

Tetrahedron Letters 44 (2003) 7711-7714

TETRAHEDRON LETTERS

Redox-switchable π -conjugated systems bearing terminal ruthenium(II) complexes

Xiuliang Shen, Toshiyuki Moriuchi and Toshikazu Hirao*

Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan

Received 1 July 2003; revised 27 August 2003; accepted 28 August 2003

Abstract—p-Phenylenediamine bearing terminal bipyridyl moieties was synthesized by palladium-catalyzed amination. The corresponding ruthenium(II) complex was formed and characterized, providing a redox-switchable photoinduced electron-transfer system.

© 2003 Elsevier Ltd. All rights reserved.

 π -Conjugated polymers and oligomers have received extensive interest because of the potential application to electronic materials depending on their electrical properties.¹ The redox-active π -conjugated unit of polyanilines and oligoanilines exists in three redox forms, which include the reduced phenylenediamine dianion, the partially reduced semiquinonediimine radical anion, and the oxidized neutral quinonediimine. Coordination of the quinonediimine moiety to transition metals has been demonstrated to afford a multiredox system.² Although polynuclear bipyridyl ruthenium(II) complexes linked by a bridging spacer have been investigated electrochemically and photophysically to provide electronic and photo-active devices,3 only few cases focused on redox-active bridging spacers.⁴ A combination with a redox-active pphenylenediamine function is expected to afford a novel redox-active donor-acceptor system. In a previous paper, two phenylenediamine pendant groups have been incorporated into the bipyridyl ruthenium complex to give a redox-switching system.⁵ We herein report the synthesis of a π -conjugated redox-active *p*-phenylenediamine ligand possessing terminal bipyridyl moieties and its complexation to the corresponding dinuclear ruthenium(II) complex.

The π -conjugated *p*-phenylenediamine **1** was prepared as shown in Scheme 1. 5-Bromo-2,2'-bipyridine was produced in good yield by modification of the literature procedure.⁶ First, 2-bromopyridine was converted to 2-tributylstannylpyridine. The thus-obtained stannylpyridine underwent Stille-type coupling with 2,5dibromopyridine to give 5-bromo-2,2'-bipyridine.⁷ The phenylenediamine **1** was conveniently synthesized by the Pd₂(dba)₃/S-BINAP-catalyzed amination of 5bromo-2,2'-bipyridine with *p*-phenylenediamine.⁸ Due to its insolubility, the BOC derivative was used for the purification by silica-gel column chromatography, followed by thermolysis under an inert atmosphere to give pure **1** in 95% yield.^{9a}

Scheme 1. *Reagents and conditions*: (a) BuLi, THF, hexane, Bu₃SnCl, -78°C; (b) 2,5-dibromopyridine, cat. Pd(PPh₃)₄, DMF, 100°C; (c) 4 mol% Pd₂(dba)₃, 9 mol% S-BINAP, 2.8 equiv. NaO'Bu, toluene, 90°C.

Keywords: π -conjugated ligand; redox-active spacer; bipyridyl ruthenium(II) complex; photoinduced electron transfer.

^{*} Corresponding author. Previous department name: Department of Applied Chemistry, Faculty of Engineering. Tel.: +81-6-6879-7413; fax: +81-6-6879-7415; e-mail: hirao@chem.eng.osaka-u.ac.jp

The complexation of 1 with cis-Ru(bpy)₂Cl₂ and successive treatment with NH₄PF₆ led to the formation of the dinuclear ruthenium(II) complex 2_{red} (Scheme 2). The redox function of the phenylenediamine moiety was investigated chemically. On treatment with $Pb(OAc)_4$, the complex 2_{red} was readily oxidized to 2_{ox} possessing the quinonediimine moiety. On the other hand, 2_{ox} could be reduced to 2_{red} with NH₂NH₂·H₂O. These ruthenium complexes, 2_{red} and 2_{ox} , were fully characterized by spectral data and elemental analyses.^{9b} The ¹H NMR spectrum of 2_{red} at room temperature is shown in Figure 1. A combination with the 2D NMR experiments (HH cosy, HMQC, and HMBC) permitted assignment of all protons. Two singlet protons of C at 6.87 and 6.86 ppm suggests a syn-conformer as a possible structure in the solution. Furthermore, the 2D-ROESY of 2_{red} in CD₃CN exhibited correlation between the protons at the different aromatic groups (Fig. 1), as exemplified by the correlation between the protons at the 1- or 3-position of C and those of the pyridyl protons (at the 3-, 4-, 5- and 6-position of D). The MNDO calculation with ROESY-derived distance restraints also suggests a syn-conformer of 2_{red} .

