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Sc(OTf)3-Catalyzed Cyclization of α-Allylated 1,3-Dicarbonyls: an 
Efficient Access to 2,2-Disubstituted 2,3-Dihydrofuran Derivatives 

Ziping Cao,
a,b,*

 Rumeng Zhang,
a
 Xin Meng,

a
 Hui Li,

a
 Jie Li,

a
 Hongbo Zhu,

a
 Guang Chen,

a,b
 Xuejun 

Sun,
a
 and Jinmao You

a,b,*

A method to prepare functionalized 2,3-dihydrofurans by Sc(OTf)3-

catalyzed cyclization of α-allylated 1,3-dicarbonyl compounds is 

reported. The reactions were shown to be operationally simplistic 

and proceed efficiently for a variety of substrates, leading to the 

formation of 2,2-disubstituted 2,3-dihydrofurans in good to 

excellent yields. 

The 2,3-dihydrofuran derivatives are a class of significant O-

heterocyclic compounds that can be found in a large number 

of natural products and biologically active molecules,
1,2

 being 

also widely employed as versatile building blocks in synthetic 

organic chemistry.
3
 Therefore, many synthetic strategies 

toward 2,3-dihydrofurans have been developed for the 

synthesis of such types of structures. For example, by these 

strategies including the [4+1] cycloaddition of enones with 

diazo compounds,
4
 the [3+2] annulations of β-ketosulfides/β-

ketosulfones with aldehydes,
5
 and ionic

6
 or radical

7
 reactions 

of olefins with 1,3-dicarbonyl compounds, as well as 

cycloisomerization of the but-3-yn-1-ols,
8
 the 2,3-dihydrofuran 

structures could be built efficiently. Even so, more simple and 

novel approaches are still in great demand. 

The reaction of α-propargylated carbonyl derivatives has 

opened the way to furan scaffolds by employing transition-

metal-catalyzed cycloisomerizations during the past years.
9
 By 

instead of the alkyne subunit for alkene, the corresponding 

2,3-dihydrofurans should be able to be obtained in an 

appropriate way. Scheme 1 highlights common methods 

towards the 2,3-dihydrofuran structure motif from the 

carbonyl alkene derivatives. For instance, compound 1 could 

be converted to the corresponding 2,3-dihydrofuran product 

at high temperature
10

 or under acidic conditions.
11

 Brönsted 

acid- and HgO-mediated cyclizations of allenyl-substituted β-

ketoesters 2 produced 2,3-dihydrofurans in good yields.
12

 The 

I2-PPh3 system could promote the transformation of the 

carbonyl alkenes 3 to the corresponding 2,3-dihydrofurans 

under mild conditions.
13

 By contrast, the reaction of β,γ-

unsaturated ketoesters 4 to 2,3-dihydrofuran framework in 

excess sulfuric acid proceeded in relatively low efficiency.
14

 

These methods indeed gave useful 2,3-dihydrofuran motifs, 

however, suffered from some limitations such as strict 

reaction conditions, the use of poisonous metals and strong 

acid or low efficiency. As part of an ongoing program on 

exploring novel methods to cyclic structure scaffolds,
15

 we 

were interested in developing an approach to 2,3-dihydrofuran 

motifs which would be of mild conditions and high efficiency. 

Herein we wish to report a Sc(OTf)3-catalyzed cyclization of the 

carbonyl alkenes 5 for constructing functionalized 2,3-

dihydrofuran derivatives. 

 
The readily available α-allylated β-ketoester 5a was chosen 

as the model substrate. We examined in detail the cyclized 

reaction of 5a with different metal salts as well as with 

 

 
Scheme 1 The access to 2,3-dihydrofuran motif from the alkylated β-

ketoesters. 
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BF3·Et2O, and the results were listed in Table 1. Among the 

assayed Lewis acids, Sc(OTf)3 (10 mol%) was proved to be the 

best catalyst, giving the desired 2,3-dihydrofuran 6a in 89% 

yield with 1,2-dichloroethane as a solvent at 80 ˚C (Table 1, 

entry 8).
16

 The low yields or slow reactions were obtained with 

the others catalysts such as FeCl3 and Cu(OTf)2, whereas with 

Ag(I) salts, the reactions did not proceed (Table 1, entries 1-7). 

When BF3·Et2O was selected as the catalyst, a decomposed 

mixture was obtained (Table 1, entry 3). By contrast, indium (III) 

triflate is also an alternative Lewis acid for the formation of 

2,3-dihydrofuran 6a (Table 1, entry 5). Subsequently, the 

various solvents were screened. It could be found that 

tetrahydrofuran, toluene and acetonitrile were not good 

solvents for the present transformation (Table 1, entries 9-11). 

Additionally, decreasing the temperature to 60 ˚C could afford 

6a in 91% isolated yield (Table 1, entry 12), whereas the 

reaction was low efficient at 40 ˚C (Table 1, entry 13). The 

catalyst loading was not decreased or prolonged reaction time 

was required (Table 1, entry 14). Notably, all of the reactions 

could be performed in air. Finally, the optimized system 

consisting of 10 mol% of Sc(OTf)3 at 60 ˚C in 1,2-

dichloroethane was established (Table 1, entry 12). 

