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Abstract

Iridium-catalysed catalytic, regioselective C–H borylation of β-aryl-aminopropionic acid 

derivatives gives access to 3,5-functionalised protected β-aryl-aminopropionic acid boronates. 

The synthetic versatility of these new boronates is demonstrated through telescoped 

functionalisation reaction to give diverse building blocks for medicinal chemistry. The C-H 

borylation is also effective for dipeptide substrates. We have exemplified this methodology in 

the synthesis of a pan v integrin antagonist.

Introduction

Natural and non-natural amino acids are widespread and have been extensively exploited in the 

synthesis of therapeutic molecules.1 As a result, there is a continued need to develop novel 

strategies for the synthesis of these fundamentally important building blocks. Of particular 

importance in the context of medicinal chemistry is the development of methods for the 

construction of structurally diverse β-aryl-aminopropionic acids. This motif is present in 

biologically active molecules with activity against Chagas disease,2 breast cancer,3 and in αv 

integrin antagonists as potential treatments for osteoporosis,4 melanoma5 and idiopathic 

pulmonary fibrosis.6 Additionally, β-phenyl-aminopropionic acid is an intermediate in the 

synthesis of Maraviroc,7 a CCR-5 receptor antagonist used for the treatment and prevention of 

HIV. Therefore, a unified strategy to the synthesis of functionalised β-aryl-aminopropionic 

acid would be of significant value.

Three general strategies have been developed for the synthesis of β-aryl-aminopropionic acids 

to date (Scheme 1). The Rodionov reaction (Scheme 1A) represents the simplest option and 

involves the multicomponent coupling of an aldehyde, malonic acid and ammonium acetate to 

generate racemic β-aryl-aminopropionic acids.8–10 A second protocol involves 
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diastereoselective Reformatsky reactions of sulfinimines (Scheme 1B).11 An alternative 

auxiliary-based approach is depicted in Scheme 1C and involves the addition of chiral lithium 

amides to cinnamic acid derivatives (Scheme 1C).12–14 These strategies for the synthesis of β-

aryl-aminopropionic acids are dependent on the availability of highly functionalised starting 

aldehydes (Scheme 1A and B) or aryl bromides (Scheme 1C). While some of these are 

commercially available, they are available in limited supply and, since the diversity is 

introduced in the first step, a multistep synthesis is required for each different β-aryl-

aminopropionic acid. This makes the exploration of structure-activity relationships around the 

aryl ring time and resource consuming.

Scheme 1: Common approaches to β-aryl-aminopropionic acids.
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As part of our research into novel biologically active peptidomimetics for therapeutic 

application we sought to incorporate β-aryl-aminopropionic acids with diverse substituents in 

the 3- and 5-positions. Given that existing methods, require a bespoke aldehyde or aryl bromide 

for every new compound and we designed an alternative method based on a late-stage 

functionalisation approach. Specifically, we envisioned that an appropriately pre-

functionalised 3-substituted β-aryl-aminopropionic acid derivative, accessed via a Rodionov 

multicomponent reaction from more widely available 3-substituted aldehyde, could undergo a 

C–H functionalisation reactions (Scheme 2) providing a platform for further chemistry.
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Scheme 2: C-H functionalisation to diverse β-aryl-aminopropionic acids
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In the past decade C–H activation chemistry emerged into the forefront of modern organic 

chemistry. The innovative work of Hartwig and Miyaura,15 and Smith and Maleczka16 in 

iridium-catalysed aromatic C–H borylation offers a potentially powerful method for 

functionalisation given that the synthetic versatility of boronate groups is ever increasing.17,18,19

Encouraged by previous examples of C–H borylation on simple phenylalanine20 and 

tryptophan21 derivatives we now report the substrate directed iridium borylation of β-3-aryl-

aminopropionic acid precursors together with examples of “one-pot” transformations to 

diversely functionalised 3,5-substituted products and implementation of this methodology in 

the preparation of an integrin antagonist bearing a β-3,5-aryl-aminopropionic acid motif.

