Synthesis and Properties of 2-Alkyl-1-(2-aminoethyl)pyrroles

R. A. Nadzhafova

Institute of Polymer Materials, National Academy of Sciences of Azerbaidzhan, Sumgait, 373204 Azerbaidzhan

Received May 17, 2001

Abstract–3-Chloropropenyl alkyl ketones or 2-methoxy-3-chloropropyl alkyl ketones in reaction with ethylenediamine furnish previously unknown 2-alkyl-1-(2-aminoethyl) pyrroles. Their reaction with 2,2'-dichlorodiethyl ether gave rise to 2-alkyl-1-(2-morpholinoethyl)pyrroles, and with anhydrides of dicarboxylic acids the corresponding amidoacids and imides of dicarboxylic acids were obtained.

It was shown formerly that reaction of 1,2-dichloropropyl cyclohexyl ketones with ethylenediamine in alkaline medium resulted in 1.2-dipyrrolylethanes [1], whereas reactions of 3-chloropropenyl alkyl ketones or 2,3-dichloropropyl alkyl ketones with 2-substituted ethylamines provided 1-[2-bromo-(alkoxy, dialkylamino)ethyl]-2-alkylpyrroles [2].

The present study demonstrated that 3-chloropropenyl alkyl ketones and 2-methoxy-3-chloropropyl alkyl ketones (**I**) in reaction with three-fold excess of ethylenediamine furnish 2-alkyl-1-(2-aminoethyl) pyrroles (**II**).

$$\begin{array}{c|c} \text{C1} & \text{O} \\ \mid & \text{CH}_2\text{-CH=CH}-\text{C}-\text{R} \\ \text{or} \\ \text{CH}_2\text{-CH=CH}_2\text{-C}-\text{R} \\ \mid & \mid & \text{CH}_2\text{-CH}_3 \\ \text{Cl} & \text{OCH}_3 & \text{O} \\ & \text{Ia-d} & \text{IIa-d} \\ \end{array}$$

I, II $R = CH_3(\mathbf{a}), C_2H_5(\mathbf{b}), iso-C_3H_7(\mathbf{c}), C_4H_9(\mathbf{d}).$

The reaction is carried out in water-ether mixture, and the yields of compounds II amount to 67-78%. The reaction of 2-alkyl-1-(2-aminoethyl)pyrroles with 2,2'-dichlorodiethyl ether (Chlorex) in the presence of the double excess of triethylamine performed in boiling dioxane gives rise to 2-alkyl-1-(2-morpholinoethyl)pyrroles (III). The acetic anhydride readily acylates the amino group to afford 2-alkyl-1-(2-acetamidoethyl)pyrroles (**IV**). The direction of reaction between pyrrole IIa and maleic or phthalic anhydrides was established to depend on temperature. The reaction at 25-30°C affords mono-N-(2-methylpyrrol-1yl)ethylamides of the dicarboxylic acids (V), and at 150–155°C N-(2-methylpyrrol-1-yl)imides of the dicarboxylic acids (VI) are obtained. It was also demonstrated that monoamides V in boiling DMF underwent dehydration and intramolecular cyclization providing in 3 h the corresponding imides VI (Table 1).

The formation of imides **VI** from amidoacids **V** indicates that the latter are intermediates in the reaction providing imides **VI**. However as was already

III,IV, $R = CH_3(a)$, $C_2H_5(b)$, iso- $C_3H_7(c)$, $C_4H_9(d)$; **V**, **VI**, R' = -CH = CH - (a); °-phenylene (b).

Compd.	Yield, %	bp, °C (p, mm Hg) (mp, °C)	d_4^{20}	n_D^{20}	Found, %			Formula	Calculated, %		
no.					С	Н	N	Formula	С	Н	N
IIa	78	76-77 (4)	0.9843	1.5210	67.21	9.47	22.13	$C_7H_{12}N_2$	67.74	9.68	22.58
IIb	74	79-80 (3)	0.9802	1.5183	69.03	10.49	20.64	$C_8H_{14}N_2$	69.56	10.14	20.29
IIc	70	84-86 (3)	0.9771	1.5156	70.82	10.31	18.19	$C_9H_{16}N_2$	71.05	10.53	18.42
IId	67	101-102 (3)	0.9653	1.5100	71.79	10.52	16.59	$C_{10}H_{18}N_2$	72.29	10.84	16.87
IIIa	80	117-118 (2)	1.0279	1.5160	68.41	9.56	14.89	$C_{11}H_{18}N_2O$	68.04	9.34	14.43
IIIb	77	121–123 (2)	1.0104	1.5123	68.79	9.87	13.76	$C_{12}H_{20}N_2O$	69.20	9.60	13.50
IIIc	73	128-129 (1)	0.9984	1.5104	69.83	9.62	12.87	$C_{13}H_{22}N_2O$	70.30	9.91	12.60
IIId	69	139–142 (2)	0.9863	1.5078	71.96	10.64	12.11	$C_{14}H_{24}N_2O$	71.20	10.20	11.86
IVa	74	157-158 (3)	1.0558	1.5210	65.58	8.27	17.09	$C_9H_{14}N_2O$	65.06	8.43	16.87
IVb	66	166-168 (2)	1.0009	1.5188	67.11	8.59	15.19	$C_{10}H_{16}N_2O$	66.66	8.88	15.55
IVc	60	176–177 (2)	0.9846	1.5140	67.73	9.42	14.15	$C_{11}H_{18}N_2O$	68.04	9.28	14.43
IVd	62	181-183 (1)	0.9732	1.5109	68.71	9.50	13.77	$C_{12}H_{20}N_2O$	69.23	9.61	13.46
Va	84	(75–76)	_	_	59.83	6.64	12.26	$C_{11}H_{14}N_2O_3$	59.46	6.31	12.61
Vb	82	(170-172)	_	_	66.84	6.03	10.57	$C_{15}H_{16}N_2O_3$	66.18	5.88	10.29
VIa	81	(140–141)	=	_	64.19	5.69	13.99	$C_{11}H_{12}N_2O_2$	64.70	5.88	13.72
VIb	75	(98–100)	-	_	70.36	5.70	11.21	$C_{15}H_{14}N_2O_2$	70.87	5.51	11.02

