Nitro derivatives of cyclic sulfoximides of the 1,2-benzoisothiazole series

E. A. Serebryakov and S. G. Zlotin*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: zlotin@cacr.ioc.ac.ru

Nitro derivatives of 1-R-1,2-benzoisothiazol-3-one 1-oxide were synthesized by the reactions of 2-alkyl(phenyl)thio-4-nitro- and 4,6-dinitro-2-(phenylthio)benzamides with chlorine in 60% acetic acid. Analogous reactions of 2-(*n*-butylthio)-4-nitro- and 2-(*tert*-butylthio)-4-nitrobenzamides with chlorine afforded 2-butyl- and 2-H-1,2-benzoisothiazol-3-one 1-oxides, respectively. The proposed reaction mechanism includes the formation and subsequent transformations of S-alkyl-S-aryl- and S,S-diarylchlorosulfonium chlorides.

Key words: 1,2-benzoisothiazol-3-one 1-oxide, 1-R-1,2-benzoisothiazol-3-one 1-oxide, alkanethiols, thiophenol, 2,4-dinitrobenzamides, 2,4,6-trinitrobenzamides.

Cyclic sulfoximides, particularly 1,2-benzoisothiazole derivatives, possess various types of biological activity¹ such as antisecretory,² antihypertensive,³ and antispasmodic⁴ and can also reduce the sugar level in blood.⁴ Such compounds are most commonly synthesized by reactions of *ortho*-(alkylsulfinyl)benzoates with HN_3 .^{1,5–7} However, this technique is inconvenient for laboratory practice because of the risk of explosions. Nitro-1,2-benzoisothiazole sulfoximides remain unknown so far.

Recently, we have developed a selective synthesis of 2-R-6-nitro- and 2-R-4,6-dinitro-1,2-benzoisothiazol-3-one 1-oxides from the corresponding nitro derivatives of *N*-R-2-(benzylthio)benzamide and chlorine in aqueous organic solvents.⁸ One could assume that analogous reactions with 2-RS-benzamides containing no easily leaving benzyl group would proceed with retention of the C–S bond, yielding 1,2-benzoisothiazole sulfoximides.

To verify this assumption, the oxidative chlorination of 2-RS-4-nitro- and 2-RS-4,6-dinitrobenzamides bearing S-alkyl and S-phenyl substituents was studied.

The starting benzamides 2a-h were prepared by reactions of 2,4-dinitro- and 2,4,6-trinitrobenzamides (1a,b) with the corresponding thiols in DMF in the presence of Na₂CO₃.⁹ The reactions are regioselective; the reaction products recrystallized from PrⁱOH are individual 2-RS-nitrobenzamides 2a-h (¹H NMR data) (Scheme 1).

It turned out that the oxidative chlorination of compounds 2a-h affords structurally different products, depending on the nature of the substituent at the S atom and the number of nitro groups. Thus 2-alkylthio- (R' \neq Bu)

and 2-phenylthio-4-nitrobenzamides 2a,b,d,f, as well as 4,6-dinitro-2-phenylthiobenzamide (2h), react with chlorine in 60% AcOH without cleavage of the C-S bond to give the corresponding 1-R'-1,2-benzoisothiazol-3-one 1-oxides **3a,b,d,f,h** in 60–74% yields as the only reaction products. Chlorination of 2-(n-butylthio)-4-nitrobenzamide (2c) under the above conditions is accompanied by migration of the Buⁿ group from the sulfur atom to the N atom, affording 2-(n-butyl)-6-nitro-1,2-benzoisothiazol-3-one 1-oxide (4c) in 72% yield. The major products of the reactions of 2-(tert-butylthio)-4-nitrobenzamide (2e) with chlorine in 60% AcOH and in aqueous CH₂Cl₂ (water content is ~5%) are 6-nitro-1,2benzoisothiazol-3-one 1,1-dioxide (5) and 6-nitro-1,2benzoisothiazol-3-one 1-oxide (6) in 36 and 34% yields, respectively. Finally, chlorination of 2-(ethylthio)-4,6dinitrobenzamide (2g) in 60% AcOH gives sulfone 7 containing no isothiazole ring (Scheme 2).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1426-1431, August, 2002.

1066-5285/02/5108-1549 \$27.00 © 2002 Plenum Publishing Corporation

Reagents and conditions: *i*. Cl_2 , 60% AcOH; *ii*. Cl_2 , CH_2Cl_2 – H_2O (5%). *Note*. Substituents R and R' in compounds **3a,b,d,f,h** and **4c** correspond to those for compounds **2** in Scheme 1.

The compounds obtained were characterized by IR and ¹H NMR spectra and elemental analysis data (Tables 1–3). The structures of sulfoximides **3a,b,d,f,h** and oxide **4c** were determined by comparing their physicochemical and spectral data with those of 2-R'-1,2-benzoisothiazol-3-one 1-oxides **4a,c,d,f,h** (Scheme 3) synthesized from 2-(benzylthio)benzamides **9a,c,d,f,h** according to the known procedure.⁸

Scheme 3

Reagents and conditions: *i*. PhCH₂SH-K₂CO₃, DMF. *ii*. Cl₂, CH₂Cl₂-H₂O (5%).

Note. Substituents R and R' in compounds 4, 8, and 9 correspond to those for compounds 2 in Scheme 1.

Compounds **3a,d,f,h** differ from isomeric isothiazoslones **4a,d,f,h** in melting points and retention factors R_f (Tables 2, 3). The IR spectra of 1-R⁻⁶-nitro-1,2benzoisothiazol-3-one 1-oxides **3a,b,d,f,h** show less intense CO absorption bands compared to those for 2-R'-6-nitro-1,2-benzoisothiazol-3-one 1-oxides **4a,c,d,f,h**; in addition, these bands appear in the range of longer wavelengths (~1600 versus 1645-1715 cm⁻¹), which is characteristic of cyclic sulfimides.¹ In the ¹H NMR spectra of compounds **3a,b,d**, signals for the methylene protons are shifted upfield ($\delta \sim 3.50$) relative to analogous signals for products 4a,c,d (δ 3.70–3.95), which is usually observed while comparing N-CH₂- and $S-CH_2$ -containing compounds.¹⁰ Note that the $N-CH_2$ protons in 2-R'-1,2-benzoisothiazol-3-one 1-oxides **4a,c,d** are magnetically nonequivalent, whereas those in 1-R'-1,2-benzoisothiazol-3-one 1-oxides **3a,b,d** have the same chemical shifts, probably because of a lower barrier to the inversion of the S atom in compounds 3a,b,d with the ylide structure.¹¹ The methylene protons in 1-R'-isomers 3 are spatially closer to the annelated aromatic ring than those in 2-R'-isomers 4; this was confirmed by the nuclear Overhauser effect for the CH₂ and H(7) protons in compound **3a**, which did not occur in compound 4a.

