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Exploring Physicochemical Space via a Bioisostere of the 

Trifluoromethyl and Ethyl Groups (BITE): Attenuating Lipophilicity 

in Fluorinated Analogues of Gilenya® for Multiple Sclerosis 

Nathalie Erdeljac,
a
 Gerald Kehr,

a
 Marie Ahlqvist,

b
 Laurent Knerr*

c
 and Ryan Gilmour*

a,d

The direct, catalytic vicinal difluorination of terminal alkenes via 

an I(I)/I(III) manifold was exploited to install a chiral, hybrid 

bioisostere of the CF3 and Et groups (BITE) in Gilenya®; the first 

orally available drug for the clinical management of Multiple 

Sclerosis (MS). This subtle fluorination pattern allows lipophilicity 

(log D) to be tempered compared to the corresponding CF3 and Et 

derivatives (CH2CH3>CH2CF3>CHFCH2F).  

Structural editing with fluorine is a ubiquitous strategy to modulate 

the physicochemical and pharmacological properties of small 

molecule drug candidates. Parameters ranging from lipophilicity, 

intrinsic potency, metabolic stability through to the pKa of proximal 

functional groups underscore the strategic value of fluorination in 

contemporary medicinal chemistry.
1
 Often, the electronic factors 

that govern these physicochemical characteristics manifest 

themselves in molecular topology and can thus be rationalised at 

the structural level. This is particularly pronounced in acyclic 

systems when fluorine is situated vicinal to an electron deficient 

motif (X = F, O, N, S).
2,3

 In such scenarios, the synergistic interplay of 

stereoelectronic (σC-H→σC-F*) and electrostatic (R
+…

Fδ
-
) interactions 

ensures that syn-clinal conformers are significantly populated (the  

Gauche Effect). Predicated on a donor acceptor model, F-C-C-(X) 

dihedral angles approaching 60° ensure maximum orbital overlap 

and also allow the fluorine atom to engage in stabilising Coulombic 

interactions with proximal cations. Consequently, judicious aliphatic 

fluorination provides an expansive platform to steer conformation 

in a manner antipodal to classic steric approaches. These subtle 

changes in fluorination pattern can also be harnessed to fine-tune 

the physicochemical profiles of small molecule drug candidates: 

This has been elegantly demonstrated by Müller and Carreira.
4
       

Inspired by the structure-function interplay of fluorination 

patterns in medicinal chemistry, and in response to a deficiency in 

the synthesis repertoire, we recently reported a direct, catalytic, 

vicinal difluorination of terminal alkenes.
5
 Catalysis proceeds via an 

I(I)/I(III) manifold that exploits Selectfluor® as the terminal oxidant, 

whilst HF•amine serves as both an inexpensive fluoride source and 

Brønsted acid. Since the resulting vicinal difluoro-motif is a chiral, 

hybrid bioisostere of the trifluoromethyl and ethyl groups (BITE 

group),
2e,6

 a suitable platform was sought to explore the 

physicochemical profile of this unit (Figure 1). Specifically, 

lipophilicity was of interest due to its importance in the early stages 

of drug development and associated requirement to generate 

molecular “fragments” to tailor the overall quality and “drug-

likeness” of a candidate.
7
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Fig. 1 The BITE group: A chiral, hybrid bioisostere of the 

trifluoromethyl and ethyl groups. 

 

Lipinski highlighted the significance of this parameter in his “rule of 

five”, to lower attrition rates during drug discovery, which suggests 

that the desired clogP for orally administered drugs should not 

exceed 5.
8
 While the influence of fluorine substitution on aryl ring 

systems generally leads to a moderate increase in lipophilicity, the 

effects on aliphatic systems are more complex.
4,9

 To that end, we 

sought to explore the effect of the BITE group on the lipophilicity of 

fluorinated analogues of the multiple sclerosis drug Fingolimod / 

Gilenya® (Figure 2). 
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Fig. 2 The natural product Myriocin and the relapsing-remitting 

multiple sclerosis drug Fingolimod / Gilenya®. 

 

Multiple sclerosis (MS) is a chronic inflammatory disease of the 

central nervous system (CNS) in which demyelination and axon 

damage leads to the dysfunction and death of neural cells.
10 

With a 

usual age of onset around 30 years, MS is considered to be the 

most prevailing cause of disability among young adults and is 

estimated to affect around 2.1 million people worldwide.
11

 So far, 

there is no cure for MS and current treatment strategies rely on 

various disease modifying drugs (DMO) to reduce relapse rates and 

slow down the progression of the disease.
12

 First-line therapy 

continues to consist of intramuscular (IM) or subcutaneous (SC) 

administration of interferon betas (Avonex®, Biogen Idec; 

