Rh(II) Catalyzed Three-Component Reactions of Diazoacetates with Benzenemethanol and Indane-1, 2, 3-Triones

Xin Guo, Jingjing Wang, Liping Yang and Wenhao Hu*

Department of Chemistry, East China Normal University, Shanghai 200062, P. R. of China Received May 14, 2008: Revised December 21, 2009: Accepted January 07, 2010

Abstract: A facile synthesis of 2-substituted-2-hydroxyindane-1,3-diones is reported *via* the reaction of diazoacetates with benzenemethanol and indane-1,2,3-triones catalyzed by dirhodium acetate.

Keywords: Multi-component reaction, diazo compounds, carbenoids, oxonium ylide, dirhodium acetate, indane-1, 3-diones.

INTRODUCTION

It is well known that metal carbenoids react with heteroatoms to form onium ylides [1]. The chemistry of onium ylides is an area of continuing interest [2]. Phosphorus, sulfur, ammonium, carbonyl and oxonium vlides have been widely utilized in organic synthesis [3]. Previously, we reported novel three component reactions, in which, an alcoholic/ ammonium ylide in situ generated from a diazo compound and an alcohol/amine in the presence of rhodium acetate can be trapped by carbonyls [4], imines [4b, 5] and azodicarboxylates [6]. As for the alcoholic ylide trapping process, the reactions were successful when electron-deficient aldehydes and isatins were used due to a competing process from an intramolecular proton transfer of the alcoholic ylide leading to an O-H insertion side product [4]. To extend the scope of this method, we envision that indane-1, 2, 3-triones would serve as good trapping reagents for the reaction, because the strong electrophilicity of the 2carbonyl functionality of the 1, 2, 3-triones made them widely used in aldol type reactions [7]. Trapping of the alcoholic ylide with indane-1, 2, 3-triones would provide an easy entry to polyfunctional 2-hydroxyindane-1, 3-diones with a C-C and C-O bond formation in one step (Scheme 1).

molar ratio, and the results are summarized in Table 1. The best yield of 69% was obtained when 1.5 equivalent of both 1a and benzenemethanol (2) were used (Table 1, entry 3). However, significant amount of the O-H insertion side product 5 occurred due to large excess of both the diazo compound and the alcohol. In order to decrease the formation of 5, we reduced the amount of the diazo compound **1a** to a substrate ratio of 1a:2:3a = 1.1:1.5:1. The desired three-component product 4a was isolated with similar good yield (65%) and the O-H insertion side product 5 was suppressed to less than 10 % (Table 1, entry 6). The structure of product 4a was determined based on its spectroscopic and analytical data and confirmed by single crystal X-ray analysis. The X-ray structure confirmed that the nucleophilic attacking to the indane-1, 2, 3-trione specifically occurred at the 2-position (Fig. 1).

Having established the preferred reaction conditions, we applied the synthetic strategy to a variety of aryl diazoacetates and indane-1,

2, 3-triones (Table 2) [8]. Reactions of aryl diazoacetates bearing either an electron-donating group or an electron-withdrawing group on the aromatic ring at the *para*-position gave the products with similar yield (Table 2, entries 2, 3).

Scheme 1. The three-component reaction for 2-substituted-2-hydroxyindane-1, 3-diones formation.

RESULTS AND DISCUSSION

Methyl phenyldiazoacetate (1a) was used as a standard substrate to demonstrate the strategy. The reaction was first carried out in refluxing CH_2Cl_2 with different substrate

The aryl diazoacetates with the *ortho*-substituents gave lower yields than those with the *meta*- and *para*-substituents (Table **2**, entries 2-5). The low yield is probably due to steric effects of the *ortho*-substituents which slow down the desired nucleophilic addition process. Decreased yields were also obtained with the use of indane-1, 2, 3-triones bearing substituents on the *ortho*-position of the aromatic ring (Table **2**, entries 6-9).

