fit of χ_M (red) and $\chi_M T$ (green) through **eqn (1)**.

Published on 10 January 2018. Downloaded by University of Frankfurt on 11/01/2018 04:52:36.

Published on 10 January 2018. Downloaded by University of Frankfurt on 11/01/2018 04:52:36.

which indicates that there is weak antiferromagnetic coupling between the adjacent Gd^{3+} ions. Theoretically, Gd^{3+} ions with $4f^7$ configuration are very stable in terms of the surrounding environment. Its ground state is the ${}^8S_{7/2}$, there is no spin– orbit coupling since L = 0, the first excited state is 30000 cm⁻¹ above the ground state, the crystal field has no noticeable effect on its magnetic properties. (**Fig. 6b**)²³

For **TC2-Tb**, the room temperature $\chi_{\rm M}T$ value is 21.39 cm³·K·mol⁻¹, which is close to the theoretical value of 23.6 cm³·K·mol⁻¹ for two Tb³⁺ ions ($g_{\rm Tb} = 3/2$, S = 6). Upon cooling, the value increases gradually to reach a maximum of 21.81 cm³·K·mol⁻¹ at 64 K. And then decreases to 14.17 cm³·K·mol⁻¹ at 2 K. The magnetic behavior in the temperature range of 2-300 K follows the Curie–Weiss Law with C = 21.45 cm³·K·mol⁻¹ and Weiss constant $\theta = 0.077$ K. And there is weak ferromagnetic coupling between the Tb³⁺ ions at higher temperature. (**Fig. 6c**)

As shown in **Fig. 6d**, the $\chi_{\rm M}T$ value at room temperature for **TCZ-Dy** is 28.33 cm³·K·mol⁻¹ and the value is in agreement with the expected values of 26.77 cm³·K·mol⁻¹ for two uncoupled Dy³⁺ ions ($g_{\rm Dy} = 4/3$, S = 15/2). The $\chi_{\rm M}$ of TCZ-Dy obeys the Curie–Weiss law over the whole temperature range and resulted in C = 26.96 cm³·K·mol⁻¹, $\theta = -3.17$ K. The negative θ value of TCZ-Dy indicates the dominance of antiferromagnetic interactions between the Dy³⁺ ions.

The $\chi_{\rm M}T$ value of **TCZ-Ho** at 300 K is 28.14 cm³·K·mol⁻¹, which is very close to the expected value (28.12 cm³·K·mol⁻¹) of two isolated spin-only Ho³⁺ ions ($g_{\rm Ho} = 5/4$, S = 8). Moreover, the curves of $\chi_{\rm M}^{-1}$ vs T in 2-300 K obey the Curie-Weiss law ($C = 28.19 \text{ cm}^3$ ·K·mol⁻¹, $\theta = -2.58$ K), indicating the occurrence of weak antiferromagnetic coupling between adjacent Ho³⁺ ions. (**Fig. 6e**)

The ground term (⁶H) for Sm³⁺ ions is close in energy to the first excited state and it can be thermally populated at room temperature and above, this causes the deviation of the magnetic susceptibility plot from the Curie law. Since λ is small enough for the first excited state to be thermally populated (around 200 cm⁻¹), the magnetic susceptibility follows the numerical expression given in **eqn (1)**²³

Fig. 8 Plots of χ_M (black) and $\chi_M T$ (blue) vs. T for TCZ-Eu; the solid line corresponds to the best fit of χ_M (red) and $\chi_M T$ (green) through eqn (2).

$$\chi_M = \frac{N\beta^2}{3kTx}\frac{A}{B} \tag{1}$$

View Article Online DOI: 10.1039/C7NJ04048B

ARTICLE

With $A = (2.143x + 7.347) + (42.92x + 1.641)e^{-\frac{7x}{2}} + (283.7x - 0.6571)e^{-8x} + (620.6x - 1.94)e^{-\frac{27x}{2}} + (1122x - 2.835)e^{-20x} + (1813x - 3.556)e^{-55x/2}; B = 3 + 4e^{-7x/2} + 5e^{-8x} + 6e^{-27x/2} + 7e^{-20x} + 8e^{-55x/2}; x = \lambda/kT.$

And N stands for Avogadro's number; β stands for Bohr magneton, k stands for Boltzmann constant, T stands for temperature.