Betaferon®, Bayer; Extavia®, Novartis Pharma) or glatiramer acetate 

(Copaxone®, Teva Pharmaceutical Industries).
13

 In 2010, Fingolimod 

(Gilenya®, Novartis Pharma) was approved by the US Food and Drug 

Administration (FDA) as the first orally bioavailable drug for the 

treatment of relapsing-remitting multiple sclerosis (RRMS).
14

 As a 

structural analogue of the naturally occurring sphingosine myriocin 

(Figure 2), fingolimod is phosphorylated in vivo by sphingosine 

kinase 2 to its active metabolite S-fingolimod-phosphate.
15

 Its 

immunomodulatory effects are mediated via initial activation of 

sphingosine 1-phosphate (S1P) receptors on lymphocytes, which 

obstructs their egress from the lymph nodes into the peripheral 

circulation and thereby reducing their infiltration into the CNS.
16

  

As a platform to validate the BITE group as a physicochemical 

handle to modulate lipophilicity in small molecule drug candidates, 

fluorinated analogues of Fingolimod (Gilenya®) were investigated. 

The direct, catalytic difluorination of terminal alkenes
5
 accelerated 

this investigation by allowing hydrocarbon tails with 1,2-

difluorinated alkyl chains of varying length to be rapidly prepared. 

  

 
Fig. 3 The Gilenya® analogues for comparative physicochemical 

profiling.  

 

In addition, the synthesis of the non-fluorinated (Et) and 

trifluoromethylated (CF3) counterparts was performed to allow for 

a comparative physicochemical profiling of the three substituents 

(Figure 3: Target scaffolds).  

 

 

Scheme 1 Synthesis of the aromatic core. Reagents and conditions 

[yield]: (a) BnBr, K2CO3, DMF, r.t. [99%]; (b) H3CPPh3I, NaH, THF, r.t. 

[96%]; (c) (i) BH3/THF, 0 °C to r.t. and (ii) NaOH, H2O2, EtOH/H2O, 0 

°C to r.t. [82%]; (d) I2, PPh3, imidazole, CH2Cl2, 0 °C to r.t. [99%]; (e) 

NaH, AcNH(COOEt)2, DMF, 95 °C [63%]; (f) (i) LiCl, NaBH4, THF/EtOH, 

0 °C to r.t. and (ii) Ac2O, Et3N, DMAP, THF, r.t. [75%]; (g) H2, Pd/C, 

EtOH, r.t. [92%].  

 

Synthesis: The small library of compounds was prepared from a 

common precursor 8 in a highly concise manner (Scheme 1). 

Commercially available p-hydroxy benzaldehyde 1 was processed to 

the corresponding styrene 3 via a benzylation / methylenation 

sequence. Subsequent hydroboration / oxidation furnished alcohol 

4, which was converted to the iodide 5. The drug head group was 

installed by displacement using diethyl acetamidomalonate to 

furnish 6 prior to double reduction of the esters and acetate 

protection (7). Finally, debenzylation liberated phenol 8 as a handle 

to install the alkyl spacer for physicochemical modulation. 

  

Table 1 Catalytic, vicinal difluorination of alkenes via an I(I)/I(III) 

manifold. 

 

10 X n Yield [%] 

a OTs 1 48 

b OTs 2 46 

c OTs 3 72 

d OTs 4 79 

e OTs 5 55 

f Br 6 72 

 

The alkyl chains containing the vicinal BITE motif required for 

coupling with 8 were prepared directly from the corresponding 

terminal alkenes (Table 1, 9a-f → 10a-f). To that end, p-iodotoluene 

was employed as a catalyst to generate the requisite p-TolIF2 

species in situ. This was enabled by utilizing Selectfluor® as oxidant, 
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and a mixture of Olah’s reagent and Et3N•5HF as both the HF 

source and Brønsted acid activator (Table 1).
5
 The desired 1,2-

difluorinated products were obtained in racemic mixture in 

moderate to good yields (up to 79%). The corresponding 

trifluoromethylated and non-fluorinated hydrocarbon chains were 

either obtained commercially or prepared from available starting 

materials (full details are provided in the Supporting Information).  

Finally, the aliphatic chains were coupled to the Gilenya® head 

group 8 via displacement chemistry (11a-f, 13a-e and 15a-f, BITE 

group, CF3 and Et, respectively) and the target molecules were 

globally deprotected and converted to their respective 

hydrochloride salts (Scheme 2, 12a-f, 14a-e and 15a-f, BITE group, 

CF3 and Et respectively). For the comparative physicochemical 

analysis, the parent drug Gilenya® was also synthesised as a 

reference (full details are provided in the Supporting Information).
17

 

 

 
 

Scheme 2 Coupling of the aliphatic chains to 8, deprotection and 

hydrochloride salt formation. Reagents and conditions [yield]: (a) 

K2CO3, DMF, r.t. [11a-f 36-94%, 13a-e 66-88%, 15a-f 72-97%]; (b) (i) 

aq. LiOH (2M), MeOH, reflux and (ii) HCl in dioxane (4M), r.t. [12a-f 

39-90%, 14a-e 48-73%, 16a-f 47-99%]. 