The product of oxidative chlorination of 2-(n-butyl-thio)-4-nitrobenzamide (**2c**) proved to be identical with compound **4c** obtained independently from **9c**, and isothiazolones **5** and **6** are identical to authentic samples synthesized according to the known method.⁸

Apparently, the oxidative chlorination of 2-R'S-benzamides 2a-h proceeds through the formation of chlorosulfonium chlorides 10, whose subsequent reaction pathways depend on the nature of substituents R and R' (Scheme 4). For R' = Alk (R' \neq Bu) and R' = Ph, chlorides 10 are probably hydrolyzed with water con-

Scheme 2

Com- pound	Yield (%)	M.p./°C	Found(%) Calculated				Molecular formula
			С	Н	Ν	S	
2a	90	193—197	<u>47.92</u> 47.78	$\frac{4.40}{4.45}$	$\frac{12.53}{12.38}$	$\frac{14.02}{14.17}$	$C_9H_{10}N_2O_3S$
2b	80	178—180	<u>50.27</u> 49.99	<u>4.97</u> 5.03	<u>11.40</u> 11.66	<u>13.15</u> 13.34	$C_{10}H_{12}N_2O_3S$
2c	80	137—141	<u>52.10</u> 51.95	<u>5.68</u> 5.55	$\frac{10.88}{11.02}$	<u>12.30</u> 12.61	$C_{11}H_{14}N_2O_3S$
2d	76	121-125	<u>58.29</u> 58.04	$\frac{7.00}{7.14}$	<u>8.89</u> 9.02	<u>9.98</u> 10.33	$C_{15}H_{22}N_2O_3S$
2e	62	154—158	<u>52.16</u> 51.95	<u>5.49</u> 5.55	$\frac{10.79}{11.02}$	<u>12.47</u> 12.61	$C_{11}H_{14}N_2O_3S$
2f	72	195—197	<u>57.26</u> 56.93	<u>3.80</u> 3.67	$\frac{10.10}{10.21}$	<u>11.43</u> 11.69	$C_{13}H_{10}N_2O_3S$
2g	75	171—178	$\frac{40.03}{39.85}$	$\frac{3.41}{3.34}$	<u>15.21</u> 15.49	$\frac{11.71}{11.82}$	$C_9H_9N_3O_5S$
2h	64	238—243	<u>48.99</u> 48.90	<u>2.75</u> 2.84	<u>13.13</u> 13.16	<u>9.88</u> 10.04	$C_{13}H_9N_3O_5S$
3a	68	152—154	<u>44.85</u> 45.00	<u>3.26</u> 3.36	<u>11.39</u> 11.66	<u>13.40</u> 13.35	$\mathrm{C_9H_8N_2O_4S}$
3b	79	119—121	<u>47.01</u> 47.24	<u>4.05</u> 3.96	<u>11.26</u> 11.02	<u>12.79</u> 12.61	$C_{10}H_{10}N_2O_4S$
3d	65	100—102	<u>55.38</u> 55.54	<u>6.14</u> 6.21	<u>8.82</u> 8.64	$\frac{10.27}{9.88}$	$C_{15}H_{20}N_2O_4S$
3f	71	144—147	<u>54.20</u> 54.16	$\frac{2.88}{2.80}$	<u>9.60</u> 9.72	<u>10.95</u> 11.12	$\mathrm{C}_{13}\mathrm{H}_8\mathrm{N}_2\mathrm{O}_4\mathrm{S}$
3h	69	160—162	<u>47.00</u> 46.85	<u>2.21</u> 2.12	<u>12.75</u> 12.61	<u>9.84</u> 9.62	$C_{13}H_7N_3O_6S$
4 a	84	172—176	$\frac{45.15}{45.00}$	<u>3.20</u> 3.36	<u>11.83</u> 11.66	<u>13.13</u> 13.35	$C_9H_8N_2O_4S$
4c	72	113—115	<u>49.42</u> 49.25	$\frac{4.40}{4.51}$	<u>10.28</u> 10.44	<u>12.14</u> 11.95	$C_{11}H_{12}N_2O_4S$
4d	61	58—60	<u>55.76</u> 55.54	<u>6.32</u> 6.21	<u>8.63</u> 8.64	<u>10.05</u> 9.88	$C_{15}H_{20}N_2O_4S$
4f	68	211-213	<u>54.46</u> 54.16	<u>2.93</u> 2.80	<u>9.55</u> 9.72	$\frac{10.97}{11.12}$	$C_{13}H_8N_2O_4S$
4h	74	235—240	<u>46.94</u> 46.85	<u>2.08</u> 2.12	<u>12.77</u> 12.61	<u>9.45</u> 9.62	$C_{13}H_7N_3O_6S$
8a	54	198—200	<u>45.27</u> 45.19	<u>3.71</u> 3.79	<u>17.39</u> 17.57	—	$C_9H_9N_3O_5$
8c	83	122—125	<u>49.60</u> 49.44	<u>5.02</u> 4.90	<u>15.61</u> 15.72	—	$C_{11}H_{13}N_3O_5$
8d	69	107-110	<u>55.98</u> 55.72	<u>6.63</u> 6.55	<u>12.84</u> 13.00	_	$C_{15}H_{21}N_{3}O_{5}$
8f	75	195—199	<u>54.30</u> 54.36	<u>3.25</u> 3.16	<u>14.83</u> 14.63	—	$C_{13}H_9N_3O_5$
9a	72	168—170	<u>61.02</u> 60.74	<u>5.01</u> 5.10	<u>9.10</u> 8.85	<u>9.89</u> 10.13	$C_{16}H_{16}N_2O_3S$
9c	82	133—135	<u>62.93</u> 62.77	<u>5.92</u> 5.85	<u>8.00</u> 8.13	<u>9.52</u> 9.31	$C_{18}H_{20}N_2O_3S$
9d	74	110—112	<u>66.16</u> 65.97	<u>6.94</u> 7.05	<u>6.75</u> 6.99	$\frac{7.73}{8.00}$	$C_{22}H_{28}N_2O_3S$
9f	78	155-158	<u>66.21</u> 65.92	<u>4.55</u> 4.43	<u>7.47</u> 7.69	<u>9.04</u> 8.80	$C_{20}H_{16}N_2O_3S$

