RSC Advances

View Article Online

View Journal | View Issue

PAPER

Cite this: RSC Adv., 2016, 6, 106873

Green synthesis of primary, secondary, and tertiary amides through oxidative amidation of methyl groups with amine hydrochlorides over recyclable CoFe₂O₄ NPs⁺

A practical and efficient method is developed for efficient synthesis of a wide variety of 1° , 2° , and 3° amides

through amidation of methylarenes with amine hydrochloride salts, over magnetic $CoFe_2O_4$ NPs as

a recyclable nanocatalyst, and aqueous tert-butyl hydroperoxide as an oxidant. This economically sound

amidation reaction is operationally straightforward and provides desired amides in good to excellent

Esmaiel Eidi and Mohammad Zaman Kassaee*

yields, under mild conditions.

Received 19th August 2016 Accepted 19th October 2016

DOI: 10.1039/c6ra20902e

www.rsc.org/advances

Introduction

Developments in nanoscience and nanotechnology call for new synthetic approaches to final products with carefully tailored physicochemical properties. In recent years, nanoparticles as heterogeneous catalysts have attracted a great deal of attention because of their interesting structures and high catalytic activities.1 From this aspect, bimetallic nanoparticles initiate better selectivity, catalytic activity and higher deactivation resistance compared to monometallic ones. Such improved properties can stem from synergetic electronic interactions between two different metal atoms in an individual nanoparticle. Catalytic activity of these systems depends mainly on the nature of the bimetallic, size and morphology of the particles.²⁻⁴ Among the countless number of mixed metal oxides the nanostructured magnetic spinel type compounds MFe₂O₄ (M: Mn²⁺, Fe²⁺, Co²⁺, Ni^{2+}) are attracting increasing attention due to their excellent magnetic performance and chemical stability.5 In recent scenario much attention has been paid in the application of spinel and perovskite type metal oxides as catalysts for various organic transformations.⁶⁻⁹ Cobalt ferrite (CoFe₂O₄) nanocrystals as a main category of bimetallic nanoparticles have properties, such as large surface area-to-volume ratio, high saturation magnetization, and size and shape dependent magnetic behavior.¹⁰⁻¹⁶ Amides are one of the most important functional groups in contemporary chemistry and this motif plays a significant role in the synthesis of natural products, polymers, pharmaceuticals, and fine chemicals. Furthermore, it has been assessed that about 25% of all synthetic

Scheme 1 Oxidative amidation of methylarenes catalysed by $CoFe_2O_4$ NPs.

pharmaceutical drugs contain an amide unit. These properties have encouraged great challenges towards development of an efficient and practical protocol for the amide bond formation in synthetic chemistry. Amides are typically synthesized through condensation of carboxylic acids,17 and their derivatives with amines.18 Other methods for the synthesis of amides include, Staudinger reaction,¹⁹ Schmidt reaction,²⁰ Beckmann rearrangement,21 direct amide synthesis from amines and alcohols,22 amidation of nitriles,23 oxidative amidation of aldehydes,24 and rearrangement of oximes.25 However, most of these methods generate a large amount of wasteful byproducts and suffer from low atom efficiency. Thus, a more environmentally friendly, safe and highly atom-efficient method for the synthesis of amides is still needed. Direct oxidative amidation of methylarenes with amines is an attractive and economical method for synthesis of these compounds.²⁶ Here we report application of CoFe₂O₄ NPs, as a green, effective, clean, and recoverable magnetic nanocatalyst for the synthesis of important amides (Scheme 1).

Results and discussion

In continuation of our previous work,²⁷ we reported the use of a heterogeneous cobalt ferrite nanocatalyst with high efficiency for the oxidative amidation of methylarenes with amine hydrochlorides. Cobalt ferrite was prepared and characterized *via* Fourier transform infrared (FT-IR), vibrating sample

Department of Chemistry, Tarbiat Modares University, P. O. Box 14155-4838, Tehran, Iran. E-mail: kassaeem@modares.ac.ir; drkassaee@yahoo.com; Fax: +98-21-88006544; Tel: +98-912-1000392

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra20902e

Fig. 1 FT-IR spectrum of CoFe₂O₄ NPs.

magnetometry (VSM), energy-dispersive spectrum (EDS), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and X-ray diffraction (XRD) analyses.

FT-IR spectroscopy

Among FT-IR peaks of $CoFe_2O_4$ are those at 597.14, 1628.29, and 3405.11 cm⁻¹ (Fig. 1). The one at 597.54 cm⁻¹ corresponds to the M–O tetrahedral site of the spinel structure, and shows the basic nature of the nanoparticles obtained. The broad bands at 3405.11 and 1628.29 cm⁻¹ are assigned to OH stretching and bending vibrations of water, respectively.