 

Physicochemical Profiling: Compounds 12a-f, 14a-e and 16a-f were 

subjected to in vitro profiling to assess the impact of BITE 

fluorination on lipophilicity, solubility, passive permeability and 

metabolic stability (Table 2). Predictably, the introduction of the 

trifluoromethyl (CF3) group had a clear effect on lipophilicity 

compared to the alkyl series (average ∆logD7.4 = -0.4) (Figure 4). As 

expected, and in line with previously published data,
4
 the effect of 

vicinal difluoroethyl BITE group was significantly more pronounced 

(average ∆logD7.4 = -1.5 and -1.2 versus the alkyl and trifluoromethyl 

series, respectively). Furthermore, the vicinal difluoroethyl BITE 

series performed better in terms of solubility compared to the 

roughly comparable trifluoromethyl and alkyl series: This was 

especially apparent for larger alkyl groups (5 to 10 fold better 

solubility for n=3 and above) (Figure S1). It is interesting to note 

that, despite an average lower lipophilicity, the trifluoromethyl 

series performed poorer in that regard compared to the alkyl series. 

As expected, the passive permeability measured using a Caco-2 

assay (Figure S2) showed a clear relationship with the lipophilicity 

(Table 2).  

Fig. 4 Measured logD7.4 profile of the compounds in the different 

series as a function of the methylene spacer length: alkyl (grey), 

trifluoromethyl (green), 1,2-difluoroethyl (blue). Fingolimod has 

been added as reference (red). The labels indicate the individual 

measured logD7,4 values. For a detailed description of the assay see 

the supporting information. 

 

Table 2 Lipophilicity, solubility, apparent passive permeability and 

in vitro metabolic stability comparison of compounds described.
a

 

See supporting information for assay details.
b
 All compounds were 

stable in the presence of human microsomes (Clint (µM/min/mg) 

<4.5). 

 

 

Indeed, the more polar vicinal difluoroethyl BITE derivatives studied 

demonstrated low permeability compared to their trifluoromethyl 

analogues. This was even more pronounced in comparison to the 

alkyl systems, which showed moderate to high permeability (Table 

2). The metabolic stability measured in rat and human hepatocytes 

Entry n LogD7.4
a
 

Solubility 

(pH7.4, 

µM)
a
 

Caco-2 

Papp 

(10
-6

 

cm/s)
a
 

Rat/Human 

Hepatocytes 

Clint 

(μL/min/10
-

6
 cells)

a,b
 

Fingolimod 5 3.5 2 - 12.8/- 

12a 1 -0.2 968 - 1.53/- 

12b 2 0.2 875 1.19 2.67/- 

12c 3 0.5 874 0.84 9.91/<1 

12d 4 0.7 585 - 10.6/- 

12e 5 1.3 133 - 20.3/- 

12f 

14a 

14b 

14c 

14d 

14e 

16a 

16b 

16c 

16d 

16e 

16f 

6 

2

 

3 

4 

5 

6 

1 
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3 
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5 

6 

1.9 

1.1 
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3 
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152 

88 
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16 
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1000 
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58 

5 

4 

- 

2.61 

2.95 
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- 

- 

- 

5.09 

5.02 

- 

- 

- 

47.3/- 

8.28/- 

11.6/<1 

15.8/- 

37.3/- 

12.3/- 

15.9/- 

11.9/- 

12.3/3.34 

9.90/- 

13.1/- 

11.5/- 
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(see Supporting Information for assay details) revealed a clear 

correlation between Rat Clint (unbound) versus logD and 

demonstrated a positive impact of fluorine introduction in that 

respect (Figure S3). There is, however, a disconnect between Clint 

in human and rat hepatocytes (12c and 14b), which could be due to 

differences in metabolism in these two species. All compounds 

reported here were however stable in the presence of human liver 

microsomes (Clint (µM/min/mg) <4.5). 

Conclusions 

Contemporary medicinal chemistry requires new areas of 

chemical space to be explored to place physicochemical 

parameters on a structural foundation. The hybrid bioisostere 

of the CF3 and Et groups (BITE group) has been found to 

attenuate lipophilicity in a series of fluorinated analogues of 

the Multiple Sclerosis drug Gilenya®. Comparative 

physicochemical profiling with the corresponding CF3 and Et 

derivatives demonstrated that lipophilicity (log D) can be 

tempered in the order CH2CH3>CH2CF3>CHFCH2F. In addition, a 

comparison of the three groups on solubility, apparent passive 

permeability and in vitro metabolic stability has been 

established. Efficient installation of the BITE group was 

achieved by direct, catalytic vicinal difluorination of α-olefins 

without the need for substrate pre-functionalisation.  
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