As shown in **Fig.7**, the best fit value for the spin-orbit coupling parameter is $\lambda = 196 \text{ cm}^{-1}$. Values around 200 cm⁻¹ are considered as expected and the magnetic susceptibility plot reproduced the theoretical values till 100 K. Below 100 K the experimental magnetic susceptibility values lie below the theoretical ones, which suggest some weak antiferromagnetic couplings amongst the Sm³⁺ ions.^{23b}

Similar to Sm³⁺, the ground term (⁷F) of Eu³⁺ is split into six 7FJ levels by the spin-orbit coupling, λ , with *J* ranging from 0 to 6. The value of λ is small enough for the first excited state to be thermally polulated (about 300 cm⁻¹). It also causes the deviation of the magnetic susceptibility plot from the Curie law. The magnetic susceptibility of Eu³⁺ in **TCZ-Eu** follows the numerical expression given in **eqn (2)**:¹⁹

$$\chi_M = \frac{N\beta^2}{3kTx}\frac{C}{D}$$
(2)

With C =
$$24 + \left(\frac{27x}{2} - \frac{3}{2}\right)e^{-x} + \left(\frac{135x}{2} - \frac{5}{2}\right)e^{-3x} + \left(189x - \frac{7}{2}\right)e^{-6x} + \left(405x - \frac{9}{2}\right)e^{-10x} + \left(\frac{1485x}{2} - \frac{11}{2}\right)e^{-15x} + \left(\frac{2457x}{2} - \frac{13}{2}\right)e^{-21x};$$
 D = $1 + 3e^{-x} + 5e^{-3x} + 7e^{-6x} + 9e^{-10x} + 11e^{-15x} + 13e^{-21x};$ x = λ/kT .

Best fit of the magnetic susceptibility data to **eqn (2)** in the temperature range 130 – 300 K gives λ = 358 cm⁻¹. Value around 300 cm⁻¹ are considered in the expected range and the magnetic susceptibility plot reproduces the theoretical values till 130 K. (**Fig. 8**) The deviation observed below 130 K can be due to weak ferromagnetic interactions between the Eu³⁺ ions.^{19b}

Conclusions

In summary, we have successfully prepared seven new Ln-MOFs, **TCZ-M** (**M** = Nd, Sm, Eu, Gd, Tb, Dy, Ho), with 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole. All of the seven Ln-MOFs are isomorphous and the structure could be described as a rtl rutile 3, 6-connected network with a Schläfli symbol of $\{4\cdot6^2\}_2\{4^2\cdot6^{10}\cdot8^3\}$. The strong photoluminescence of **TCZ-Eu** indicates it may be good potential candidates for red luminescent materials. For **TCZ-Sm**, it shows sensitized luminescence both in visible and near-infrared region. And other Ln-MOFs, **TCZ-M** (**M** = Nd, Gd, Tb, Dy, Ho), also display strong emissions in the visible region, which are similar to the

New Journal of Chemistry Accepted Manuscrip

ARTICLE

emission of the ligands. And the seven isomorphous MOFs with different luminescent properties indicates that they may be good potential candidates for luminescent materials by doping the lanthanide metal ions. The magnetic properties of **TCZ-M** (**M** = Nd, Sm, Eu, Gd, Tb, Dy, Ho) are very different, though the magnetic centers are mediated through the same carboxylate bridge. The Tb³⁺ ions in **TCZ-Tb** exhibit weak ferromagnetic coupling between the adjacent Tb³⁺, while weak antiferromagnetic coupling between adjacent ions occurs in **TCZ-M** (**M** = Nd, Gd, Dy, Ho). The Eu³⁺ in **TCZ-Eu** and the Sm³⁺ in **TCZ-Sm** is governed by the spin–orbit coupling and the deviations from the theoretical expression being as well due to the splitting of the ground term at low temperatures together with some magnetic interaction.