Table 1. Yields, melting points, and elemental analysis data for compounds 2a-h, 3a,b,d,f,h, 4a,c,d,f,h, 8a,c,d,f, and 9a,c,d,f

Table 2. ¹H NMR spectra of nitrobenzamides 2a-h, 8a,c,d,f, and 9a,c,d,f

2a 2b 2c (2d (1.31 (t, 3 H, $CH_2C\underline{H}_3$, $J = 5.0$); 3.02 (q, 2 H, $C\underline{H}_2CH_3$, $J = 8.0$); 7.62 (d, 1 H, H(6), $J = 6.0$); 7.63, 7.96 (both s, 1 H each, NH); 8.00 (d, 1 H, H(5), $J = 6.0$); 8.08 (s, 1 H, H(3)) 1.07 (t, 3 H, $CH_2CH_2C\underline{H}_3$, $J = 2.0$); 1.32 (q, 2 H, $CH_2C\underline{H}_2CH_3$, $J = 6.5$); 3.05 (q, 2 H, $C\underline{H}_2CH_2CH_3$, $J = 8.0$); 7.59 (br.s, 1 H, NH); 7.67 (d, 1 H, H(6), $J = 4.5$); 7.72 (br.s, 1 H, NH); 7.94 (d, 1 H, H(5), $J = 4.5$); 8.08 (s, 1 H, H(3)) 0.88 (t, 3 H, $CH_2CH_2CH_2C\underline{H}_3$, $J = 6.0$); 1.30–1.43 (m, 2 H, $CH_2CH_2C\underline{H}_2CH_3$); 1.58–1.71 (m, 2 H, $CH_2C\underline{H}_2CH_2CH_3$); 8.05 (t, 2 H, $C\underline{H}_2CH_2CH_2CH_3$, $J = 6.5$); 7.61 (br.s, 1 H, NH); 7.62 (d, 1 H, H(6), $J = 6.0$); 7.79 (br.s, 1 H, NH); 7.89 (d, 1 H, H(5), $J = 6.0$); 7.92 (s, 1 H, H(3)) 0.88 (t, 3 H, $(CH_2)_7C\underline{H}_3$, $J = 3.5$); 1.31 (br.s, 8 H, $(CH_2)_3(C\underline{H}_2)_4CH_3$); 1.46 (m, 2 H, $(CH_2)_2C\underline{H}_2(CH_2)_4CH_3$); 1.68 (m, 2 H, $CH_2C\underline{H}_2CH_2(CH_2)_4CH_3$); 2.98 (t, 2 H, $C\underline{H}_2(CH_2)_2(CH_2)_4CH_3$, $J = 7.0$); 7.44 (br.s, 1 H, NH);
2b 2c (2d (7.96 (both s, 1 H each, NH); 8.00 (d, 1 H, H(5), $J = 6.0$); 8.08 (s, 1 H, H(3)) 1.07 (t, 3 H, CH ₂ CH ₂ CH ₃ , $J = 2.0$); 1.32 (q, 2 H, CH ₂ CH ₂ CH ₃ , $J = 6.5$); 3.05 (q, 2 H, CH ₂ CH ₂ CH ₃ , $J = 8.0$); 7.59 (br.s, 1 H, NH); 7.67 (d, 1 H, H(6), $J = 4.5$); 7.72 (br.s, 1 H, NH); 7.94 (d, 1 H, H(5), $J = 4.5$); 8.08 (s, 1 H, H(3)) 0.88 (t, 3 H, CH ₂ CH ₂ CH ₂ CH ₂ GH ₃ , $J = 6.0$); 1.30–1.43 (m, 2 H, CH ₂ CH ₂ CH ₂ CH ₃); 1.58–1.71 (m, 2 H, CH ₂ CH ₂ CH ₂ CH ₃); 8.05 (t, 2 H, CH ₂ CH ₂ CH ₂ CH ₃ , $J = 6.5$); 7.61 (br.s, 1 H, NH); 7.62 (d, 1 H, H(6), $J = 6.0$); 7.79 (br.s, 1 H, NH); 7.89 (d, 1 H, H(5), $J = 6.0$); 7.92 (s, 1 H, H(3)) 0.88 (t, 3 H, (CH ₂) ₇ CH ₃ , $J = 3.5$); 1.31 (br.s, 8 H, (CH ₂) ₃ (CH ₂) ₄ CH ₃); 1.46 (m, 2 H, (CH ₂) ₂ CH ₂ (CH ₂) ₄ CH ₃); 1.68 (m, 2 H, CH ₂ CH ₂ CH ₂ (CH ₂) ₄ CH ₃); 2.98 (t, 2 H, CH ₂ (CH ₂) ₂ (CH ₂) ₄ CH ₃ , $J = 7.0$); 7.44 (br.s, 1 H, NH);
2b 2c () 2d ()	1.07 (t, 3 H, $CH_2CH_2CH_3$, $J = 2.0$); 1.32 (q, 2 H, $CH_2CH_3CH_3$, $J = 6.5$); 3.05 (q, 2 H, $CH_2CH_2CH_3$, $J = 8.0$); 7.59 (br.s, 1 H, NH); 7.67 (d, 1 H, H(6), $J = 4.5$); 7.72 (br.s, 1 H, NH); 7.94 (d, 1 H, H(5), $J = 4.5$); 8.08 (s, 1 H, H(3)) 0.88 (t, 3 H, $CH_2CH_2CH_2CH_3$, $J = 6.0$); 1.30–1.43 (m, 2 H, $CH_2CH_2CH_2CH_3$); 1.58–1.71 (m, 2 H, $CH_2CH_2CH_2CH_3$); 8.05 (t, 2 H, $CH_2CH_2CH_2CH_3$, $J = 6.5$); 7.61 (br.s, 1 H, NH); 7.62 (d, 1 H, H(6), $J = 6.0$); 7.79 (br.s, 1 H, NH); 7.89 (d, 1 H, H(5), $J = 6.0$); 7.92 (s, 1 H, H(3)) 0.88 (t, 3 H, $(CH_2)_7CH_3$, $J = 3.5$); 1.31 (br.s, 8 H, $(CH_2)_3(CH_2)_4CH_3$); 1.46 (m, 2 H, $(CH_2)_2CH_2(CH_2)_4CH_3$); 1.68 (m, 2 H, $CH_2CH_2CH_2(CH_2)_4CH_3$); 2.98 (t, 2 H, $CH_2(CH_2)_2(CH_2)_4CH_3$, $J = 7.0$); 7.44 (br.s, 1 H, NH);
