

Available online at www.sciencedirect.com

Phytochemistry 66 (2005) 105-111

PHYTOCHEMISTRY

www.elsevier.com/locate/phytochem

Abietane diterpenes from the cones of Cedrus atlantica

Alejandro F. Barrero^{a,*}, José F. Quílez del Moral^a, M. Mar Herrador^a, Jesus F. Arteaga^a, Mohamed Akssira^b, Ahmed Benharref^c, Mohamed Dakir^{b,c}

^a Departamento de Química Orgánica, Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada,

Campus Fuentenueva s/n, 18071 Granada, Spain

^b Laboratoire de Chimie Biorganique et Analytique, F.S.T., Université Hassan II-Mohammedia, BP146, 20800 Mohammedia, Morocco

^c Laboratoire de Chimie des Substances Naturelles et des Hétérocycles, Faculté des Sciences, Semlalia-Marrakech, BP 2390, Marrakech, Morocco

Received 10 September 2004; received in revised form 20 October 2004 Available online 23 November 2004

Abstract

Five abietanes, three of them isolated as the corresponding acetate derivatives, i.e., 9α , 13α -epidioxiabiet-8(14)-en-18-ol, 7α , 18-diacetoxy, 9β , 13β -epidioxiabiet-8(14)-ene, 7α , 18-diacetoxyabiet-8(14)-en-13\beta-ol, 7α , 18-diacetoxy-13\beta-methoxyabiet-8(14)-ene, and 13β -hydroxyabiet-8(14)-en-7-one, were isolated from the neutral part of the hexane extract of the cones of *Cedrus atlantica* collected in Middle Atlas, Morocco. The structures of these compounds were established by spectroscopic techniques, including 2D NMR spectra, and in the case of **1**, by chemical correlation. The cytotoxicity of these abietane diterpenoids was tested against five cell lines. © 2004 Elsevier Ltd. All rights reserved.

Keywords: Cedrus atlantica; Pinaceae; Diterpenoids; Abietanes

1. Introduction

Our interest on the phytochemical study of Spanish and Northern Moroccan plants is aimed at finding both new natural compounds with interesting biological activities, and also investigating the occurrence of natural terpenoids which could be used as enantiomerically pure synthons in the synthesis of added-value compounds. In relation with this, we have evaluated the content of the cones of *Cedrus atlantica* Manetti (Pinaceae), as a renewable source of natural products. This species, only distributed in Morocco and Algeria, possesses a high quality wood, used in construction and handicraft industries. The essential oil from this plant has been shown to possess antiinflammatory (Sugita et al.,

* Corresponding author. Tel./fax: +34 958 243318. *E-mail address:* afbarre@ugr.es (A.F. Barrero). 2004), antifungal (Bouchra et al., 2003), and antimicrobial (Hammer et al., 1999) activities among others. It also proved to be useful in the treatment of hair loss in a combination of aromatherapy oils (Ormerod et al., 2000). In terms of previous reports on the chemical composition of this plant, the oil from the wood of this species has been extensively studied, sesquiterpenoids of the himachalane type being the major components (Plattier and Teisseire, 1974; Teisseire and Plattier, 1974). In addition, Norin and Winell (1971) reported on the composition of the ether extract of the cones of C. atlantica. A number of resin acids, namely abietic, neoabietic, dehydroabietic, levopimaric and palustric acid, were present in the acid fraction. However, only 13-epi-manool and 7-oxo-dehydroabietinol were found in the neutral part.

In the present paper, we report on the isolation of five new abietane diterpenoids (1-5), together with a number of known compounds, from the cones of C. *atlantica*. The structure elucidation of these new abietanes and

^{0031-9422/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.phytochem.2004.10.017

the evaluation of their activity evaluation are the subjects of this article.

2. Results and discussion

Workup of the neutral part of the hexane extract from the cones of C. atlantica led to the isolation of five new hydroxyabietanes (1-5), three of them isolated and characterized as their acetate derivatives (2–4). Together with these new natural products, the following known substances were also isolated from this plant: abietinal (6) (Erdtman and Westfelt, 1963), dehydroabietinal (7) (Fetizon et al., 1968), 13-epi-manool (8) (Barrero et al., 1993), abietinol (9) (San Feliciano et al., 1993), dehydroabietinol (10) (Miguel Del Corral et al., 1994), palustradien-18-ol (11) (Lee et al., 2001), 7-oxo-dehydroabietinol (12) (Rowe et al., 1971), 3β-hydroxy-13-epi-manool (13) (Barrero et al., 1993), 15-hydroxydehydroabietinol (14) (Miguel Del Corral et al., 1994), 136,18-diacetoxyabiet-8(14)en-7-one (15) (Ohtsu et al., 2000), and 7α -hydroxydehydroabietinol (16) (Ohmoto et al., 1987).