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (21233009 and 21203194), the 973 program (2014CB845603), the Strategic Priority Research Program of the Chinese Academy of Sciences , Grant No. XDB20000000.

References

- 1 (a) X. Sun, Y. Wang and Y. Lei, Chem. Soc. Rev., 2015, 44, 8019; (b) M. G. Campbell, S. F. Liu, T. M. Swager and M. Dincă, J. Am. Chem. Soc., 2015, 137, 13780; (c) Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815; (d) L.D. Tran, J. Ma, A. G. Wong-Foy and A. J. Matzger. Chem. Eur. J., 2016, 22, 5509; (e) P. Q. Liao, X. W. Chen, S. Y. Liu, X. Y. Li, Y. T. Xu, M. Tang, Z. Rui, H. Ji, J. P. Zhang and X. M. Chen, Chem. Sci., 2016, 7, 6528; (f) H. Xu, X. F. Liu, C. S. Cao, B. Zhao, P. Cheng and L. N. He, Adv. Sci., 2016, 3, 1600048; (g) J. B. DeCoste and G. W. Peterson, Chem. Rev., 2014, 114, 5695; (h) Y. Guo, X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong and B. Wang, J. Am. Chem. Soc., 2014, 136, 15485; (i) Y. M. Li, H. J. Lun, C. Y. Xiao, Y. Q. Xu, L. Wu, J. H. Yang, J. Y. Niu and S. C. Xiang, Chem. Commun., 2014, 50, 8558; (j) R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Coord. Chem. Rev., 2017, 41, https://doi.org/10.1016/j.ccr.2017.09.027; (k) L. Wang, Y. Ye, Z. Li, Q. Lin, J. Ouyang, L. Liu, Z. Zhang and S. Xiang, Cryst. Growth Des., 2017, 17, 2081.
- 2 (a) D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe and O. M. Yaghi, *Chem. Soc. Rev.*, 2009, 38, 1257; (b) Z. G. Gu, C. Zhan, J. Zhang and X. Bu, *Chem. Soc. Rev.*, 2016, 45, 3122; (c) D. H. Chen, T. L. Sheng, X. Q. Zhu, L. L., Y. H. Wen, S. M. Hu, R. B. Fu and X. T. Wu, *Z. Anorg. Allg. Chem.*, 2017, 643, 999; (d) Y. Ye, S. Xiong, X. Wu, L. Zhang, Z. Li, L. Wang, X. Ma, Q. H. Chen, Z. Zhang and S. Xiang, *Inorg. Chem.*, 2016, 55, 292; (d) Y. Ye, W. Guo, L. Wang, Z. Li, Z. Song, J. Chen, Z. Zhang, S. Xiang and B. Chen, *J. Am. Chem. Soc.*, 2017, 139, 15604; (e)Y. Wen, T. Sheng, X. Zhu, C. Zhuo, S. Su, H. Li, S. Hu, Q. L. Zhu and X. Wu, *Adv. Mater.*, 2017, 29, 1700778.
- (a) D. Yang, Y. Tian, W. Xu, X. Cao, S. Zheng, Q. Ju, W. Huang and Z. Fang, *Inorg. Chem.*, **2017**, 56, 2345; (b) H. Ma, L. Wang, J. Chen, X. Zhang, L. Wang, N. Xu, G. Yang and P. Cheng, *Dalton Trans.*, **2017**, 46, 3526; (c) M. N. Akhtar, Y. C. Chen, M. A. AlDamen and M. L. Tong, *Dalton Trans.*, **2017**, 46, 116; (d) Y. Han, P. Yan, J. Sun, G. An, X. Yao, Y. Li and G. Li, *Dalton Trans.*, **2017**, 46, 4642.
- 4 (a) L. Chen, H. Zhang, M. Pan, Z. W. Wei, H. P. Wang, Y. N. Fan and C. Y. Su, *Chem. Asian J.*, **2016**, 11, 1765; (b) J. M.