2c (2d (7.59 (br.s, 1 H, NH); 7.67 (d, 1 H, H(6), $J = 4.5$); 7.72 (br.s, 1 H, NH); 7.94 (d, 1 H, H(5), $J = 4.5$); 8.08 (s, 1 H, H(3)) 9.88 (t, 3 H, CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ , $J = 6.0$); 1.30–1.43 (m, 2 H, CH ₂ CH ₂ CH ₂ CH ₃); 1.58–1.71 (m, 2 H, CH ₂ CH ₂ CH ₂ CH ₃); 8.05 (t, 2 H, CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ , $J = 6.5$); 7.61 (br.s, 1 H, NH); 7.62 (d, 1 H, H(6), $J = 6.0$); 7.79 (br.s, 1 H, NH); 7.89 (d, 1 H, H(5), $J = 6.0$); 7.92 (s, 1 H, H(3)) 9.88 (t, 3 H, (CH ₂) ₇ CH ₃ , $J = 3.5$); 1.31 (br.s, 8 H, (CH ₂) ₃ (CH ₂) ₄ CH ₃); 1.46 (m, 2 H, (CH ₂) ₂ CH ₂ (CH ₂) ₄ CH ₃); 1.68 (m, 2 H, CH ₂ CH ₂ CH ₂ (CH ₂) ₄ CH ₃); 2.98 (t, 2 H, CH ₂ (CH ₂) ₂ (CH ₂) ₄ CH ₃ , $J = 7.0$); 7.44 (br.s, 1 H, NH);
2c (2d (8.08 (s, 1 H, H(3)) 0.88 (t, 3 H, CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ , $J = 6.0$); 1.30–1.43 (m, 2 H, CH ₂ CH ₂ CH ₂ CH ₃); 1.58–1.71 (m, 2 H, CH ₂ CH ₂ CH ₂ CH ₃); 8.05 (t, 2 H, CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ , $J = 6.5$); 7.61 (br.s, 1 H, NH); 7.62 (d, 1 H, H(6), $J = 6.0$); 7.79 (br.s, 1 H, NH); 7.89 (d, 1 H, H(5), $J = 6.0$); 7.92 (s, 1 H, H(3)) 0.88 (t, 3 H, (CH ₂) ₇ CH ₃ , $J = 3.5$); 1.31 (br.s, 8 H, (CH ₂) ₃ (CH ₂) ₄ CH ₃); 1.46 (m, 2 H, (CH ₂) ₂ CH ₂ (CH ₂) ₄ CH ₃); 1.68 (m, 2 H, CH ₂ CH ₂ CH ₂ (CH ₂) ₄ CH ₃); 2.98 (t, 2 H, CH ₂ (CH ₂) ₂ (CH ₂) ₄ CH ₃ , $J = 7.0$); 7.44 (br.s, 1 H, NH);
2c () 2d ()	$\begin{aligned} & 0.88 (t, 3 H, CH_2CH_2CH_2CH_2CH_3, J = 6.0); 1.30 - 1.43 (m, 2 H, CH_2CH_2CH_2CH_3); 1.58 - 1.71 (m, 2 H, CH_2CH_2CH_2CH_3); \\ & 3.05 (t, 2 H, CH_2CH_2CH_2CH_3, J = 6.5); 7.61 (br.s, 1 H, NH); 7.62 (d, 1 H, H(6), J = 6.0); 7.79 (br.s, 1 H, NH); \\ & 7.89 (d, 1 H, H(5), J = 6.0); 7.92 (s, 1 H, H(3)) \\ & 0.88 (t, 3 H, (CH_2)_7CH_3, J = 3.5); 1.31 (br.s, 8 H, (CH_2)_3(CH_2)_4CH_3); 1.46 (m, 2 H, (CH_2)_2CH_2(CH_2)_4CH_3); \\ & 1.68 (m, 2 H, CH_2CH_2CH_2(CH_2)_4CH_3); 2.98 (t, 2 H, CH_2(CH_2)_2(CH_2)_4CH_3, J = 7.0); 7.44 (br.s, 1 H, NH); \end{aligned}$
2d (3.05 (t, 2 H, $C\underline{H}_2CH_2CH_2CH_3$, $J = 6.5$); 7.61 (br.s, 1 H, NH); 7.62 (d, 1 H, H(6), $J = 6.0$); 7.79 (br.s, 1 H, NH); 7.89 (d, 1 H, H(5), $J = 6.0$); 7.92 (s, 1 H, H(3)) 0.88 (t, 3 H, $(CH_2)_7C\underline{H}_3$, $J = 3.5$); 1.31 (br.s, 8 H, $(CH_2)_3(C\underline{H}_2)_4CH_3$); 1.46 (m, 2 H, $(CH_2)_2C\underline{H}_2(CH_2)_4CH_3$); 1.68 (m, 2 H, $CH_2C\underline{H}_2CH_2(CH_2)_4CH_3$); 2.98 (t, 2 H, $C\underline{H}_2(CH_2)_2(CH_2)_4CH_3$, $J = 7.0$); 7.44 (br.s, 1 H, NH);
2d (7.89 (d, 1 H, H(5), $J = 6.0$); 7.92 (s, 1 H, H(3)) 0.88 (t, 3 H, (CH ₂) ₇ CH ₃ , $J = 3.5$); 1.31 (br.s, 8 H, (CH ₂) ₃ (CH ₂) ₄ CH ₃); 1.46 (m, 2 H, (CH ₂) ₂ CH ₂ (CH ₂) ₄ CH ₃); 1.68 (m, 2 H, CH ₂ CH ₂ CH ₂ CH ₂ (CH ₂) ₄ CH ₃); 2.98 (t, 2 H, CH ₂ (CH ₂) ₂ (CH ₂) ₄ CH ₃ , $J = 7.0$); 7.44 (br.s, 1 H, NH);
2d ($\begin{array}{l} \text{0.88 (t, 3 H, (CH_2)_7C\underline{H}_3, J = 3.5); 1.31 (br.s, 8 H, (CH_2)_3(C\underline{H}_2)_4CH_3); 1.46 (m, 2 H, (CH_2)_2C\underline{H}_2(CH_2)_4CH_3); \\ \text{1.68 (m, 2 H, CH_2C\underline{H}_2\overline{CH}_2(CH_2)_4CH_3); 2.98 (t, 2 H, C\underline{H}_2(CH_2)_2(CH_2)_4CH_3, J = 7.0); 7.44 (br.s, 1 H, NH); \end{array}$
1	1.68 (m, 2 H, $CH_2CH_2\bar{C}H_2(CH_2)_4CH_3$); 2.98 (t, 2 H, $CH_2(CH_2)_2(CH_2)_4CH_3$, $J = 7.0$); 7.44 (br.s, 1 H, NH);