The molecular formula of compound **1** was determined as $C_{20}H_{32}O_3$, by HRFABMS ($[M + Na]^+$, m/z343.2248). The IR spectrum showed a significant absorption band at v_{max} 3522 cm⁻¹ due to a hydroxyl group. This hydroxy group corresponds to a primary alcohol as deduced from the ¹H and ¹³C NMR signals at $\delta_{\rm H}$ 3.18 (d, J = 10.9) and 3.32 (d, J = 10.9), and $\delta_{\rm C}$ 72.5, respectively. In addition, the ¹H NMR spectrum (Table 1) showed signals characteristic of two tertiary methyls (δ 0.94 and 1.09), one isopropyl (δ 0.97, 6H, d, J = 6.9 Hz) and an olefinic proton signal (δ 6.08, d, J = 2.1 Hz). The ¹³C NMR spectrum (Table 2) confirmed the presence of a trisubstituted double bond (δ 126.7 and 144.7), and also showed signals attributed to the presence of two quaternary oxygenated carbons (δ 81.0 and 79.3). Thus, analysis of its 1 H and 13 C NMR data suggested that 1 is based on an epidioxyabietene structure. Comparison of the spectroscopical data of 1 with those of endoperoxide derivatives of palustradienes (Barrero et al., 1991; Monaco et al., 1987) led to locate the endoperoxide bridge between the C-9 and C-13 positions. The correlations observed in the HMBC experiment between H-14 ($\delta_{\rm H}$ 6.08) and C-7 ($\delta_{\rm C}$ 24.4), C-9 $(\delta_{\rm C} 81.0)$, C-13 $(\delta_{\rm C} 79.3)$, and C-15 $(\delta_{\rm C} 32.2)$ confirmed this assignment. The position of the primary alcohol at C-4 was determined from correlations between H-18 $(\delta_{\rm H} 3.18 \text{ and } 3.32)$ and C-4 $(\delta_{\rm C} 38.6)$, C-19 $(\delta_{\rm C} 17.9)$, and C-3 ($\delta_{\rm C}$ 35.7). With respect to the relative stereochemistry, the enhancements experienced both by H-18 $(\delta_{\rm H} 3.18)$ and Me-20 $(\delta_{\rm H} 1.09)$ when Me-19 $(\delta_{\rm H} 0.94)$

Table 1 ¹H NMR data for compounds 1–5 (δ in ppm, J in Hz)