^{*}Address correspondence to this author at the Department of Chemistry, East China Normal University, Shanghai 200062, P. R. of China; Fax: +86(21)62233176; E-mail: whu@chem.ecnu.edu.cn

Table 1. Reaction of Methyl Phenyldiazoacetate with BnOH and Indane-1, 2, 3-Trione with Different Substrate Molar Ratio^a

Entry	1a : 2 : 3a	Yield of 4a (%) ^b
1	1:1:1	27
2	1.2:1.2:1	41
3	1.5:1.5:1	69
4	2:2:1	67
5	1.1:1.2:1	38
б	1.1:1.5:1	65
7	1.1:2:1	64

^aThe reaction of methyl phenyldiazoacetate with BnOH and indane-1,2,3-trone was carried out in refluxing CH₂Cl₂ for 1 h. ^bIsolated yield after column chromatography purification.

Fig. (1). Crystal structure of compound 4a.

We were gratified to find that the reaction gave 56% yield when EDA (ethyl diazoacetate) was used instead of aryl diazoacetates (Scheme 2). In contrast, in the reactions of ammonium or alcoholic ylide with aldehydes, much lower yields were obtained when EDA was employed [4a, 4c].

A reaction mechanism shown in Scheme 3 is similar to that we proposed previously [4d]. The reaction initially forms a free oxonium ylide 6 or a metal associated ylide 7 from aryldiazoacetate 1a and benzenemethanol catalyzed by $Rh_2(OAc)_4$. Nucleophilic addition of the ylide 5 or 6 to the indane-1, 2, 3-triones would produce intermediate adduct 8 or 9. Product 4a would be subsequently formed by a "delayed proton transfer" process.

In summary, we report here dirhodium acetate catalyzed three-component reactions of diazo compounds with benzenemethanol and indane-1, 2, 3-triones to give polyfunctional 2-hydroxyindane-1, 3-diones in a single step.

ACKNOWLEDGEMENT

We are grateful for financial support from the NSFC (Grant Nos. 20932003, 20772033) and sponsorship from

Table 2. Reaction of Different Aryl Diazoacetates with BnOH and Substituted Indane-1, 2, 3-Triones^a

Entry	1	3	Product	Yield(%) ^b
1	1a, Ar=Ph	3a, R=H	4a	65
2	1b, Ar=p-MeOC ₆ H ₄	3 a	4b	54

Entry	1	3	Product	Yield(%) ^b
3	1c , Ar=p-BrC ₆ H ₄	3a	4c	53
4	1d , Ar=m-BrC ₆ H ₄	3a	4d	55
5	1e , Ar=o-ClC ₆ H ₄	3a	4e	26
6	1a	3b, R= F	4f	24
7	1 a	3c, R=Cl	4g	30
8	1 a	3d, R=Br	4h	29
9	1a	3e, R=Me	4 i	21

^aThe reaction was conducted in refluxing CH₂Cl₂ for 1h with substrate molar ratio of 1:2:3=1.1:1.5:1. ^bIsolated yield after column chromatography purification.

Scheme 2. The reaction of EDA with BnOH and indane-1, 2, 3-trione.

Scheme 3. The proposed mechanism for the three-component reaction.

Shanghai (Grant Nos. 10XD1401700, 09JC1404901, 51K03117).

Typical Procedure of the Three-component Reaction

To a refluxing CH₂Cl₂ (20 mL) solution of Rh₂(OAc)₄ (2.4 mg, 1 mol%), BnOH (75 μ L, 0.75mmol) and indane-

1,2,3-trione (89.1 mg, 0.5 mmol) was added methyl phenyldiazoacetate **1a** (96.8 mg, 0.55 mmol) in 5 mL of CH_2Cl_2 over 1 h *via* a syringe pump. The reaction mixture was cooled to r.t., and the solvent was removed. The crude product was purified by flash chromatography on silica gel by using 10% EtOAc–light PE as eluents to give a white solid **4a** (135.4 mg, 0.33 mmol) with 65% yield. Analytical

data of **4a**: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.00-7.75$ (m, 4 H), 7.50-7.00 (m, 8 H), 6.87-6.75 (m, 2 H), 4.82 (d, J = 12.2Hz, 1 H), 4.44 (d, J = 12.2 Hz, 1 H), 3.88 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 197.72$, 195.38, 170.67, 142.53, 141.91, 137.84, 135.80, 135.68, 131.17, 129.23, 128.49, 128.06, 128.04, 127.11, 126.10, 123.30, 123.21, 87.31, 80.13, 68.58, 52.91.