-	
-	7.67 (d, 1 H, H(6), $J = 9.0$); 7.81 (br.s, 1 H, NH); 7.97 (d, 1 H, H(5), $J = 9.0$); 8.03 (s, 1 H, H(3))
2e	1.28 (s, 9 H, $C(C\underline{H}_3)_3$); 7.64 (d, 1 H, H(6), $J = 7.5$); 7.67, 7.79 (both br.s, 1 H each, NH);
	7.85 (d, 1 H, H(5), $J = 7.5$); 7.92 (s, 1 H, H(3))
2f	7.58 (m, 5 H, Ph); 7.78 (d, 1 H, H(6), $J = 8.5$); 7.86 (s, 1 H, H(3)); 8.05 (d, 1 H, H(5), $J = 8.5$); 8.28 (br.s, 2 H, NH ₂)
2g	1.31 (t, 3 H, CH_2CH_3 , $J = 5.0$); 3.19 (q, 2 H, CH_2CH_3 , $J = 5.5$); 7.88, 8.06 (both s, 1 H each, NH_2);
8	3.33 (s, 1 H, H(5)); 8.54 (s, 1 H, H(3))
2h 7	7.42–7.62 (m, 5 H, Ph); 7.78 (s, 1 H, NH); 7.87 (s, 1 H, H(5)); 8.07 (s, 1 H, NH); 8.54 (s, 1 H, H(3))
8a	1.18 (t, 3 H, CH_2CH_3 , $J = 2.0$); 3.31 (quint, 2 H, CH_2CH_3 , $J = 3.5$); 7.83 (d, 1 H, H(6), $J = 5.5$);
8	3.56 (d, 1 H, H(5), $J = 5.5$); 8.73 (s, 1 H, H(3)); 8.75 (br.s, 1 H, NH)
8c (0.96 (t, 3 H, CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ , $J = 8.5$); 1.42 (q, 2 H, CH ₂ CH ₂ CH ₂ CH ₃ , $J = 8.5$);
	$1.56 (q, 2 H, CH_2CH_2CH_2CH_3, J = 8.5); 3.29 (q, 2 H, CH_2CH_2CH_2CH_3, J = 7.5); 7.82 (d, 1 H, H(6), J = 7.5);$
8	3.58 (d, 1 H, H(5), $J = 7.5$); 8.60 (s, 1 H, H(3)); 8.73 (br.s, 1 H, NH)
8d ().88 (t, 3 H, $(CH_2)_7 CH_3$, $J = 3.5$); 1.22–1.41 (m, 10 H, $CH_2 CH_2 (CH_2)_5 CH_3$);
]	1.56 (q, 2 H, CH ₂ CH ₂ (\overline{C} H ₂) ₅ CH ₃ , $J = 7.5$); 3.26 (q, 2 H, CH ₂ CH ₂ (CH ₂) ₅ CH ₃ , $J = 7.5$);
	7.82 (d, 1 H, H(6), $J = 9.5$); 8.58 (d, 1 H, H(5), $J = 9.5$); 8.72 (s, 1 H, H(3)); 8.75 (br.s, 1 H, NH)
8 f (1	7.11 (d, 1 H, p -H (Ph), $J = 7.0$); 7.33 (t, 2 H, m -H (Ph), $J = 7.0$); 7.62 (d, 2 H, o -H (Ph), $J = 7.5$);
8	3.03 (d, 1 H, H(6), $J = 9.0$); 8.67 (d, 1 H, H(5), $J = 9.0$); 8.82 (s, 1 H, H(3)); 10.70 (br.s, 1 H, NH)
9a 🛛	1.15 (t, 3 H, CH ₂ CH ₃ , $J = 3.5$); 3.28 (quint, 2 H, CH ₂ CH ₃ , $J = 10.0$); 4.29 (s, 2 H, CH ₂);
	7.24 (d, 1 H, p-H (Ph), $J = 2.5$); 7.32 (t, 2 H, m-H (Ph), $J = 6.5$); 7.39 (d, 2 H, o-H (Ph), $J = 5.5$);
	7.59 (d, 1 H, H(6), $J = 6.5$); 8.00 (d, 1 H, H(5), $J = 6.5$); 8.12 (s, 1 H, H(3)); 8.42 (br.s, 1 H, NH)
9c (0.91 (t, 3 H, CH ₂ CH ₂ CH ₂ CH ₂ , $J = 7.0$); 1.40 (q, 2 H, CH ₂ CH ₂ CH ₂ CH ₃ , $J = 4.5$);
1	1.56 (q. 2 H, CH ₂ CH ₂ CH ₂ CH ₂ , $J = 6.5$); 3.28 (q. 2 H, CH ₂ CH ₂ CH ₂ CH ₂ , $J = 2.0$); 4.25 (s. 2 H, CH ₂);
	7.21 (d, 1 H, p-H (Ph), $J = 3.5$); 7.28 (t, 2 H, m-H (Ph), $J = 7.5$); 7.38 (d, 2 H, o-H (Ph), $J = 7.5$);
	7.56 (d, 1 H, H(6), $J = 9.5$); 7.97 (d, 1 H, H(5), $J = 9.5$); 8.09 (s, 1 H, H(3)); 8.24 (br.s, 1 H, NH)
9d ($(L_{2}, 3 H, (CH_{2})_{7}CH_{3}, J = 4.5); 1.20 - 1.42 (m, 10 H, CH_{2}CH_{2}(CH_{3})_{5}CH_{3});$
1	1.52 (q, 2 H, CH ₂ CH ₂ (CH ₂) ₅ CH ₃ , $J = 6.5$); 3.21 (q, 2 H, CH ₂ CH ₂ (CH ₂) ₅ CH ₃ , $J = 6.5$);
2	4.06 (s, 2 H, CH ₂); 7.25 (d, 1 H, p-H (Ph), $J = 5.5$); 7.29 (t, 2 H, m-H (Ph), $J = 7.5$);
2	7.39 (d, 2 H, o -H (Ph), $J = 5.0$); 7.56 (d, 1 H, H(6), $J = 5.0$); 7.99 (d, 1 H, H(5), $J = 5.0$);
8	B.12 (s, 1 H, H(3)); 8.38 (br.s, 1 H, NH)
9f 4	4.32 (s, 2 H, CH ₂); 7.05–7.49 (m, 10 H, 2 Ph); 7.78 (d, 1 H, H(6), $J = 9.0$); 8.09 (d, 1 H, H(5), $J = 9.0$):
8	B.19 (s, 1 H, H(3)); 10.42 (br.s, 1 H, NH)