Proton	1	2	3	4	5
1	a: 1.38–1.53 (m)	a: 1.50–1.74 (m)	α: 1.01–1.09 (<i>m</i>)	α: 0.97–1.12 (m)	α: 1.04–1.13 (m)
	b: 1.53–1.86 (m)	b: 1.50–1.74 (<i>m</i>)	β: 1.40–1.79 (<i>m</i>)	β : 1.38–1.82 (m)	$\beta: 1.42 - 1.82 (m)$
2	a: 1.53–1.86 (m)	a: 1.50–1.74 (m)	a: 1.40–1.79 (m)	a: 1.38–1.82 (m)	a: 1.42–1.82 (m)
	b: 1.53–1.86 (m)	b: 1.50–1.74 (<i>m</i>)	b: 1.40–1.79 (m)	b: 1.38–1.82 (m)	b: 1.42–1.82 (m)
3	a: 1.27–1.35 (m)	a: 1.37–1.50 (m)	a: 1.28–1.40 (m)	a: 1.38–1.82 (m)	a: 1.14–1.22 (m)
	b: 1.38–1.53 (m)	b: 1.50–1.74 (<i>m</i>)	b: 1.28–1.40 (m)	b: 1.38–1.82 (m)	b: 1.42–1.82 (m)
5	1.87 - 2.02 (m)	1.78 (dd, 5.5, 11.6)	1.40–1.79 (<i>m</i>)	1.38 - 1.82 (m)	1.42 - 1.82 (m)
6	a: 1.53–1.86 (m)	α: 1.55 (ddd, 4.4, 5.5, 14.7)	a: 1.40–1.79 (m)	a: 1.38–1.82 (m)	a: 2.56 (dd, 4.9, 18.7)
	b: 1.53–1.86 (m)	β: 2.12 (ddd, 6.7, 11.6, 14.7)	b: 1.40–1.79 (m)	b: 1.38–1.82 (m)	β: 2.29 (<i>dd</i> , 13.8, 18.7)
7	a: 2.44–2.62 (m)	5.90 (ddd 1.9, 4.4, 6.7)	5.34 (bt, 2.7)	5.42 (<i>bt</i> , 3.0)	•
	b: 2.44–2.62 (m)				
9			1.97 - 2.06 (m)	1.98-2.14 (m)	1.91 - 1.97 (m)
11	a: 2.11 (bd, 9.8)	α : 1.53 (dt, 2.5, 12.6)	a: 1.40–1.79 (m)	a: 1.38–1.82 (m)	a: 1.42–1.82 (m)
	β: 1.38–1.53 (m)	β: 2.36 (ddd, 3.9, 9.2, 12.6)	b: 1.40–1.79 (m)	b: 1.38–1.82 (m)	b: 1.42–1.82 (m)
12	a: 1.87–2.02 (m)	α: 1.50–1.74 (m)	a: 1.28–1.40 (m)	a: 1.26–1.34 (m)	a: 1.42–1.82 (m)
	b: 1.38–1.53 (m)	β: 2.02–2.19 (<i>m</i>)	b: 1.40–1.79 (m)	b: 1.38–1.82 (m)	b: 1.42–1.82 (m)
14	6.08(d, 2.1)	6.50 (d, 1.9)	5.78 (bs)	5.76 (bs)	6.70 (bs)
15	1.87 - 2.02 (m)	1.94 (hp, 6.9)	1.70 (hp, 7.0)	1.38 - 1.82 (m)	1.42 - 1.82 (m)
16	0.97 (d, 6.9)	1.01 (d, 6.9)	$0.81^{\rm a}$ (d, 7.0)	0.76^{b} (d, 6.9)	$0.83^{\rm c}$ (d, 6.9)
17	0.97 (d, 6.9)	1.01 (d, 6.9)	$0.88^{\rm a}$ (d, 7.0)	0.86^{b} (d, 6.9)	$0.94^{\rm c}$ (d, 6.9)
18	a: 3.18 (d, 10.9)	a: 3.61 (d, 11.0)	a: 3.56 (d, 11.0)	a: 3.60 (d, 11.1)	0.85(s)
	b: 3.32 (d, 10.9)	b: 3.89 (d, 11.0)	b: 3.87 (d, 11.0)	b: 3.91 (d, 11.1)	
19	0.94(s)	1.02(s)	0.84(s)	0.87(s)	0.88(s)
20	1.09 (s)	1.15 (s)	0.79(s)	0.81(s)	0.80(s)
MeCOOC ₁₈		2.08(s)	2.04(s)	2.07(s)	
MeCOOC ₇		2.08 (s)	1.95 (s)	1.99 (s)	
OMe			~ /	3.15 (s)	

^{a-c} Assignments with the same superscript letter may be interchanged.

Table 2 ¹³C NMR data for compounds 1–5 (δ in ppm)

Carbon	1	2	3	4	5
1	31.6	33.9	38.6	38.4	39.0
2	17.6	17.4	18.1	18.1	18.5 ^e
3	35.7	36.0	35.9	36.0	41.8
4	38.6	37.2	36.4	36.4	33.2
5	37.3	37.1	41.9	42.1	49.9
6	18.8	27.2	27.0	27.9	37.5
7	24.4	68.0	74.6	74.6	200.8
8	144.7	143.0	139.1	140.9	138.9
9	81.0	81.7	48.0	48.0	51.8
10	39.4	38.9	37.7	38.1	36.1
11	21.7	24.0	17.3	17.1	18.7 ^e
12	25.2	27.0	29.3	26.4	29.7
13	79.3	79.8	71.6	75.6	71.9
14	126.7	131.5	134.3	37.9	139.6
15	32.2	32.2	37.9	32.1	37.9
16	17.2 ^a	17.2 ^b	16.5 ^c	17.5 ^d	16.3 ^f
17	17.5 ^a	17.4 ^b	17.3 ^c	17.7 ^d	17.4 ^f
18	72.5	72.3	72.4	72.5	32.7
19	17.9	18.4	17.7	16.1	21.3
20	19.5	18.5	14.8	14.4	14.2
CH ₃ COOC ₁₈		21.0	21.0	21.0	
CH ₃ COOC ₇		21.4	21.6	21.6	
CH ₃ COOC ₁₈		170.3	170.9	171.0	
CH ₃ COOC ₇		170.9	169.9	170.0	
OCH ₃				49.5	