X-ray diffraction

International Center for Diffraction Data PDF cards 3-864 and 22-1086, reveal that $CoFe_2O_4$ nanoparticles have cubic structure (Fig. 2).²⁸ The XRD pattern of the particles shows six different peaks at 2θ about 35.1°, 41.4°, 50.9°, 63.5°, 67.5° and 74.4° marked by their indices (220), (311), (400), (422), (511), and (440), respectively.

EDX

The structural composition of the catalyst is examined by EDX (Fig. 3). This analysis shows the elemental distribution of $CoFe_2O_4$ including Co and Fe.

Fig. 2 XRD pattern of the catalyst CoFe₂O₄ NPs.

Fig. 3 Energy-dispersive spectrum (EDS) of CoFe₂O₄ NPs.

SEM

The size and morphology of $CoFe_2O_4$ NPs are estimated *via* SEM (Fig. 4). Uniformly dispersed spherical particles are observed, along with weak agglomerations.

VSM

Field-dependent magnetic measurements are performed on $CoFe_2O_4$ nanoparticles at room temperature, using VSM, in the range from +1 *T* to -1 *T* (Fig. 5). Room temperature specific magnetization (*M*) vs. applied magnetic field (*H*) curve measurements of the sample indicates a saturation magnetization value (M_s) of 17 emu g⁻¹.

Thermal analyses

In order to probe thermal stability, TGA analysis of $CoFe_2O_4$ NPs are carried out by heating NPs from room temperature to 900 °C at a rate of 10 °C min⁻¹ (Fig. 6). The TGA pattern shows an initial weight loss attributed to water desorption at 100 °C. The slight weight loss below 350 °C may be due to dehydration of water or hydroxyl groups present on the surface of spinel structure, no further mass lose is detected up to 800 °C, which show the thermal stability of the catalyst.²⁹

After characterization of $CoFe_2O_4$ nanocatalyst, its role as a heterogeneous nanocatalyst was evaluated for synthesis of *N*benzylbenzamide through interaction of toluene with

Fig. 4 SEM analysis of the catalyst CoFe₂O₄ NPs.

Paper

benzylamine hydrochloride salt, and employed it as a model reaction. Effects of solvents, oxidants, base, temperature, and amounts of catalyst on the reaction rate were probed under similar circumstances. At first, the model reaction studied with different amounts of catalyst (15, 20, 25 mg) in various temperature. After screening different mounts of catalyst, best result was obtained in the presence of 20 mg of catalyst. In order to probe the role of the solvents, the reaction was examined in various solvent such as, DMSO, THF, MeCN, CH₂Cl₂, and DMF. Among them, MeCN appeared to be the solvent of choice. In addition, we explored different oxidant sources and the best result was obtained with tert-butyl hydroperoxide (TBHP), while other oxidants were ineffective in giving the desired product. No product was observed in the absence of an oxidant. Also, experiments were carried out under similar conditions using different bases such as Cs₂CO₃, K₂CO₃ and Na₂CO₃. The best base among several others was CaCO₃. It is important to note that in the absence of the catalyst, only trace products were detected. Optimum conditions for this reaction were employment of 20 mg CoFe₂O₄ at 80 °C, in acetonitrile using CaCO₃ as the base and *t*-BuOOH as the oxidant (Table 1).

Subsequently, we investigated the substrate scope of this reaction under the established optimal conditions, and produced a wide range of primary, secondary and tertiary amides (Table 2). Generally, electron-donating substituents

Table 1 Optimization of the reaction conditions^a

Entry	Cat. (mg)	Oxidant	Base	Solvent	Temp. (°C)	Yield ^b [%]	
1	25	<i>t</i> -BuOOH	CaCO ₃	CH ₂ CN	25	Trace	
2	25	t-BuOOH	CaCO ₃	CH ₃ CN	40	<10	
3	25	t-BuOOH	CaCO ₃	CH ₃ CN	60	37	
4	20	t-BuOOH	CaCO ₃	CH ₃ CN	70	58	
5	25	t-BuOOH	CaCO ₃	CH ₃ CN	70	74	
6	20	t-BuOOH	CaCO ₃	CH ₃ CN	80	90	
7	25	t-BuOOH	CaCO ₃	CH ₃ CN	80	90	
8	20	t-BuOOH	CaCO ₃	CH ₃ CN	90	77	
9	15	t-BuOOH	CaCO ₃	CH ₃ CN	80	73	
10	20	t-BuOOH	CaCO ₃	DMSO	80	55	
11	20	t-BuOOH	CaCO ₃	THF	80	32	
12	20	t-BuOOH	CaCO ₃	DMF	80	24	
13	20	t-BuOOH	CaCO ₃	CH_2Cl_2	80	20	
14	20	t-BuOOH	Na ₂ CO ₃	CH_3CN	80	64	
15	20	t-BuOOH	K_2CO_3	CH ₃ CN	80	59	
16	20	t-BuOOH	Cs_2CO_3	CH ₃ CN	80	50	
17	20	t-BuOOH	Et ₃ N	CH ₃ CN	80	32	
18	20	m-CPBA	$CaCO_3$	CH ₃ CN	80	14	
19	20	H_2O_2	CaCO ₃	CH ₃ CN	80	28	
20	_	t-BuOOH	CaCO ₃	CH ₃ CN	80	_	
21	20	_	CaCO ₃	CH ₃ CN	80	_	