Stanley, B. J. Holliday, *Coord. Chem. Rev.*, **2012**, 256, 1520; (c) J. An, C. M. Shade, D. A. Chengelis-Czegan, S. Petoud, N. L. Rosi, *J. Am. Chem. Soc.*, **2011**, 133, 1220; (d) D. J. Lewis, P. B. Glover, M. C. Solomons, Z. Pikramenou, *J. Am. Chem. Soc.*, **2011**, 133, 1033; (e) J. Zhao, Y. N. Wang, W. W. Dong, Y. P. Wu, D. S. Li and Q. C. Zhang, *Inorg. Chem.*, **2016**, 55, 3265.

- 5 (a) C. Rincke, H. Schmidt and W. Voigt, Z. Anorg. Allg. Chem.,
 2017, 643, 437; (b) J. Q. Tao, W. W. Ju, Z. Zhou, L. Y. Jia, N. N. Chen, Y. S. Xue, J. Wang and X. C. Huang, Z. Anorg. Allg. Chem., 2016, 642, 1466.
- 6 (a) S. Biswas, H. S. Jena, S. Goswami, S. Sanda and S. Konar, *Cryst. Growth Des.*, **2014**, 14, 1287; (b) H. S. Lu, L. Bai, W. W. Xiong, P. Li, J. Ding, G. Zhang, T. Wu, Y. Zhao, J. M. Lee, Y. Yang, B. Geng, Q. Zhang, *Inorg. Chem.*, **2014**, 53, 8529; (c) J. J. Li, T. T. Fan, X. L. Qu, H. L. Han and X. Li, *Dalton Trans.*, **2016**, 45, 2924.
- 7 N. Dannenbauer, P. R. Matthes, T. P. Scheller, J. Nitsch, S. H. Zottnick, M. S. Gernert, A. Steffen, C. Lambert and K. Mueller-Buschbaum, *Inorg. Chem.*, **2016**, 55, 7396.
- 8 (a)W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas and C. A. Mirkin, *J. Am. Chem. Soc.*, **2014**, 136, 7261; (b) J. Yu, Y. Cui, C. D. Wu, Y. Yang, B. Chen and G. Qian, *J. Am. Chem. Soc.*, **2015**, 137, 4026; (c) P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill and M. J. Styles, *Chem. Soc. Rev.*, **2014**, 43, 5513.
- 9 H. Ji, X. Li, D. Xu, Y. Zhou, L. Zhang, Z. Zuhra and S. Yang, Inorg. Chem., 2017, 56, 156.
- (a) M. S. Wang, S. P. Guo, Y. Li, L. Z. Cai, J. P. Zou, G. Xu, W.W. Zhou, F. K. Zheng, G. C. Guo, *J. Am. Chem. Soc.*, **2009**, 131, 13572; (b) D. F. Sava, L. E. Rohwer, M. A. Rodriguez and T. M. Nenoff, *J. Am. Chem. Soc.*, **2012**, 134, 3983.
- (a) L.-Y. Zhang, L.-P. Lu, M.-L. Zhu and S.-S. Feng, *CrystEngComm*, **2017**, 19,1953; (b) M. N. Akhtar, Y. C. Chen, M. A. AlDamen and M. L. Tong, *Dalton Trans.*, **2017**, 46,116.
- 12 G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
- 13 D. H. Chen, L. Lin, T. Sheng, Y. Wen, S. Hu, R. Fu, C. Zhuo, H. Li and X. Wu, *CrystEngComm*, **2017**, 19, 2632.
- 14 (a) G. M. Shedrick, SHELXL-97, program for Refining Crystal Structure Refinement, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, *Acta Cryst.*, 2015, 71, 3.