^{a-f} Assignments with the same superscript letter may be interchanged.

was irradiated, on the one hand; and by H-11 β ($\delta_{\rm H}$ 1.38– 1.53) after irradiation of Me-20 ($\delta_{\rm H}$ 1.09) on the other, let us assign to **1** the relative configurations shown in Fig. 1. Accordingly, the structure of **1** was determined as 9α , 13α -epidioxiabiet-8(14)-en-18-ol. This structural assignment was confirmed by chemical correlation. Thus, oxidation of **1** with PDC/DMF and subsequent treatment with TMSCHN₂ led to the corresponding methoxycarbonyl derivative, a compound whose spectroscopical data were coincident with those of methyl 9α , 13α -epidioxiabiet-8(14)-en-18-oate, isolated from *Abies marocana* (Barrero et al., 1991).

Compound **2** was isolated after acetylation of the fraction containing the natural alcohol. It was assigned the molecular formula $C_{24}H_{36}O_6$ by HRFABMS ($[M + Na]^+$, *m/z* 443.2410). Its ¹H NMR spectrum (Ta-

Compound 3, as happened with 2, was isolated as the diacetate derivative of the natural diol. It was attributed the molecular formula C₂₄H₃₈O₅ from its HRFABMS $([M + Na]^+, m/z 429.2631)$. The most significant bands in the IR spectrum appeared at 3452, 1731 and 1654 cm^{-1} , which can be attributed to a double bond, a carbonyl of ester, and to a hydroxyl group. The NMR data were again consistent with the structure of a $\Delta^{8(14)}$ -abietane-type diterpenoid supporting a primary acetate on a quaternary carbon (AB system, δ_A 3.56, d, J = 11.0 Hz; $\delta_{\rm B}$ 3.87, d, J = 11.0 Hz) and a secondary oxygenated group ($\delta_{\rm H}$ 5.34, bt, J = 2.7) (Table 1). Comparison of its ${}^{13}C$ NMR with that of **2** revealed the existence of only one tertiary oxygenated carbon ($\delta_{\rm C}$ 71.6), while a new methine group signal can be observed ($\delta_{\rm C}$ 48.0). The multiplicity in ¹H NMR of the isopropyl methine signal (*hp*, J = 7.0 Hz), showing coupling only with the

Fig. 1. Selected NOEs observed for 1.

Fig. 2. Selected NOEs observed for 2.

Fig. 3. Selected NOEs observed for 3.

methyl groups, led to locate the tertiary hydroxyl group at C-13. This location, together with that of the secondary acetate at C-7, was confirmed by HMBC cross-peaks between $\delta_{\rm H}$ 5.78 (H-14) and $\delta_{\rm C}$ 71.6 (C-13), 74.6 (C-7), 48.0 (C-9), and 37.9 (C-15). The multiplicity of the signal corresponding to H-7 (*bt*, *J* = 2.7) suggests an α disposition of the acetate group (Prinz et al., 2002). The relative configuration of this carbon, as well as that of the rest of the chiral centres present in **3**, was confirmed by NOE-DIFF experiences (Fig. 3). Accordingly, the structure of **3** was assigned as 7α ,18-diacetoxyabiet-8(14)-en-13 β -ol. A natural product derived from **3**, but possessing a forth hydroxyl group at C-15, was isolated from *Larix kaempferi* (Ohtsu et al., 2000).

The molecular formula of compound 4 was deduced as $C_{25}H_{40}O_5$ from its HRFABMS ([M + Na]⁺, m/z 443.2789). A comparison of the spectroscopic data of 4 and 3 suggested that 4 is the methyl ether derivative of alcohol 3. The ¹H NMR signal at δ_H 3.15 (s, 3H), and that appearing in the ¹³C NMR spectrum at δ_C 49.5, confirmed this assignment.