Table 1. Yields, melting or boiling points, densities, refractive indices, and elemental analyses of pyrroles II-VI

Table 2. ¹H NMR spectra, δ, ppm, of pyrrole derivatives IIa-IVa, Vb, VIa, b

Compd.	Sol- vent	H ³ , m	H ⁴ , m	H ⁵ , m	CH ₂ -CH ₂ , t.t	CH ₃ , s	Other signals
IIa IIIa IVa Vb VIa VIb	CCl_4 CCl_4 CCl_4 $DMSO-d_6$ CCl_4 CCl_4 CCl_4 CCl_4 CCl_4 CCl_4 CCl_4 CCl_6 C	5.63 5.65 5.60 5.90 5.50 5.55	5.77 5.80 5.73 6.05 5.65 5.80	6.28 6.35 6.25 6.75 6.32 6.40	2.65, 3.47 2.40, 3.70 3.27, 3.73 3.65, 4.20 3.60, 3.90 3.85, 4.02	1.97 2.08 1.82 2.35 2.20 2.10	0.80 s NH ₂ 2.22 t (4H, CH ₂ N), 3.50 t (4H, CH ₂ O) 2.10 s (3H, CH ₃ CO), 7.50 s (1H, NHCO) 7.40–8.05 m (4H, H arom), 10.40 s (1H, NHCO), 12.85 s (1H, COOH) 6.56 m (2H, CH=CH) 7.75 m (4H, H arom)

mentioned at high temperature we failed to isolate amidoacids **V** for under these conditions only imides **VI** were obtained.

The structure of synthesized pyrroles **II-VI** was confirmed by ¹H NMR and IR spectra, by elemental analyses and in some cases by independent synthesis.

In the IR spectra of pyrroles ${\bf Ha-VIa}$ alongside the characteristic absorption bands of pyrrole ring at 3080–3120 ($\nu_{\rm C-H}$), 1450–1568 ($\nu_{\rm C=C}$), 725–780 cm⁻¹ ($\nu_{\rm C-H}$) [3] also characteristic absorption bands of functional groups at 3376 ($\nu_{\rm NH}$), 3264 ($\nu_{\rm NH}$), 1620–1702 ($\nu_{\rm C=O}$), and 1560 cm⁻¹ ($\delta_{\rm NH}$) were observed.

In the ¹H NMR spectra (Table 2) of compounds **IIa-VIa** appear characteristic multiplet signals of

protons located in positions 3, 4, 5 of the pyrrole ring (\sim 5.55, 6.00, 6.40 ppm respectively) [4], the triplets from methylene groups in the fragment N¹-CH₂-CH₂, proton signals of alkyl substituents and functional groups.

We did not specially study the mechanism of pyrrole formation, but various directions of nucleophile attack of amine on molecule **I** were possible. It is most likely that first chlorine atom is substituted by amino group affording aminoketone A. Then ketone A cyclizes into tetrahydropyrrole B as a result of the intramolecular attack of the unshared pair of nitrogen atom on the carbon in the carbonyl group. Then compound B readily transforms into pyrrole with elimination of water and alcohol.

2-Alkyl-1-(2-aminoethyl)pyrroles were also obtained by treating 2-alkyl-1-(2-bromoethyl)pyrroles with excess ammonia.

EXPERIMENTAL

IR spectra were recorded on spectrophotometer UR-20 from thin films of liquid substances and from mulls in mineral oil of solids. ¹H NMR spectra were registered from 5-10% solutions of compounds obtained in CCl₄ or DMSO-d₆ on spectrometer Tesla BS-487B (80 MHz) using HMDS as internal reference. The purity of compounds obtained was checked by GLC on chromatograph Chrom-3-JKZ (stationary phase PMS-100 on Chromosorb W) and by TLC on Silufol UV-254 plates. The initial ketones I were prepared by procedure [5].