tained in the solvent into S-oxides 11. The latter are either oxidized into sulfone 7 ($R = NO_2$, R' = Et) or chlorinated at the carbamoyl N atom to give N-chloroamines 12, which undergo cyclization into sulfoximides **3a,b,d,f,h** according to the known scheme.¹² The formation of intermediate S-oxides 11 was confirmed by the synthesis of compound 11a from amide 2a and MCPBA followed by its conversion into sulfoximide 3a under the action of Cl₂ in 60% AcOH. Unlike S-oxide 11a, sulfone 13 obtained by oxidation of amide 2a with an excess of MCPBA does not yield sulfoximide 3a upon chlorination under these conditions. Presumably, the direction of the reactions of *S*-oxides **11** with chlorine depends on the relative nucleophilicity of the N and S atoms. Thus for R = H, the more nucleophilic N atom is chlorinated to give compounds **3a,b,d,f**; for $R = NO_2$ and R' = Alk, chlorination of the S atom yields sulfone **7**.

(*tert*-Butyl) chlorosulfonium chloride (**10e**) containing the easily leaving Bu^t group seems to eliminate *tert*-butyl chloride,¹³ giving products **5** and **6** according to the known scheme.⁸

The available data are insufficient to explain the $S \rightarrow N$ migration of the Buⁿ group in the reaction of com-

Com-	$R_{\rm f}$	IR, v/cm ⁻¹			δ (J/Hz)	
pound		C=0	S=0 (s)	NO ₂ (s)		
3a	0.38	1600 w	1140	1360	1.29 (t, 3 H, CH_2CH_3 , $J = 2.0$); 3.53 (q, 2 H, CH_2CH_3 , $J = 2.5$);	
			1160	1540	8.44 (d, 1 H, H(4), $J = 7.5$); 8.69 (d, 1 H, H(5), $J = 7.5$); 8.75 (s, 1 H, H(7))	
3b	0.36	1600 w	1130	1350	1.08 (t, 3 H, $CH_2CH_2CH_3$, $J = 1.5$); 1.78 (m, 2 H, $CH_2CH_2CH_3$);	
			1150	1540	3.49 (t, 2 H, $CH_2CH_2CH_3$, $J = 6.5$); 8.42 (d, 1 H, H(4), $J = 9.0$);	
					8.71 (d, 1 H, H(5), $J = 9.0$); 8.75 (s, 1 H, H(7))	
3d	0.44	1600 w	1120	1345	0.88 (t, 3 H, $(CH_2)_7CH_3$, $J = 1.5$); 1.27 (br.s, 8 H, $(CH_2)_3(CH_2)_4CH_3$);	
			1155	1540	1.46 (br.s, 2 H, (CH ₂) ₂ CH ₂ (CH ₂) ₄ CH ₃); 1.73 (br.s, 2 H, CH ₂ CH ₂ CH ₂ (CH ₂) ₄ CH ₃);	
					3.47 (t, 2 H, $CH_2(CH_2)_6CH_3$, $J = 2.5$); 8.42 (d, 1 H, H(4), $J = 6.0$);	
					8.64 (d, 1 H, H(5), $J = 6.0$); 8.68 (s, 1 H, H(7))	
3f	0.31	1610 w	1140	1360	7.67–7.89 (m, 3 H, p -H + m -H (Ph)); 8.11 (d, 2 H, o -H (Ph), $J = 10.0$);	
			1170	1540	8.43 (d, 1 H, H(4), J = 8.5); 8.69 (d, 1 H, H(5), J = 8.5); 8.91 (s, 1 H, H(7))	
3h	0.31	1610 w	1135	1355	7.75 (t, 2 H, m -H (Ph), J = 7.5); 7.93 (d, 1 H, p -H (Ph), J = 8.0);	
			1165	1540	8.23 (d, 2 H, <i>o</i> -H (Ph), <i>J</i> = 7.5); 9.21 (s, 1 H, H(5)); 9.49 (s, 1 H, H(7))	
4a	0.18	1645 s	1135	1350	1.36 (t, 3 H, CH_2CH_3 , $J = 4.0$); 3.83 (dt, 1 H, CH_2 , $J_1 = 6.5$, $J_2 = 5.0$);	
			1155	1540	3.93 (dt, 1 H, CH_2 , $J_1 = 6.5$, $J_2 = 5.0$); 8.18 (d, 1 H, H(4), $J = 3.5$);	
					8.62 (d, 1 H, H(5), <i>J</i> = 3.5); 9.08 (s, 1 H, H(7))	
4c	0.19	1645 s	1140	1350	0.93 (t, 3 H, $CH_2CH_2CH_2C\underline{H}_3$, $J = 4.0$); 1.48 (q, 2 H, $CH_2CH_2C\underline{H}_2CH_3$, $J = 5.0$);	
			1150	1540	1.72 (q, 2 H, $CH_2CH_2CH_3$, $J = 5.0$); 3.78 (dt, 1 H, CH_2 , $J_1 = 6.0$, $J_2 = 7.0$);	
					3.84 (dt, 1 H, CH_2 , $J_1 = 6.0$, $J_2 = 7.0$); 8.20 (d, 1 H, H(4), $J = 8.0$);	
					8.66 (d, 1 H, H(5), $J = 8.0$); 9.08 (s, 1 H, H(7))	
4d	0.22	1645 s	1130	1345	0.86 (t, 3 H, $(CH_2)_7C\underline{H}_3$, $J = 3.5$); 1.21–1.42 (m, 10 H, $CH_2CH_2(C\underline{H}_2)_5CH_3$);	
			1150	1540	1.68–1.80 (m, 2 H, $CH_2CH_2(CH_2)_5CH_3$); 3.74 (dt, 1 H, CH_2 , $J_1 = 5.0$, $J_2 = 5.5$);	
					3.85 (dt, 1 H, CH ₂ , $J_1 = 5.0$, $J_2 = 5.5$); 8.18 (d, 1 H, H(4), $J = 7.5$);	
					8.61 (d, 1 H, H(5), <i>J</i> = 7.5); 9.08 (s, 1 H, H(7))	
4 f	0.18	1700 s	1120	1540	7.48-7.62 (m, 5 H, Ph); 8.25 (d, 1 H, H(6), J = 4.5); 8.65 (d, 1 H, H(5), J = 4.5);	
			1170	1350	9.18 (s, 1 H, H(7))	
4h	0.16	1715 s	1105	1350	7.50–7.69 (m, 5 H, Ph); 9.15 (s, 1 H, H(5));	
			1150	1560	9.47 (s, 1 H, H(7))	