Compound 5 exhibited the molecular formula $C_{20}H_{32}O_2$, as deduced from its HRFABMS $([M + Na]^+, m/z$ 327.2294). The IR spectrum showed absorption bands at v_{max} 3464 cm⁻¹ indicating a hydroxyl group, and at 1682 and 1613 cm⁻¹, which could be assigned to an α , β -unsaturated carbonyl group. This carbonyl assignment was supported by the ¹³C NMR signal at $\delta_{\rm C}$ 200.8. Compared to those of 3 and 4, the ¹H NMR spectrum of **5** revealed two major differences: the lack of the signal due to the secondary acetate, and the presence of a new methyl group on a quaternary carbon instead of the primary oxygenated function. Furthermore, the chemical shift observed for H-14 appears in 5 at $\delta_{\rm H}$ 6.70, which together with the HMBC correlation observed between C-7 and H-14 confirmed the presence of an α,β -unsaturated carbonyl group. Thus, the structure of 5 was assigned to be 13β -hydroxvabiet-8(14)-en-7-one.

A number of biological activities have been described for abietane diterpenoids, namely antimicrobial, antiulcer, and cardiovascular activities (Tan et al., 2002), antileishmanial activity (Tan et al., 2002), antioxidant (Wang et al., 2002), antitumor activity (Kotoda et al., 2002), tuberculostatic, antiplatelet agregation activity, antiviral, and several others (Cousins, 1994). However, after noticing the promising results as antitumor promotors obtained by abietanes structurally related to those described herein (Ohtsu et al., 2000, 2001), research on the cytotoxicity of the abietanes 1–3 and 5 was carried out. Five cell lines, A-549 (human lung carcinoma), H-116 (human colon carcinoma), PSN1 (human pancreatic adenocarcinoma), T98G (human caucasian gioblastoma), and SKBR3 (human breast carcinoma) were tested following established methods. All tested compounds were considered inactive (IC₅₀ values higher 5 μ g/ml).

3. Conclusion

The neutral fraction of the cones of *C. atlantica* is constituted mainly by diterpenic compounds, most of them possessing an abietane skeleton. Although five new natural compounds have been isolated from this plant, it can be concluded that its content in terpenoid compounds does not differ much from that found in other Pinaceae species.

Since the photo-induced reaction of palustric acid with singlet oxygen has been reported to give the corresponding 9,13-epidioxyabietene (Barrero et al., 1991), it should not be ruled out that compounds 1 and 2 are artefacts of the Soxhlet extraction and/or manipulation of the extract. With respect to compounds 3–5, although the formation of 9,13-dihydroxy-abiet-8(14)-enes from abietic acid under various storage conditions has been reported (Prinz et al., 2002), a mixture of epimers at C-13 was obtained in all cases. The isolation in *C. atlantica* of only the 13β-derivatives seems to indicate that their formation involves an enzymatically-promoted oxidation process.

Finally, these abietane derivatives do not show relevant cytotoxic activity, although closely related derivatives have been shown to possess moderate or potent inhibitory effects on the early antigen activation of Epstein-Barr virus, induced by the tumor promoter, 12-*O*-tetradecanoyl-phorbol-13-acetate.

4. Experimental

4.1. General

Optical rotations were determined with a polarimeter Perkin–Elmer model 141, using CHCl₃ as the solvent. IR spectra were recorded with a Perkin–Elmer model 983 G instrument as NaCl plates (films). NMR studies were performed with a Bruker ARX 400 (¹H 400 MHz/¹³C 100 MHz) spectrometer, and a Bruker AMX 300 (¹H 300 MHz/¹³C 75 MHz) spectrometer. 70 eV Mass spectra (EIMS) were run with a Hewlett–Packard 5972A mass spectrometer coupled to a Hewlett–Packard 5890A gas chromatograph. The accurate mass determination was carried out with an AutoSpec-Q mass spectrometer arranged in an EBE geometry (Micromass Instruments, Manchester, UK) and equipped with a FAB (LSIMS) source. Silica gel SDS 60 (35–70 μ m) was used for column chromatography.