Results and Discussion 

A series of 3-substituted β-aryl-aminopropionic acid derivatives were prepared by Rodionov 

multicomponent reaction or addition of the bromozincacetate to the corresponding sulfinimine 

followed by suitable protection as the N-Boc esters. Using 1d as a model substrate we 

performed a brief screen of previously reported ligands and solvents to determine the optimum 

conditions.22 Methoxy(cyclooctadiene)iridium(I) dimer ([Ir(OCH3)COD)]2) was chosen as the 

catalyst with bis(pinacolato)diboron (B2pin2) as the boron source. We evaluated three solvents 

(MTBE, THF and iPrNEt2) with two ligands – 4-4’-di-tert-butyl-2,2’-bipyridine (dtbpy) and 
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3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen). The reactions were heated at 80 ºC for 24 h 

and a qualitative assessment of conversion determined by LCMS. The reaction did not reach 

completion when iPrNEt2 was used a solvent. Conversion was comparable for both ligands and 

when ether solvents were used. Under standard heating conditions, shortening the reaction time 

from 24 h reduced the conversion, but complete conversion could be achieved using microwave 

irradiation in three hours. Based on this screen we selected MTBE and dtbpy to pair with 

([Ir(OCH3)COD)]2) and B2Pin2. Under these conditions a range of β-aryl-aminopropionic acid 

derivatives were converted into the corresponding borylated derivatives (Scheme 3). As 

predicted, the reaction predominantly or exclusively yielded the 3,5-substituted products, in 

accordance with the reported directing regiochemistry of iridium-catalysed borylation 

reactions.23

Page 6 of 16Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
A

ug
us

t 2
02

0.
 D

ow
nl

oa
de

d 
on

 8
/1

8/
20

20
 3

:1
0:

57
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D0OB01495H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ob01495h


Scheme 3: Substrate scope of iridium-catalysed C–H borylation of β-aryl-aminopropionic 

acids.
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The reaction of unsubstituted β-aryl-aminopropionic acid derivative (X = H) yielded a mixture 

of 3- and 4-isomers along with and 3,5-diborylated product in a ratio of 1:1:3, as determined 

by 1H NMR. 3-Substituted substrates were readily tolerated in the reaction delivering the 

corresponding 3,5-substituted products in 38-86% yield (Scheme 3). 3-Fluorosubstituted 

substrate 1c yielded a 2:1 mixture of 3,5 (2c) and 3,4-isomers that were inseparable by column 

chromatography. This is consistent with observations by other workers.20,24 The borylated 

products were stable and could be readily purified by column chromatography to isolate them. 

Furthermore, the 3-trifluoromethyl 2f and 3-bromo 2h derivatives could be prepared on 

multigram scale with improved isolated yields. Under the standard borylation conditions, 2-

thienyl derivative 1l yielded exclusively the 3,5-diborylated product. The 5-borylated product 

2l was produced exclusively by conducting the reaction at room temperature. C–H borylation 

of the 3-pyridyl derivative 1k yielded the desired product, however, attempts to purify the 

compound by chromatography resulted in protodeborylation and recovery of starting material 

1k. The yield reported is for the two-step procedure, involving Suzuki-Miyaura coupling of the 

unstable boronate ester with 4-nitroiodobenzene (R1 = 4-nitrophenyl). When the 

enantioenriched substrate (S)-1f was subjected to C–H borylation followed by oxidation, 

phenol (S)-3 was obtained with an 97% ee indicating no racemisation occurs in the borylation 

process (Scheme 4).
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Scheme 4: Iridium-catalysed C–H borylation of enantiopure β-aryl-aminopropionic 

acids.
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To demonstrate the versatility of these β-aryl-aminopropionic acid boronate derivatives in 

synthesis we have exemplified their applicability in typical reactions used in the synthesis of 

biologically active molecules (Scheme 5). In each example, the 3-substituted β-aryl-

aminopropionic acid derivative was borylated under the previously described conditions and 

then telescoped into functionalisation without purification of the boronate. Oxidation of the 

boronate with aqueous Oxone® provided the phenols 3-6.16 3-Trifluoromethyl derivative 1h 

was borylated and transformed into biaryl ether 7 under standard Suzuki-Miyaura conditions. 

Attempts to alkylate the phenols under standard conditions (RBr, Cs2CO3) were unsuccessful, 

resulting in ester hydrolysis and transesterification only. To circumvent this and access ether 

containing products we utilised the Chan-Lam coupling to provide phenyl ethers 8 and 9.25 The 