The redox properties were also studied electrochemically. The ligand 1 in DMF showed two separate oxidation waves at 0.15 and 0.27 V ($E_{1/2}$ versus Fc/Fc⁺) assignable to the successive one-electron oxidation processes of the *p*-phenylenediamine moiety. In the case of the complex 2_{red} in CH₂Cl₂, three separate oxidation waves were observed at 0.43, 0.71 and 0.81 V. The two former redox waves are assigned to the successive oneelectron oxidation processes of the *p*-phenylenediamine moiety, giving the oxidized species, 2_{red}^{+} and 2_{ox} , as illustrated in Scheme 3. The complexation resulted in anodic shift. The redox behavior of the bipyridyl moieties is almost similar to that of (bpy)₃Ru(PF₆)₂ (Table 1).

Figure 1. One-dimensional and ROESY ¹H NMR spectra of 2_{red} (CD₃CN, 298 K, 400 MHz).

Scheme 3. Redox processes of 2_{red}.

In the emission spectrum of 2_{red} excited at 450 nm in CH₂Cl₂, almost complete quenching was observed (Fig. 2). The quenching of 2_{red} is probably attributed to the photoinduced electron transfer from the *p*-phenylenediamine moiety to the bpy-Ru moieties, wherein the *p*-phenylenediamine moiety serves as an electron

Table 1. Electrochemical data^a of 1, 2_{red} , 2_{ox} and $(bpy)_3Ru$

Compound	$E_{\rm red3}$	$E_{\rm red2}$	$E_{\rm red1}$	$E_{\rm ox1}$	$E_{\rm ox2}$	$E_{\rm ox3}~({\rm Ru}^{2+/3+})$
1 ^b				0.15	0.27	
2 _{red}	-2.33	-2.16	-1.89	0.43	0.71	0.81
2 _{ox}	-2.39	-1.98	-0.84			0.81
(bpy) ₃ Ru ^c	-2.18	-1.93	-1.73			0.88

^a $E_{1/2}$ /V (versus Fc/Fc⁺); [Compound]=1.0 mM; Solv. CH₂Cl₂. Recorded with Bu₄NPF₆ as an eletrolyte (0.1 M). Potentials were obtained by cyclic voltammetry with a scan rate of 100 mV s⁻¹ under argon.

^b In DMF.

^c In MeCN.

Figure 2. Emission spectra of 2_{red} (---), 2_{ox} (--), $(bpy)_3Ru$ (—) and $(bpy)_3Ru$ with 1.0 equiv. of 1 (…). Solv. CH₂Cl₂; under argon; 2×10^{-5} M. $\lambda_{ex} = 450$ nm.

donor.^{5,10} The emission was also quenched in the case of the oxidized form 2_{ox} . Based on the reported electron-transfer mechanism of the ruthenium complexes bearing a viologen or benzoquinone moiety,^{5,11} this phenomenon might be explained by the photoinduced electron transfer in a direction opposite to that of 2_{red} . A much less effective intermolecular quenching of (bpy)₃Ru(PF₆)₂ with 1 indicates an intramolecular quenching process for both 2_{red} and 2_{ox} .

In conclusion, the p-phenylenediamine 1 was demonstrated to serve as a redox-active ligand to afford a novel redox-active dinuclear ruthenium(II) complex, which was oxidized to the quinonediimine derivative for a redox-switchable photoinduced electron-transfer system. Further investigation on the photoinduced electron-transfer mechanism and application to functional materials is now in progress.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 13128206) from the Ministry of Education, Science, and Culture, Japan. Thanks are due to the Analytical Center, Faculty of Engineering, Osaka University, for the use of their facilities.