4.2. Plant material

The cones of *C. atlantica* Endl (Pinaceae) were collected from the region of Ifrane, Middle Atlas, Morocco, in August 2002. Voucher specimens are available for inspection at the herbarium of the Scientific Institute of the University of Mohamed V, Rabat.

4.3. Extraction and isolation

The plant material (715 g) was powdered and extracted in a Soxhlet apparatus with *n*-hexane, resulting in 50 g of extract. This material was defatted, then dissolved in t-BuOMe and fractionated with 1 N NaOH. The organic layer was concentrated under vacuum and 12 g of neutral fraction were obtained. This neutral fraction was subjected to column chromatography over silica gel using mixtures of n-hexane/t-BuOMe of increasing polarity as eluents to give nine fractions (F-1-F-9). The less polar fraction (350 mg) was eluted with *n*-hexane and was composed by a mixture of hydrocarbons that was not further studied. F-2 (n-hexane/t-BuOMe, 95:5) was constituted by 1050 mg of a mixture of compounds, abietinal (6) and dehydroabietinal (7) being the major ones. F-3 (n-hexane/t-BuOMe, 9:1) contained mainly 13-epi-manool (8) (160 mg). F-4 (n-hexane/t-BuOMe, 85:15) was further chromatographed to obtain abietinol (9), dehydroabietinol (10) and palustradien-18-ol (11). F-5 (n-hexane/t-BuOMe, 7:3) was composed of 495 mg of a mixture that after acetylation and subsequent chromatography on silica gel gave 102 mg of 5. F-6 (n-hexane/t-BuOMe, 1:1) was further chromatographed to yield 250 mg of 1 and 191 mg of 7-oxodehydroabietinol (12). F-7 (n-hexane/t-BuOMe, 2:3) consisted of 200 mg containing mainly 3β-hydroxy-13epi-manool (13). F-8 (n-hexane/t-BuOMe, 1:4) (300 mg) was re-subjected to column chromatography to give 95 mg of 15-hydrodehydroabietinol (14) and 180 mg of a mixture that after acetylation and flash chromatography yielded 48 mg of 13β,18-diacetoxyabiet-8(14)-en-7-one (15). The most polar fraction was eluted with *t*-BuOMe and was constituted by 120 mg of 7α -hydroxydehydroabietinol (16), and a mixture that after acetylation and column chromatography gave 24 mg of 4, 52 mg of 2, and 47 mg of 3.

4.4. 9α,13α-epi-Dioxiabiet-8(14)-en-18-ol (1)

Colorless oil, $[\alpha]_D$ –51.8° (*c* 1.0, CHCl₃); IR (film) v_{max} 3522, 2924, 2855, 1463, 1385, 1261, 1157, 1037, cm⁻¹; HRFABMS *m*/*z* 343.2248 (calcd for C₂₀H₃₂O₃Na, 343.2249).

4.5. 7α , 18-Diacetoxy, 9 β , 13 β -epi-dioxiabiet-8(14)-ene (2)

Colorless oil, $[\alpha]_D$ +6.2° (*c* 0.13, CHCl₃); IR (film) v_{max} 2932, 2872, 1736, 1465, 1377, 1240, 1037 cm⁻¹; HRFABMS *m*/*z* 443.2410 (calcd for C₂₄H₃₆O₆Na, 443.2409).

4.6. 7α,18-Diacetoxyabiet-8(14)-en-13β-ol (3)

Colorless oil, $[\alpha]_D$ +14.7° (*c* 1.0, CHCl₃); IR (film) ν_{max} 3452, 2929, 2854, 1731, 1654, 1466, 1370, 1242, 1038 cm⁻¹; HRFABMS *m*/*z* 429.2631 (calcd for C₂₄H₃₈O₅Na 429.2617).

4.7. 7α , 18-Diacetoxy-13 β -methoxyabiet-8(14)-ene (4)

Colorless oil, $[\alpha]_D$ +43.7° (*c* 0.1, CHCl₃); IR (film) v_{max} 2955, 2927, 2854, 1736, 1456, 1370, 1240, 1038 cm⁻¹; HRFABMS *m*/*z* 443.2789 (calcd for C₂₅H₄₀O₅Na 443.2773).