REFERENCES

- (a) Padwa, A.; Hornbuckle, S. Ylide formation from the reaction of carbenes and carbenoids with heteroatom lone pairs. *Chem. Rev.* **1991**, *91*, 263. (b) Padwa, A.; Weingarten, M. D. Cascade processes of metallo carbenoids. *Chem. Rev.* **1996**, *96*, 223.
- [2] (a) Li, A.; Dai, L.; Aggarwal, V. Asymmetric ylide reactions: Epoxidation, cyclopropanation, aziridination, olefination, and rearrangement. *Chem. Rev.* 1997, 97, 2341. (b) Ye, T.; Mckervey, M. A. Organic synthesis with α-diazo carbonyl compounds. *Chem. Rev.* 1994, 94, 1091. (c) Doyle, M. P.; Mckervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. Wiley: New York, 1998.
- [3] (a) Mori, T.; Sawada, Y.; Oku, A. Ring-expansion of thioacetal ring via bicyclosulfonium ylide: effect of protic nucleophile on ylide intermediate. J. Org. Chem. 2000, 65, 3620; (b) J. S. Clark. Nitrogen, Oxygen and Sulfur Ylide Chemistry. Oxford: New York, 2002. (c) Lu, C.; Chen, Z.; Liu, H.; Hu, W.; Mi, A.; Doyle, M. P. A Facile three-component one-pot synthesis of structurally constrained tetrahydrofurans that are t-RNA synthetase inhibitor analogues. J. Org. Chem. 2004, 69, 4856. (d) Liang, Y.; Zhou H.; Yu, Z. Why is copper(I) complex more competent than dirhodium(II) complex in catalytic asymmetric O-H insertion reactions? A computational study of the metal carbenoid O-H insertion into Water. J. Am. Chem. Soc., 2009, 131, 17783.
- [4] (a) Wang, Y.; Chen, Z.; Mi, A.; Hu, W. A novel C-C bond formation through addition of ammonium ylides to arylaldehydes: a facile approach to β -aryl- β -hydroxy α -amino acid frameworks. Chem. Commun. 2004, 2486. (b) Lu, C.; Liu, H.; Chen, Z.; Hu, W.; Mi, A. Three-component reaction of aryl diazoacetates, alcohols, and aldehydes (or imines): evidence of alcoholic oxonium ylide intermediates. Org. Lett. 2005, 7, 85. (c) Lu, C.; Liu, H.; Chen, Z.; Hu, W.; Mi, A. The rhodium catalyzed three-component reaction of diazoacetates, titanium(IV) alkoxides and aldehydes. Chem. Commun. 2005, 2624. (d) Guo, X.; Huang, H. X.; Hu, W. H. Trapping of oxonium ylide with isatins: efficient and stereoselective construction of adjacent quaternary carbon centers. Org. Lett. 2007, 9, 4721. (e) Zhang, X.; Huang, H.; Guo, X.; Guan, X.; Yang, L.; Hu, W. Catalytic enantioselective trapping of an alcoholic oxonium ylide with aldehydes: Rh(II)/Zr(IV)-cocatalyzed three-component reactions of aryl diazoacetates, benzyl alcohol, and aldehydes. Angew. Chem. Int. Ed. Engl., 2008, 47, 6647. (f) Yue, Y.; Guo, X.; Chen, Z.; Yang, L.; Hu, W. Copper(I) hexafluorophosphate: a dual functional catalyst for three-

component reactions of methyl phenyldiazoacetate with alcohols and aldehydes or α-ketoesters. *Tetrahedron Lett.* **2008**, *49*, 6862.