References

- (a) MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D. Synth. Met. 1987, 18, 393; (b) Salaneck, W. R.; Clark, D. T.; Samuelsen, E. J. Science and Application of Conductive Polymers; Adams Hilger: New York, 1990; (c) Ofer, D.; Crooks, R. M.; Wrighton, M. S. J. Am. Chem. Soc. 1990, 112, 7869; (d) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477; (e) Miller, J. S. Adv. Mater. 1993, 5, 671; (f) Bloor, D. Chem. Br. 1995, 31, 385; (g) Jestin, I.; Frère, P.; Blanchard, P.; Roncali, J. Angew. Chem. 1998, 110, 990; Angew. Chem., Int. Ed. 1998, 37, 942 and references cited therein. See also the Nobel lectures of Heeger, A. J.; MacDiarmid, A. G.; Shirakawa, H. In Angew. Chem./Angew. Chem., Int. Ed. 2001, 40, 2575.
- (a) Moriuchi, T.; Bandoh, S.; Miyaishi, M.; Hirao, T. *Eur. J. Inorg. Chem.* 2001, 651; (b) Moriuchi, T.; Miyaishi, M.; Hirao, T. *Angew. Chem., Int. Ed.* 2001, 40, 3042; (c) Moriuchi, T.; Kamikawa, M.; Bandoh, S.; Hirao, T. *Chem. Commun.* 2002, 1476; (d) Hirao, T. *Coord. Chem. Rev.* 2002, 226, 81; (e) Moriuchi, T.; Shen, X.; Saito, K.; Bandoh, S.; Hirao, T. *Bull. Chem. Soc. Jpn.* 2003, 76, 595.
- For reviews on this subject, see: (a) Balzani, V.; Juris, A.; Venturi, M. Chem. Rev. 1996, 96, 759; (b) De Cola, L.; Belser, P. Coord. Chem. Rev. 1998, 177, 301; (c) Belser, P.; Bernhard, S.; Blum, C.; Beyeler, A.; De Cola, L.; Balzani, V. Coord. Chem. Rev. 1999, 190–192, 155; (d) Brigelletti, F.; Flamigni, L. Chem. Soc. Rev. 2000, 29, 1.
- 4. (a) Auburn, P. R.; Lever, A. B. P. Inorg. Chem. 1990, 29, 2551; (b) Hartl, F.; Snoeck, T. L.; Stufkens, D. J.; Lever, A. B. P. Inorg. Chem. 1995, 34, 3887; (c) Keyes, T. E.; Forster, R. J.; Jayaweera, P. M.; Coates, C. G.; McGarvey, J. J.; Vos, J. G. Inorg. Chem. 1998, 37, 5925; (d) Staffilani, M.; Belser, P.; De Cola, L.; Hartl, F. Eur. J. Inorg. Chem. 2002, 335.
- 5. Hirao, T.; Iida, K. Chem. Commun. 2001, 431.
- Hunan, G. S.; Schubert, U. S.; Volkmer, D.; Riviere, E.; Lehn, J.-M.; Kyritssakas, N.; Fischer, J. Can. J. Chem. 1997, 75, 169.
- 7. 5-Bromo-2,2'-bipyridine was isolated from unreacted materials and organotin by-products by acidification of the reaction mixture and subsequent extraction with CH₂Cl₂. 2-Tributylstannylpyridine, 2,5-dibromopyridine, and tributyltin chloride were extracted into the organic phase, but 5-bromo-2,2'-bipyridine and another byproduct, terpyridine (tpy), still remained in the aqueous layer. Addition of NiCl₂·6H₂O to the aqueous phase neutralized by 28% ammonia solution, followed by

extraction with CH_2Cl_2 led to the complete separation of 5-bromo-2,2'-bipyridine from tpy. Finally, the product, 5-bromo-2,2'-bipyridine, was purified as a white solid by further sublimation.

- Sadighi, J. P.; Singer, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 4960.
- 9. (a) 1: mp 219–220°C (uncorrected). IR (KBr): 3252, 3035, 1597, 1578, 1566, 1541, 1510, 1460, 1330 cm⁻¹. UV-vis (CH₂Cl₂:DMF=10:1): λ_{max} (log ε)=350 (4.51) nm. ¹H NMR (DMSO- d_6 , 400 MHz): δ 8.58 (d, 2H, J = 4.4 Hz, A6), 8.53 (s, 2H, NH), 8.36 (d, 2H, J=2.6 Hz, B6), 8.23 (d, 2H, J = 6.6 Hz, A3), 8.22 (d, 2H, J = 8.8 Hz, B3), 7.84 (dd, 2H, J=6.6, 6.6 Hz, A4), 7.49 (dd, 2H, J=8.8, 2.6 Hz, B4), 7.30 (dd, 2H, J=6.6, 4.4 Hz, A5), 7.18 (s, 4H, C1). ¹³C NMR (DMSO-*d*₆, 100 MHz): 155.8 (A2), 149.1 (A6), 145.5 (B3), 141.7 (B6), 137.1 (B2), 137.0 (A3), 135.9 (C2), 122.7 (A5), 121.1 (B5), 120.8 (B4), 120.5 (C1), 119.2 (A3) ppm. MS (FAB): m/z = 417 (M⁺+1). Anal. calcd for C₂₆H₂₀N₆: C, 74.98; H, 4.84; N, 20.18. Found: C, 74.90; H, 4.79; N, 20.17; (b) 2_{red}: mp 252-253°C (decomp). IR (KBr): 3396, 1598, 1512, 1466, 1446, 1324 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (log ε)=452 (3.47) nm. ¹H NMR (CD₃CN, 400 MHz): δ 8.50–8.47 (m, 6H, G3, F3, and E3), 8.42 (d, 2H, J=8.4 Hz, D3), 8.24 (d, 2H, J=7.3 Hz, A3), 8.22 (d, 2H, J=9.0 Hz, B3), 8.10–8.01 (m, 6H, G4, F4, and E4), 7.94 (td, 2H, J=7.9, 1.5 Hz, A4), 7.93 (td, 2H, J=7.9, 1.5 Hz, D4), 7.87 (d, 2H, J=5.8 Hz, G6), 7.77 (d, 2H, J = 5.8 Hz, F6), 7.71 (d, 2H, J = 5.1 Hz, E6), 7.68 (d, 2H, J = 5.1 Hz, D6), 7.58 (d, 2H, J = 4.8 Hz, A6), 7.48 (dd, 2H, J = 9.2, 2.6 Hz, B4), 7.46–7.41 (m, 4H, G5, and F5), 7.39-7.36 (m, 2H, E5), 7.31-7.27 (m, 2H, D5), 7.25-7.22 (m, 2H, A5), 7.19 (s, 2H, NH), 7.17 (d, 1H, J=2.6 Hz, B6), 7.16 (d, 1H, J=2.6 Hz, B'6), 6.87 (s, 2H, C1 or C3), 6.86 (s, 2H, C3 or C1). ¹³C NMR (CD₃CN, 100 MHz): 158.4 (A2), 158.1 (D2), 158.0 (E2), 158.0 (G2), 157.9 (F2), 152.7 (E6), 152.7 (F6), 152.6 (D6), 152.5 (G6),