4.8. 13β-Hydroxyabiet-8(14)-en-7-one (5)

Colorless oil, $[\alpha]_D$ +45.0° (*c* 0.34, CHCl₃); IR (film) v_{max} 3464, 2952, 2927, 2853, 1682, 1613, 1462, 1386, 1251, 1175 cm⁻¹; HRFABMS *m*/*z* 327.2294 (calcd for C₂₀H₃₂O₂Na 343.2300).

4.9. Oxidation of **1** to methyl 9α , 13α -epidioxiabiet-8(14)-en-18-oate

To a solution of 1 (20 mg, 0.06 mmol) in 1 ml of dry DCM was added 76 mg (0.20 mmol) of PDC were added. The mixture was stirred at room temp. for 5 h. Then, it was filtered trough a pad of 3 cm of SiO_2 using t-BuOMe, washed with brine, dried over Na₂SO₄ and concentrated to give 19 mg of aldehyde. A solution of 52 mg of NaClO₂ (0.50 mmol), 52 mg of NaH₂PO₄ (0.37 mmol) and 1 ml of H₂O was added over a solution of the aldehyde (19 mg, 0.06 mmol) in 1 ml of t-BuOH and 0.5 ml of 2-methyl-2-butene. The mixture was stirred at room temp. for 4 h. Then, after removing t-BuOH, 1 ml of H₂O was added, and the resulting mixture extracted with t-BuOMe. The extracts were washed with brine, dried over Na₂SO₄ and concentrated to give 15 mg of the corresponding acid. To a solution of 15 mg of this acid (0.05 mmol) in 0.1 ml of dried MeOH and 0.2 ml of dried benzene was added under inert atmosphere a solution of 0.11 ml of TMSCHN₂ (0.08 mmol) and 0.2 ml of dried benzene. After stirring for 12 h, the volatile components were evaporated. The crude was cromatographed (n-hexane/t-BuOMe, 4:1) to give 11 mg (0.03 mmol) of methyl 9α , 13α -epidioxiabiet-8(14)en-18-oate.

4.10. Cell proliferation assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT; Sigma Chemical Co., St. Louis, MO) dye reduction assay in 96-well microplates was used, essentially as described (Mosmann, 1983). The assay is dependent on the reduction of MTT by mitochondrial dehydrogenases of viable cell to a blue formazan product which can be measured spectrophotometrically. BAE cells $(8 \times 10^3$ cells in a total volume of 200 µl of DMEM/20% FBS) and tumor cells $(4 \times 10^3 \text{ A-549} \text{ cells})$ or 6×10^3 H-116, 6×10^3 PSN1, 6×10^3 SKBR3 and 6×10^3 T98G cells in a total volume of 200 µl of complete medium) were incubated in each well with serial dilutions (5, 2.5, 1, 0.5, 0.1, 0.05, 0.01 µg/ml) of the tested compounds. After 2 days of incubation (37 °C, 5% CO₂ in a humid atmosphere) 50 µl of MTT (5 mg/ ml in PBS) were added to each well and the plate was incubated for a further 2 h (37 °C). The resulting formazan was dissolved in 100 µl DMSO and read at 490 nm. All determinations were carried out in triplicate. IC_{50} value was calculated as the concentration of drug yielding a 50% of cell survival.

Acknowledgements

This work was supported by a grant from CICYT (SAF2001-2639), the Spanish Ministerio de Ciencia y Tecnología (Project BQU 2002-03211), from the ESRSFC Ministry of the Moroccan Government (PRO-TARS P2T2/07), and from the Junta de Andalucía (Consejería de Presidencia, Programa de Cooperación Andalucía-Marruecos). We also thank Instituto Biomar, S.A. for the antitumor tests.

References

- Barrero, A.F., Sanchez, J.F., Alvarez-Manzaneda, E.J., Muñoz Dorado, M., Haidour, A., 1993. Terpenoids and sterols from the wood of *Abies pinsapo*. Phytochemistry 32, 1261–1265.
- Barrero, A.F., Sanchez, J.F., Alvarez-Manzaneda, E.J., Muñoz Dorado, M., Haidour, A., 1991. Endoperoxide diterpenoids and other terpenoids of the wood of *Abies marocana*. Phytochemistry 35, 1271–1274.
- Bouchra, C., Mohamed, A., Mina, I.H., Hmamouchi, M., 2003. Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol. Mediterr. 42, 251–256.
- Cousins, D.J., 1994. Medicinal, Essential Oil, Culinary Herb and Pesticidal Plant of the Labiatae, Parts I and II. CAB International, Wallingford.
- Erdtman, H., Westfelt, L., 1963. Neutral diterpenes from pinewood resins. Acta Chem. Scand. 17, 1826–1827.
- Fetizon, M., Moreau, G., Moreau, N., 1968. Determination of the configuration of aldehydes in the 4β-position of the di- or triterpenic series. Bull. de la Soc. Chim. de France 8, 3295–3301.