 

Using the optimized system, the scope of substrates with 

alkyl-β-ketoesters 5 was firstly evaluated (Table 2). In general, 

complete conversions were observed for substrates 5a-h, 

leading to the expected 2,3-dihydrofuran products 6a-h in 

moderate to good yields. The carbonyl alkenes 5a-d bearing 

different ester functionality could afford the corresponding 

products 6a-d in 76-91% yields (Table 2, entries 1-4). Sterically 

demanding ethyl, propyl, cyclopropyl, and tert-butyl 

substituents on the ketone subunit were also well tolerated 

(Table 2, entries 5-8). It should be noted that when ethyl 2-

acetylpent-4-enoate was subjected to the reaction conditions, 

no formation of the expected 2,3-dihydrofuran product was 

observed. 

 

We next turn to expand the scope of Sc(OTf)3-catalyzed 

cyclization of aryl ketones for the formation of 2,3-

dihydrofurans under the optimized conditions. As shown in 

Table 3, a variety of aromatic ketone-derived alkenes could be 

efficiently converted to the cyclic products in moderate to 

good yields (56-93%). Substrates having electron-donating 

substituents on the aryl ring moiety could produce the 2,3-

dihydrofuran derivatives in good yields (Table 3, entries 2-3 

and 7). Substrates with electron-deficient fluoro-, chloro, and 

bromoarenes were also suitable for the present 

Table 1 Optimization of the reaction conditionsa 

 
Entry Catalyst  Solvent  Temp. 

(˚C) 

Time 

(h) 

Yield 

(%)b 

1 AgSbF6 DCE 80 1.5 0 

2 AgBF4 DCE 80 1.5 0 

3 BF3·Et2O DCE 80 1.5 0 

4 FeCl3 DCE 80 1.5 34 

5 In(OTf)3 DCE 80 1.5 80 

6 InCl3 DCE 80 1.5 19 

7 Cu(OTf)2 DCE 80 1.5 10 

8 Sc(OTf)3 DCE 80 1.5 89 

9 Sc(OTf)3 THF 80 1.5 38 

10 Sc(OTf)3 toluene 80 1.5 55 

11 Sc(OTf)3 CH3CN 80 1.5 32 

12 Sc(OTf)3 DCE 60 2 91 

13 Sc(OTf)3 DCE 40 12 46 

14c Sc(OTf)3 DCE 60 12 80 

a Reaction conditions: 0.2 mmol of substrate 5a with 10 mol% of catalyst 

in the indicated solvent (2.0 mL) in air. b Isolated yields after column 

chromatography. c 5 mol% of catalyst was used. 

Table 2 The substrate scope for alkyl-β-ketoesters
a,b 

a Reaction conditions: 0.2 mmol of substrate 5 with 10 mol% of 
Sc(OTf)3 in DCE (2.0 mL) at 60 ˚C in air. b Isolated yields after 
column chromatography. 
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transformation, giving the 2,3-dihydrofuran products in high 

yields (Table 3, entries 4-6 and 8). Furthermore, the carbonyl 

alkenes bearing sterically demanding ortho-methyl- and 

bromo-arenes could achieve the transformations to the 

desired products albeit in diminished yields (Table 3, entries 9-

10). 

 

 
In subsequent study, we evaluated the possibility of 

transformation from the analog 7 to 2,3-dihydrofuran 8 

(Scheme 2). Pleasingly, the desired cyclic product 8 was 

obtained smoothly albeit in low yield. 

 

 
 

A possible mechanism for this annulation was proposed in 

Scheme 3.
16

 The scandium-enolate intermediate A was 

generated from the coordination of Sc(OTf)3 to ketone-oxygen 

of 5a after enolization. The transfer of the acidic proton to the 

allyl moiety allowed the formation of the carbocation 

intermediate, which was captured by the enolate nucleophile 

to form the desired 2,3-dihydrofuran product 6a. Alternatively, 

the activation of alkene subunit by Sc(OTf)3 and subsequent 

nucleophilic attack of the carbonyl oxygen would led to the 

formation of 2,3-dihydrofuran structure. 

In summary, we have developed an efficient Sc(OTf)3-

catalyzed cyclization of readily accessible α-allylated 1,3-

dicarbonyl compounds that allows the access to functionalized 

2,3-dihydrofurans in good to excellent yields. This 

transformation is operationally simplistic, and efficient with 

mild conditions. The application for synthesis of some 

interesting 2,3-dihydrofuran products is underway in our lab. 
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Scheme 3 Proposed catalytic cycle. 
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A Sc(OTf)3-catalyzed cyclization of α-allylated 1,3-dicarbonyls is reported. By 

the reaction, a variety of 2,2-disubstituted 2,3-dihydrofurans were obtained in 

good yields. 
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