- [5] (a)Wang, Y.; Zhu, Y.; Chen, Z.; Mi, A.; Hu, W.; Doyle, M. P. A Novel three-component reaction catalyzed by dirhodium(II) acetate: decomposition of phenyldiazoacetate with arylamine and imine for highly diastereoselective synthesis of 1,2-diamines. Org. Lett. 2003, 5, 3924. (b) Huang, H.; Guo, X.; Hu, W. Efficient trapping of oxonium ylides with imines: a highly diastereoselective three-component reaction for the synthesis of β-amino-αhydroxyesters with quaternary stereocenters. Angew. Chem. Int. Ed. Engl., 2007, 46, 1337. (c) Hu, W.; Xu, X.; Zhou, J.; Liu, W.; Huang, H.; Hu, J.; Yang L.; Gong. L. Cooperative catalysis with chiral Brønsted acid-Rh2(OAc)4: highly enantioselective threecomponent reactions of diazo compounds with alcohols and imines. J. Am. Chem. Soc., 2008, 130, 7782. (d) Guo, X.; Yue, Y.; Hu, G.; Zhou, J.; Zhao, Y.; Yang, L.; Hu, W. Trapping of an ammonium ylide with activated ketones: synthesis of β -hydroxy- α -amino esters with adjacent quaternary stereocenters. Synlett. 2009, 2109.
- [6] Huang, H.; Wang, Y.; Chen, Z.; Hu, W. A rhodium-catalyzed, three-component reaction of diazo compounds with amines and azodicarboxylates. *Adv. Synth. Catal.* 2005, 347, 531.
- (a) Pilipecz, M. V.; Mucsi, Z.; Nemes, P.; Scheiber, P. Chemistry [7] of nitroenamines: synthesis of pyrrolizine derivatives. Heterocycles 2007, 71, 1919. (b)Lee, K. Y.; Park, D. Y.; Kim, J. N. Synthesis of β , γ , γ -tri- or γ , γ -disubstituted α -methylene - γ -butyrolactones starting from the Baylis-Hillman adducts. Bull. Korean Chem. Soc. 2006, 27, 1489. (c) Ramazani, A.; Ahmadi, E.; Miri, L. Y.; Jafari, A.; Heidari, A. Synthesis of dialkyl-1,1-diacetyl-8a-hydroxy-8oxo-1,2,8,8a-tetrahydrocyclopenta indene-2,3-dicarboxylates from the reaction of dialkyl-2-(1-acetyl-2-oxopropyl)-3-(tributylphosphoranylidene)succinates withindene-1,2,3-trione. Asian J. Chem. 2007, 19, 1575. (d) Ramesh, E.; Kathiresan, M.; Raghunathan, R. Solvent-free microwave-assisted conversion of Baylis-Hillman adducts of ninhydrin into funct-ionalized spiropyrrolidines/pyrrolizidines through 1,3-dipolar cycloaddition. Tetrahedron Lett. 2007, 48, 1835. (e) Yamamoto, Y.; Takagishi, H.; Itoh, K. Ruthenium(II)-catalyzed [2+2+2] cycloaddition of 1, 6-diynes with tricarbonyl compounds. J. Am. Chem. Soc. 2002, 124, 6844. (f) Adam, W.; Froehling, B. An, α '-dioxothione and its [4+2] cycloaddition with trans-cyclooctene in the reaction of ninhydrin with potassium thiotosylate. Org. Lett. 2000, 2, 2519. (g) Mack, A.; Bergsträßer, U.; Regitz, M. Organophosphorus compounds, 140: Synthesis of new diphosphapolycycles from a tricyclic zirconocene-phospha alkyne dimer complex. Synthesis 1999, 639. (h) Leinweber, D.; Wartchow, R.; Butenschoen, H. Ueber die ausdehnung flüssiger körper durch die wärme. Eur. J. Org. Chem. 1999, 64, 167.
- [8] For the preparation of substituted indane-1, 2, 3-triones, see: Tatsugi, J.; Izawa, Y. A convenient one-pot synthesis of indane-1,2,3-triones by oxidation of indan-1-ones with Nbromosuccinimide -dimethyl sulfoxide reagent. Synth. Commun. 1998, 28, 859.