Table 3. Retention factors (R_f) , IR, and ¹H NMR data for the nitro derivatives of 1-R⁻¹,2-benzoisothiazol-3-one 1-oxides **3a,b,d,f,h** and 2-R⁻¹,2-benzoisothiazol-3-one 1-oxides **4a,c,d,f,h**

Scheme 4

 $\textbf{Reagents and conditions:} i. \ Cl_2. \ ii. \ H_2O. \ iii. \ Cl_2-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ CH_2Cl_2. \ v. \ Cl_2, \ AcOH-H_2O. \ iv. \ MCPBA, \ MCPBA,$

pound 2c with chlorine in 60% AcOH, which affords 2-(n-butyl)-6-nitro-1,2-benzoisothiazol-3-one 1-oxide (4c).

Hence, a detailed study of the reactions of nitro derivatives of 2-alkylthio- and 2-phenylthiobenzamides with chlorine in aqueous organic solvents made it possible to develop the new convenient synthesis of cyclic sulfoximides of the 1,2-benzoisothiazole series.

Experimental

¹H NMR spectra were recorded on a Bruker AM-300 spectrometer (300.13 MHz) in DMSO-d₆ with Me₄Si as the internal standard. Thin-layer chromatography was carried out on Silpearl UV-250 silica gel in CCl₄—acetone (4 : 1).

4,6-Dinitro- and 2,4,6-trinitrobenzamides were prepared according to the known procedure.¹⁴ *N*-Phenyl-2,4,6-trinitrobenzamide **8h** and *N*-phenyl-2-benzylthio-4,6-dinitrobenzamide **9h** were synthesized as described in Ref. 9.

2-Alkylthio(arylthio)-4-nitro- and -4,6-dinitrobenzamides 2a—h and 9a,c,d,f (general procedure). A corresponding thiol (2.2 mmol) and Na₂CO₃ (0.24 g, 2.2 mmol) were added successively to a solution of amide **1a,b** or **8a,c,d,f** (2 mmol) in DMF (8 mL). The reaction mixture was stirred at 20 °C for 5–8 h (in the case of thiophenol, the reaction was carried out in an atmosphere of nitrogen) until the starting amide was completely consumed (TLC) and then acidified with 0.05 *M* HCl (15 mL). The precipitate that formed was filtered off, washed with water (2×5 mL), dried in air, and recrystallized from PrⁱOH. The yields, melting points, and elemental analysis data for the compounds obtained are given in Table 1. Their ¹H NMR spectra are presented in Table 2.

1-Alkyl(aryl)-4-nitro- and 4,6-dinitro-1-phenyl-1,2-benzoisothiazol-3-one 1-oxides 3a,b,d,f,h (general procedure). Gaseous chlorine was passed at 20 °C for 10 min through a solution of an amide (2a,b,d,f,h or 11a) (2 mmol) in 60% AcOH (7 mL), and the reaction mixture was stirred for 10 min. The solvent and the excess of chlorine were removed *in vacuo*. Cold PrⁱOH (3–5 mL) was added, and the precipitate that formed was filtered off, dried in air, and recrystallized from PrⁱOH. The yields, melting points, and elemental analysis data for compounds 3a,b,d,f,h are given in Table 1. Their retention factors, ¹H NMR and IR spectra are presented in Table 3.

2-Alkyl(aryl)-4-nitro- and 4,6-dinitro-2-phenyl-1,2-benzoisothiazol-3-one 1-oxides 4a,c,d,f,h (general procedure). Gaseous chlorine was passed at 20 °C for 10 min through a solution of an amide (9a,c,d,f,h) (2 mmol) in a mixture of CH_2Cl_2 (10 mL) and water (0.5 mL), and the reaction mixture was stirred for 15 min. The solvent and the excess of chlorine were removed *in vacuo*. Cold PrⁱOH (3–5 mL) was added, and the precipitate that formed was filtered off, dried in air, and recrystallized from PrⁱOH. The yields, melting points, and elemental analysis data for compounds 4a,c,d,f,h are given in Table 1. Their retention factors, ¹H NMR and IR spectra are presented in Table 3.

6-Nitro-1,2-benzoisothiazol-3-one 1,1-dioxide (5). Gaseous chlorine was passed for 15 min through a vigorously stirred solution of amide **2e** (0.51 g, 2 mmol) in 60% AcOH (7 mL). The reaction mixture was stirred at \sim 20 °C for 25 min, and the

solvent was removed *in vacuo*. Cold Pr^iOH was added, and the precipitate that formed was filtered off, dried in air, and recrystallized from Pr^iOH to give dioxide **5** (0.15 g, 36%), m.p. 281–282 °C (*cf.* Ref. 8: m.p. 281–283 °C).

6-Nitro-1,2-benzoisothiazol-3-one 1-oxide (6). Gaseous chlorine was passed for 20 min through a solution of amide **2e** (0.51 g, 2 mmol) in a mixture of CH_2Cl_2 (10 mL) and water (0.5 mL). The reaction mixture was stirred at ~20 °C for 15 min, and the solvent was removed *in vacuo*. Cold PrⁱOH was added, and the precipitate that formed was filtered off, dried in air, and recrystallized from PrⁱOH to give oxide **6** (0.14 g, 34%), m.p. 244–247 °C (*cf.* Ref. 8: m.p. 244–247 °C).