^{*a*} Reaction conditions: toluene (1 mmol), benzyl amine hydrochloride salt (1.5 mmol), oxidant (6 equiv.), base (3 equiv.), solvent (2 mL), under Ar atmosphere, 9 h. ^{*b*} Isolated yields.

gave higher yields than their electron-withdrawing substituted counterparts. Encouraged by these promising results for the successful synthesis of primary and secondary amides, we extended the scope of this protocol for the formation of tertiary amides by carrying out reactions between methylarenes and secondary amines.

Based on these results and literature reports,³⁰ we propose a plausible free radical mechanism as shown in Scheme 2. Initially, Co²⁺ metal center catalysis the heterolytic cleavage of tert-butyl hydroperoxide to tert-butylperoxyl radical and a proton. The tert-butylperoxyl radical abstract a hydrogen from the toluene to give the benzyl radical intermediate (I). Subsequently, the benzaldehyde (II) is generated from the benzyl radical (I) in the presence of tert-butyl hydroperoxide and tertbutoxyl radical. The benzaldehyde can react with the free amine, generated in situ from the reaction of the amine salt with CaCO₃, to form a hemiaminal intermediate (III). Finally, the corresponding amide product is obtained by the same CoFe₂O₄-TBHP catalytic system. In the presence of a radical scavenger 2,6-di-tert-buty-4-methylphenol, completely stopped the oxidation, and no product was detected. It seems that the reactions proceed via the radical path. According to this, a freeradical mechanism is confirmed for oxidative amidation.

Reusability of the catalyst is evaluated under the reaction conditions described above for the model reaction. After

Table 2 Oxidative amidation of methylarenes with amine hydrochlorides in the presence of CoFe₂O₄ NPs^a

Table 2 (Contd.)

	R + NH. HC	CoFe TBHP, C	$P_2O_4 NPs$ CH ₃ CN, CaCO ₃	O N R R	R	+ NH. HC	CoFo TBHP, C	e ₂ O ₄ NPs CH ₃ CN, CaCO ₃	O N R
Entry	Methylarenes	Amine	Product	Yield ^b [%]	Entry	Methylarenes	Amine	Product	Yield ^b [%]
1		NH ₃	NH ₂	78	14		ONH		80
2	D	$\rm NH_3$	NH ₂	82	15		NH		78
3	CI	$\rm NH_3$	CI NH2	76	16		NH		75
4	O ₂ N	NH ₃	O ₂ N NH ₂	60	17	Ċ	NH		77
5		NH ₂		90	18		Ph N Ph H	O N Ph	71
6		NH ₂		91	19	ŢŢ	NH ₂		70
7		NH ₂		82	20	V	NH ₂		68
8		NH ₂		84	20				00
9		H ₂ N OH	O H	73	21		NH ₃	NH ₂	53
10	C			64	22		NH ₂		55
11		MH ₂		70	23		NH ₂	N N N N N N N N N N N N N N N N N N N	46
12		NH ₂		72	^{<i>a</i>} Reac salt (1 catalys	etion conditions .5 mmol), CH ₃ C st (20 mg), 80 °C	: methylaren CN (2 mL), Ca C, under Ar at	es (1 mmol), amine hy 1CO ₃ (3 equiv.), <i>t</i> -BuOOH mosphere, 9 h. ^b Isolate	drochloride H (6 equiv.), d yields.
13		NH ₂		77	comp	letion of the r	eaction, the	catalyst was easily re	covered by

easily recovered by applying a strong external permanent magnet, followed by washing with ethanol to remove the residual product(s). Then the recovered catalyst was dried under vacuum, and reused

Scheme 2 A plausible mechanism for catalytic oxidative amidation of methylarenes with amine hydrochloride salts over $CoFe_2O_4$ NPs.

directly for the next cycle without further treatment. The catalyst was used over five runs, and no obvious loss in the catalytic activity was observed (Scheme 3).