Chan-Lam coupling was also an effective methodology to access N-linked heteraraomatic β-

aryl-aminopropionic acid derivatives, the 1,3-dimethylpyrazole derivates 10 and 11 were 

accessed in 74 and 68% yield respectively over two steps.26  These transformations are further 

examples of the Chan-Lam coupling as a viable sustainable alternative to Pd-catalysed 

etherification and amination and are compatible with tandem iridium borylation. Bromination 

of 2i with CuBr2 provided the 3-bromo-5-tert-butyl derivative 12, this motif is featured in 

recently reported selective integrin antagonists.27,28 3-Bromo-5-fluoroderivative 13 was 
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prepared via metallation of the intermediate boronate to the organosilver reagent and reaction 

with Selectfluor®.29 

Scheme 5: One-pot functionalisation of BPin-β-aryl-aminopropionic acids
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g

Reagents and conditions. (a) standard conditions Scheme 2; (b) Oxone®, aq. acetone, r.t., 0.75 h, 3 = 52%, 4 = 

77%, 5 = 33%, 6 = 92% over two steps; (c) 1-iodo-4-nitrobenzene, Pd(dppf).CH2Cl2, K3PO4, 1,2-DME:H2O, 70 

°C, 4.5 h, 93% over two steps; (d) phenol, CuOAc2, B(OH)3, 4Å molecular sieves, 70 °C, 16 h, 8 = 36%, 9 = 34% 

over two steps; (e) 1,4-dimethylpyrazole, Cu(OAc)2, B(OH)3, 4Å molecular sieves, 80 °C, 16 h, 10 = 74%, 11 = 

68% over two steps; (f) CuBr2, MeOH:H2O (2:1), 70 °C, 16 h, 39%; (g) i. AgOTf, NaOH, MeOH, 0 °C, 0.5 h; ii. 

Selectfluor®, 3Å MS, acetone, r.t., 3 h, 59%.
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While tert-butoxycarbonyl groups present a robust, stable protecting group for the substrates, 

further N-functionalisation requires deprotection before further reaction. To demonstrate the 

utility of the C–H borylation in peptidomimetics, we replaced the tert-butoxycarbonyl group 

with an α-amino acid (Scheme 6). Under the established C–H borylation conditions the amino 

acid derived substrates 14a-c were converted to the corresponding dipeptide boronates 15a-c 

in good yield showing the tolerance of the conditions to more complex conditions with 

additional hydrogen bond donors.

Scheme 6: Iridium-catalysed C–H borylation of β-aryl-aminopropionic dipeptides.
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H
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O
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O O

O O

O

OEt OEt

OEt OEt
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AA = amino acid aextended reaction time of 6 h.
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Finally, we used this C–H borylation strategy to prepare a reported selective integrin 

antagonist.27,28 Utilising the C–H borylation strategy to prepare 3-bromo-5-tert-butyl derivative 

12 (Scheme 5) we converted this through to dipeptide 16 by amide coupling with Boc-glycine 

in 50% yield (Scheme 7). Further acidic deprotection and coupling with 3-guanidinobenzoic 

acid and final ester hydrolysis provided the integrin antagonist 17. While comparable in step 

count to the reported, this approach allows installation of the stereocenter by Reformatsky 

addition of ethyl bromozincacetate to the chiral sulfinamide, obviating a chiral HPLC 

separation as previously reported. The reported synthetic procedures for similar compounds 

require a bespoke aldehyde synthesis for each target compound, whereas a C–H borylation 

strategy allows a more sustainable synthesis of similar analogs by functionalizing a common 

intermediate.

Scheme 7: Application of C–H borylation chemistry in the synthesis of an integrin 

antagonist.

Br

H2N OEt

O
a

Br

N
H

OEt

O
b, c, d

O
BocHN

Br

N
H

OH

OO
H
N

O

N
H

H2N

NH

12 16 17

Reagents and conditions. (a) Boc-glycine, HATU, iPr2EtN, MeCN, 0 °C to r.t., 16 h, 50%; (b) 4M HCl in dioxane, 

5 h; (c) 3-guanidinobenzoic acid, diisopropylcarbodiimide, HOBt, CH2Cl2:DMF (1:1), r.t., 64 h; (c) 1M aq. LiOH, 

THF, r.t., 64 h, 52% over three steps.

In conclusion, we have developed an efficient iridium-catalysed C–H borylation procedure of 

β-aryl- and heteroaryl-aminopropionic acids and explored the scope of the procedure with 
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respect to functional group tolerance and retention of enantiointegrity. We have further 

explored the C–H borylation procedure in dipeptide substrates further demonstrating its 

synthetic utility. By applying telescoped “one-pot” reaction conditions we have shown that the 

C–H borylation approach allows an effective route to diversely functionalised β-aryl-

aminopropionic acids across chemical space relevant to medicinal chemistry.
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Supporting Information.
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