2-Ethylsulfonyl-4,6-dinitrobenzamide (7). Gaseous chlorine was passed at 20 °C for 10 min through a solution of amide **2g** (0.54 g, 2 mmol) in 60% AcOH (7 mL). The reaction mixture was stirred for 15 min. The solvent and the excess of chlorine were removed *in vacuo*. The resulting oil was treated with cold PrⁱOH, and the precipitate that formed was filtered off, dried in air, and recrystallized from PrⁱOH to give compound **7** (0.45 g, 70%), m.p. 175–178 °C. Found (%): C, 35.47; H, 3.03; N, 13.74, S, 10.46. C₉H₉N₃O₇S. Calculated (%): C, 35.65; H, 2.99; N, 13.86; S, 10.57. ¹H NMR, δ : 1.29 (t, 3 H, CH₃CH₂, *J* = 7.5 Hz); 3.63 (q, 2 H, CH₃CH₂, *J* = 7.5 Hz); 7.96, 8.24 (both br.s, 1 H each, NH); 8.88 (s, 1 H, H(3)); 9.09 (s, 1 H, H(5)).

N-Alkyl(aryl)-2,4-dinitrobenzamides 8a,c,d,f (general procedure). Thionyl chloride (0.44 mL, 0.72 g, 6 mmol) and DMF (one to two drops) were added to a suspension of 2,4-dinitrobenzoic acid (0.42 g, 1.98 mmol) in anhydrous benzene (5 mL), and the reaction mixture was refluxed for 3 h. The solvent and the excess of SOCl₂ were removed at a reduced pressure. Anhydrous benzene (3-4 mL) was added, and the solvent was removed again. The 2,4-dinitrobenzoyl chloride obtained was dissolved in anhydrous benzene (5 mL) and stirred at 15 °C while gradually adding an amine (4.2 mmol) (for 8d,f) or an amine hydrochloride (2.1 mmol) and aqueous Na₂CO₃ (0.44 g, 4.2 mmol) (for 8a,c). The reaction mixture was stirred at 5 °C for 30 min. The precipitate that formed was filtered off, washed with distilled water (2×2 mL), dried in air, and recrystallized from PrⁱOH-acetone. The characteristics of compounds **8a,c,d,f** are given in Tables 1 and 2.

2-Ethylsulfinyl-4-nitrobenzamide (11a). A mixture of 60% MCPBA (0.54 g, 2 mmol) and amide **2a** (0.45 g, 2 mmol) in CH₂Cl₂ (7 mL) was stirred at -70 °C for 4 h. The precipitate that formed was filtered off, and the organic layer was washed with water (4×5 mL) and dried over anhydrous MgSO₄. The solvent was removed *in vacuo*; the residue was triturated with cold hexane and crystallized from PrⁱOH to give compound **11a** (0.26 g, 50%), m.p. 140–142 °C. Found (%): C, 44.78; H, 4.31; N, 11.35; S, 13.11. C₉H₁₀N₂O₄S. Calculated (%): C, 44.62; H, 4.16; N, 11.56; S, 13.24. ¹H NMR, δ : 1.21 (t, 3 H, CH₃CH₂, *J* = 6.5 Hz); 2.75, 3.29 (both m, 1 H each, CH₂); 7.78 (s, 1 H, NH); 8.18 (d, 1 H, H(6), *J* = 6.0 Hz); 8.38 (s, 1 H, NH); 8.41 (d, 1 H, H(5), *J* = 6.0 Hz); 8.76 (s, 1 H, H(3)).

2-Ethylsulfonyl-4-nitrobenzamide (13). A mixture of 60% MCPBA (1.08 g, 4 mmol) and amide **2a** (0.45 g, 2 mmol) in CH₂Cl₂ (7 mL) was stirred at 20 °C for 4 h. The precipitate that formed was filtered off, and the organic layer was washed with water (4×5 mL) and dried over anhydrous MgSO₄. The solvent was removed *in vacuo*; the residue was triturated with cold hexane and crystallized from PrⁱOH to give compound **13**

(0.33 g, 61%), m.p. 152–155 °C. Found (%): C, 41.75; H, 3.98; N, 10.98; S, 12.62. $C_9H_{10}N_2O_5S$. Calculated (%): C, 41.86; H, 3.90; N, 10.85; S, 12.42. ¹H NMR, δ : 1.36 (t, 3 H, CH₃CH₂, J = 6.5 Hz); 3.82 (q, 2 H, CH₃CH₂, J = 7.0 Hz); 7.78 (s, 1 H, NH); 8.18 (d, 1 H, H(6), J = 6.0 Hz); 8.38 (s, 1 H, NH); 8.41 (d, 1 H, H(5), J = 6.0 Hz); 8.76 (s, 1 H, H(3)).

References

- 1. P. D. Kennewell and J. B. Taylor, *Chem. Soc. Rev.*, 1975, **4**, 189.
- 2. P. Stoss and G. Satzinger, Chem. Ber., 1972, 105, 2575.
- 3. Belg. Pat. 814400, Ger. Offen 2,321,786 (1974); Chem. Abstr., 1975, 82, 73035.
- 4. DE 1914016 1970; Chem. Abstr., 1971, 74, 22822.
- 5. T. Williams and D. Cram, J. Org. Chem., 1973, 38, 20.
- 6. T. Williams and D. Cram, J. Am. Chem. Soc., 1971, 93, 7333.
- 7. P. Stoss and G. Satzinger, Angew. Chem., Int. Ed. Engl., 1971, 10, 76.

- E. A. Serebryakov, P. G. Kislitsin, V. V. Semenov, and S. G. Zlotin, *Synthesis*, 2001, 1659.
- S. G. Zlotin, P. G. Kislitsin, A. V. Samet, E. A. Serebryakov, L. D. Konyushkin, V. V. Semenov, A. C. Buchanan, III, and A. A. Gakh, J. Org. Chem., 2000, 65, 8430.
- A. Gordon and R. Ford, *Chemist's Companion. A Handbook* of *Practical Data*, *Techniques*, and *References*, Wiley Interscience, New York–London–Toronto, 1972.
- 11. K. Schaffner-Sabba, H. Tomaselli, B. Henrici, and H. Renfroe, J. Org. Chem., 1977, 42, 952.
- 12. D. Carr, T. Siden, and R. Turner, *Tetrahedron Lett.*, 1969, 477.
- 13. M. Chan and M. Garst, J. Chem. Soc., Chem. Commun., 1991, 540.
- 14. A. J. Gerasyuto, S. G. Zlotin, and V. V. Semenov, *Synthesis*, 2001, 300.

Received December 13, 2001; in revised form March 11, 2002