152.0 (A6), 147.2 (B2), 145.6 (B5), 138.7 (G4), 138.7 (E4), 138.7 (F4), 138.5 (A4), 138.5 (D4), 138.1 (B6), 138.0 (B'6), 136.3 (C2), 128.6 (F5), 128.6 (G5), 128.5 (E5), 128.4 (D5), 126.5 (A5), 125.9 (B3), 125.2 (F3), 125.2 (E3), 125.2 (G3), 125.0 (D3), 123.5 (C1 or C3), 123.4 (C3 or C1), 123.0 (A3), 121.8 (B4), 121.8 (B'4) ppm. MS (FAB): m/z = 1678 (M-PF₆)⁺. Anal. calcd for C₆₆H₅₂N₁₄Ru₂-(PF₆)₄·0.5H₂O: C, 43.27; H, 2.92; N, 10.70. Found: C, 42.91; H, 2.91; N, 10.35. 2_{ox}: mp 257–258°C (decomp). IR (KBr): 1603, 1585, 1464, 1446, 1314 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} (log ε) = 446 (4.65) nm. ¹H NMR (CD₃CN, 400 MHz, syn and anti-isomers): δ 8.51–8.43 (m, 24H, A3, B3, D3, E3, F3, and G3), 8.09-8.03 (m, 16H, D4, E4, F4, and G4), 7.98 (td, 4H, J=7.7, 1.5 Hz, A4), 7.88 (d, 4H, J=5.2 Hz, py6), 7.76 (d, 4H, J=5.5 Hz, py6), 7.71-7.69 (m, 12H, A6 and py6), 7.54 (dd, 2H, J=8.4, 1.8 Hz, B4_{anti}), 7.47-7.32 (m, 22H, A5, B4_{syn}, and py5), 7.27 (d, 2H, J=1.8 Hz, B6_{syn}), 7.21 (d, 2H, J=1.8 Hz, $B6_{anti}$), 6.98 (d, 2H, J=2.2 Hz, phen_{svn}), 6.89–6.86 (m, 2H, phen_{anti}), 6.61-6.57 (m, 4H, phen_{anti} and phen_{svn}). ¹³C NMR (CD₃CN, 100 MHz): 161.2 (C: phen), 158.0-157.9 (D2, E2, F2, and G2), 157.7 (A2), 154.4 (B2_{anti}), 154.3 (B2_{svn}), 152.8–152.7 (D6, E6, F6, and G6), 152.6 (A6), 149.6 (B5), 144.6 (B6_{syn}), 144.0 (B6_{anti}), 139.0-138.9 (A4, D4, E4, F4, G4, and phen_{anti}), 137.9 (phen_{svn}), 130.1 (B4_{anti}), 129.7 (B4_{syn}), 128.7–128.6 (D5, E5, F5, and G5), 128.1 (A5), 126.8 (phen_{svn}), 125.9 (phen_{anti}), 125.5 (B3), 125.3–125.2 (D3, E3, F3, and G3), 124.8 (A3) ppm. MS (FAB): m/z = 1676 (M–PF₆)⁺. Anal. calcd for C₆₆H₅₀N₁₄Ru₂(PF₆)₄·3H₂O: C, 42.27; H, 3.01; N, 10.46. Found: C, 42.12; H, 2.83; N, 10.29.

- 10. Hirao, T.; Saito, K. Tetrahedron Lett. 2000, 41, 1413.
- (a) Yonemoto, E. H.; Riley, R. L.; Kim, Y. I.; Atherton, S. J.; Schmbehl, R. H.; Mallouk, T. E. J. Am. Chem. Soc. 1992, 114, 8081; (b) Goulle, V.; Harriman, A.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1993, 1034.