2-Alkyl-1-(2-aminoethyl)pyrroles (IIa-d) (Table 1). (a) To a mixture of 25.7 g (0.3 mol) of 70% water solution of ethylenediamine and 100 ml of ether at 15–20°C was added dropwise while stirring a solution of 0.1 mol of 3-chloro-1-propenyl alkyl ketone or 2-methoxy-3-chloropropyl alkyl ketone in 50 ml of ether. Then the reaction mixture was boiled for 6 h. On cooling the ether layer was separated, washed with water, the water layer was extracted with ether. The combined ether solutions were dried on MgSO₄, the solvent was distilled off, and the residue was subjected to vacuum distillation.

(b) To a mixture of 30 ml (0.4 mol) of 25% water solution of ammonia and 50 ml of ether at 25–30°C was added dropwise while stirring a solution of 0.1 mol of 2-alkyl-1-(2-bromoethyl)pyrrole in 50 ml of ether. Then the reaction mixture was boiled for 5 h and further it was worked up as above. According to ¹H NMR and IR spectra, boiling points, and refractive indices the compounds obtained were identical to pyrrole derivatives synthesized by procedure a.

2-Alkyl-1-(2-morpholinoethyl)pyrroles (IIIa-d). A solution of 0.1 mol of pyrrole **II** and 28 ml (0.2 mol) of triethylamine in 100 ml of dioxane was brought to boiling, and then at vigorous stirring was

added dropwise within 3 h 14.4 g (0.1 mol) of 2,2'-dichlorodiethyl ether dissolved in 25 ml of dioxane. Then the reaction mixture was boiled for 4 h more, cooled, washed with diluted solution of sodium carbonate, the water layer was separated and extracted with ether, the combined ether solutions were dried with MgSO₄, and on removing the solvent the residue was subjected to vacuum distillation.

2-Alkyl-1-(2-acetoamidoethyl)pyrroles (**IVa-d**). To a solution of 0.025 mol of pyrrole **II** in 50 ml of anhydrous ether was added dropwise at stirring 2.5 ml (0.025 mol) of acetic anhydride. Then the reaction mixture was boiled for 4 h and on cooling was washed with diluted solution of sodium carbonate, the water layer was separated and extracted with ether, the combined ether solutions were dried with MgSO₄, and on removing the solvent the residue was subjected to vacuum distillation.

N-(2-Methylpyrrol-1-yl)ethylmaleinamic-(phthalamic) acid (Va, b). To a solution of 0.05 mol of the corresponding acid anhydride in 50 ml of acetone at 20-25°C while stirring was added dropwise 6.8 g (0.055 mol) of pyrrole IIa dissolved in 50 ml of acetone. Then the reaction mixture was stirred at room temperature for 3 h, the crystals formed were filtered off, washed with ether, and recrystallized from heptane.

N-(2-Methylpyrrol-1-yl)ethylmale(phthal)imide (VIa, b). (a) A solution of 0.025 mol of the corresponding acid anhydride and 3.4 g (0.027 mol) of pyrrole IIa in 50 ml of DMF was boiled for 5 h. On cooling the reaction mixture was poured into ice water, and the mixture was left standing for 2 h. The separated crystals were filtered off, washed with water, died, and recrystallized from heptane.

(b) A mixture of 0.025 mol of acid **Va, b** and 50 ml of DMF was boiled for 3 h. The workup and purification of the product was done as above. According to ¹H NMR and IR spectra and boiling points the imides of dicarboxylic acids prepared by procedures (a) and (b) were identical.

REFERENCES

- 1. Mamedov, E.I., Ismailov, A.G., Ibragimov, V.G., and Bairamov, G.M., *Khim. Geterotsikl. Soed.*, 1983, no. 11, pp. 1561–1563.
- 2. Gadzhily, R.A., Fedoseev, V.M., Nadzhafova, R.A., and Dzhafarov, V.G., *Khim. Geterotsikl. Soed.*, 1990, no. 8, pp. 1047–1049.
- 3. Atlas spektrov aromaticheskikh i geterotsiklicheskikh
- soedinenii (Spectra of Aromatic and Heterocyclic Compounds), Kaptyuga, V.A., Novosibirsk: IOKh CO Akad. Nauk SSSR, 1981, no. 21, 102 p.
- 4. Trofimov, B.A., Kalabin, G.A., Atavin, A.C., Mikhaleva, A.I, and Gebotareva, E.G., *Khim. Geterotsikl. Soed.*, 1975, no. 3, pp. 360–363.
- 5. Ibragimov, I.I., Guseinov, M.M., Gadzhily, R.A., Dzhafarov, V.G, and Godzhaev, S.P., *Khim. Geterotsikl. Soed.*, 1973, no. 10, pp. 1434–1435.