- Hammer, K.A., Carson, C.F., Riley, T.V., 1999. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86, 985–990.
- Kotoda, H., Suzuki, K., Uchida, S., 2002. Antitumor abietane diterpene quinone and its production from conifer bark. JP 2002193869 A2 20020710.
- Lee, H.J., Ravn, M.M., Coates, R.M., 2001. Synthesis and characterization of abietadiene, levopimaradiene, palustradiene, and neoabietadiene: hydrocarbon precursors of the abietane diterpene resin acids. Tetrahedron 57, 6155–6167.
- Miguel Del Corral, J.M., Gordaliza, M., Salinero, M.A., San Feliciano, A., 1994. 13C NMR data for abieta-8,11,13-triene diterpenoids. Magn. Reson. Chem. 32, 774–781.
- Monaco, P., Parrilli, M., Previtera, L., 1987. Two endoperoxide diterpenes from *Elodea canadensis*. Tetrahedron Lett. 28, 4609– 4610.
- Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55–63.
- Norin, T., Winell, B., 1971. Diterpenoids of cones of two Cedrus species. Phytochemistry 10, 2818–2821.
- Ohmoto, T., Saito, M., Yamaguchi, K., 1987. Constituents of pollen XIV. Constituents of *Cedrus deodara* Loud. Chem. Pharm. Bull. 35, 2443–2447.
- Ohtsu, H., Tanaka, R., In, Y., Matsunaga, S., Tokuda, H., Nishino, H., 2001. Abietane diterpenoids from the cones of *Larix kaempferi* and their inhibitory effects on Epstein–Barr virus activation. Planta Med. 67, 55–60.

- Ohtsu, H., Tanaka, R., In, Y., Matsunaga, S., Tokuda, H., Nishino, H., 2000. New abietane diterpenoids from the cones of *Larix kaempferi*. Can. J. Chem. 78, 31–40.
- Ormerod, A., Hay, I., Jamieson, M., 2000. Treatment of hair loss. PCT Int. Appl. PIXXD2 WO 2000007553 A1 20000217.
- Prinz, S., Müllner, U., Heilmann, J., Winkelmann, K., Sticher, O., Haslinger, E., Hüfner, A., 2002. Oxidation products of abietic acid and its methyl ester. J. Nat. Prod. 65, 1530–1534.
- Plattier, M., Teisseire, P., 1974. Essential oil of the Atlas cedar. Recherches 19, 131–144.
- Rowe, J., Nagasampagi, B., Burgstahler, A.W., Fitzsimmons, J.W., 1971. Derivatives of nordehydroabietane from pine bark. Phytochemistry 10, 1647–1651.
- San Feliciano, A., Miguel del Corral, J.M., Gordaliza, M., Salinero, M.A., 1993. Carbon-13 NMR data for abieta-7,13-diene diterpenoids. Magn. Reson. Chem. 31, 841–844.
- Sugita, K., Ouchi, J., Okajima, T., Watanabe, H., 2004. Topical nonsteroidal anti-inflammatory agents containing essential oils and body-warming substances. Jpn. Kokai Tokyo. JP 2004175723 A2 20040624.
- Tan, N., Kaloga, M., Radtke, O.A., Kiderlen, A.F., Oksuz, S., Ulubelen, A., Kolodziej, H., 2002. Abietane diterpenoids and triterpenoic acids from *Salvia cilicica* and their antileishmanial activities. Phytochemistry 61, 881–884.
- Teisseire, P., Plattier, M., 1974. New bicyclic sesquiterpenoid ketone isolated from the essential oil of the Atlas cedar. Recherches 19, 167–172.
- Wang, S., Wu, J., Shyur, L., Kuo, Y., Chang, S., 2002. Antioxidant activity of abietane-type diterpenes from heartwood of *Taiwania* cryptomerioides Hayata. Holzforschung 56, 487–492.