- 15 (a) A. L. Spek, PLATON, Amultipurpose crystallographic tool; Utrecht University: Utrecht, The Netherlands, 2001; (b) A. L. Spek, Acta Cryst., 2009, 65, 148.
- (a) O. H. bner, A. Glçss, M. Fichtner and W. Klopper, J. Phys. Chem. A, 2004, 108, 3019; (c) Y. Wang, C. Tan, Z. Sun, Z. Xue, Q. Zhu, C. Shen, Y. Wen, S. Hu, Y. Wang, T. Sheng and X. Wu, Chem. Eur. J., 2014, 20, 1341.
- 17 V. A. Blatov, Struct. Chem., 2012, 23, 955.
- 18 (a) X. T. Zhang, L. M. Fan, W. L. Fan, B. Li, G. Z. Liu, X. Z. Liu and X. Zhao, *CrystEngComm*, **2016**, 18, 6914; (b) X. Y. Wan, F. L. Jiang, L. Chen, J. Pan, K. Zhou, K. Z. Su, J. D. Pang, G. X. Lyu and M. C. Hong, *CrystEngComm*, **2015**, 17, 3829; (c) Y. Gai, F. Jiang, L. Chen, M. Wu, K. Su, J. Pan, X. Wan and M. Hong, *Cryst. Growth Des.*, **2014**, 14, 1010; (d) X. Liu, Z. Xiao, A. Huang, W. Wang, L. Zhang, R. Wang and D. Sun, *New J. Chem.*, **2016**, 40, 5957; (e) L. Lin, D. H. Chen, R. M. Yu, X. L. Chen, W. J. Zhu, D. Liang, J. F. Chang, Q. Zhang and C. Z. Lu, *J. Mater. Chem. C*, **2017**, 5, 4495.
- (a) J. Rong, W. Zhang and J. Bai, *CrystEngComm*, **2016**, 18, 7728;
 (b) S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. van Veggel, M. H. Werts, F. A. J. Geurts and J. W. Hofstraat, *J. Phys. Chem. A*, **2000**, 104, 5457.
- 20 (a) A. Foucault-Collet, C. M. Shade, I. Nazarenko, S. Petoud and S. V. Eliseeva, *Angew. Chem. Int. Ed.*, **2014**, 53, 2927; (b) L. Sun, Z. Wang, J. Z. Zhang, J. Feng, J. Liu, Y. Zhao and L. Shi, *RSC Adv.*, **2014**, 4, 28481; (c) S. Biju, Y. K. Eom, J.-C. G. Binzli, H. K. Kim, *J. Mater. Chem. C*, **2013**, 1, 6935.

8 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

New Journal of Chemistry Accepted Manuscript

Journal Name

- 21 H. Y. Liu, H. Wu, J. F. Ma, Y. Y. Liu, B. Liu and J. Yang, *Cryst. Growth Des.*, **2010**, 10, 4795.
- 22 (a) L. Sorace, C. Benelli and D. Gatteschi, *Chem. Soc. Rev.*,
 2011, 40, 3092; (b) A. J. Freeman and R. E.Watson, *Phys. Rev.*,
 1962, 127, 2058.
- 23 (a) O. Kahn, Molecular Magnetism, VCH, New York, 1993; (b)
 B. Gil-Hernández, J. K. Maclaren, H. A. Höppe, J. Pasán, J. Sanchiz and C. Janiak, *CrystEngComm*, 2012, 14, 2635.

New Journal of Chemistry Accepted Manuscript

Graphical Abstract

Seven isomorphous lanthanide metal-organic frameworks with special luminescence and magnetic properties are synthesized and characterized.