Experimental

General

All chemical reagents used in our experiments were purchased from Merck or Aldrich Chemical Company with high purity. All solvents were distilled, dried and purified using standard procedures. Melting points were measured on an Electrothermal 9100 apparatus. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance (DPX 500 MHz and DPX 125 MHz) in pure deuterated CDCl₃ solvent using tetramethylsilane (TMS) as an internal reference. FT-IR spectra were recorded using KBr pellets on a Nicolet IR-100 infrared spectrometer. The powder X-ray diffraction spectrum was recorded at room temperature using a Philips X-Pert 1710 diffractometer. The latter appeared with Co K α ($\alpha = 1.79285$ Å) voltage: 40 kV, current: 40 mA and was in the range of 20–80° (2 θ) with a scan speed of 0.02° per s. The particle morphology was examined by scanning electron

Scheme 4 Preparation of magnetic CoFe₂O₄ nanocatalyst.

microscopy using SEM (HITACHI S-4160) on gold coated samples. Magnetic properties were obtained by a vibrating magnetometer/Alternating Gradient Force Magnetometer (VSM/AGFM, MDK Co., Iran).

Preparation of magnetic CoFe₂O₄ nanoparticles (MNPs)

Magnetic CoFe_2O_4 nanoparticles were prepared by chemical coprecipitation chlorine salt of Fe^{3+} and Co^{2+} ions with a molar ratio of 2 : 1. Typically, $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ (5.8 g, 0.02 mol) and CoCl_2 (1.3 g, 0.01 mol) were dissolved in 100 mL deionized water at 80 °C under N₂ atmosphere and vigorous stirring. Then, 10 mL of 25% NH₄OH was quickly injected into the reaction mixture in one portion. The addition of the base to the $\text{Co}^{2+}/\text{Fe}^{3+}$ salt solution resulted in immediate formation of a black precipitate of MNPs. The reaction was continued for another 60 min and the mixture was cooled to room temperature. The black precipitate was washed with doubly warm distilled water (Scheme 4).

General procedure for direct amidation of methylarenes with amine hydrochloride salts

A mixture was made that consisted of catalyst (20 mg), an amine hydrochloride salt (1.5 mmol), CaCO₃ (3 equiv.), methylarenes (1 mmol), and *t*-BuOOH (70 wt% in H₂O, 6 equiv.), in CH₃CN (2 mL), under an argon atmosphere for appropriate time at 80 °C. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and diluted with EtOAc. The catalyst was separated using an external magnet, washed several times with EtOAc and dried under vacuum at room temperature to be ready for a later run. The mixture was extracted with EtOAc, then the combined organic phases were dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to provide the desired amides.

Conclusions

This work demonstrates a novel and highly efficient methodology for the formation of amides from reaction of methylarenes with amine hydrochloride salts, and aqueous *tert*-butyl hydroperoxide as an oxidant using recyclable CoFe_2O_4 NPs. This protocol provides high yield, short reaction time, and operational simplicity, green and low cost procedure for the synthesis of all types of amides (primary, secondary and tertiary). The highlights of this work are the reusability and rather high efficiency of the synthesized nanocatalyst.

Acknowledgements

We acknowledge Tarbiat Modares University for partial support of this work.

Notes and references

- 1 (a) N. R. Shiju and V. V. Guliants, *Appl. Catal.*, *A*, 2009, **356**, 1–17; (b) L. D. Pachón and G. Rothenberg, *Appl. Organomet. Chem.*, 2008, **22**, 288–299.
- 2 (a) I. Beletskaya and V. Tyurin, *Molecules*, 2010, 15, 4792–4814; (b) B. P. S. Chauhan, R. Thekkathu, L. Prasanth, K. M. Mandal and K. Lewis, *Appl. Organomet. Chem.*, 2010, 24, 222–228; (c) B. P. S. Chauhan, R. Sardar, U. Latif, M. Chauhan and W. Lamoreaux, *Acta Chim. Slov.*, 2005, 52, 361–370.
- 3 N. Toshima and T. Yonezawa, *New J. Chem.*, 1998, **22**, 1179–1201.
- 4 F. M. Moghaddam, G. Tavakoli and H. R. Rezvani, *Appl.* Organomet. Chem., 2014, 28, 750–755.
- 5 G. Bate, in *Magnetic Oxides Part 2*, ed. D. J. Craik, John Wiley & Sons, New York, 1975, pp. 705–707.
- 6 A. S. Reddy, C. S. Gopinath and S. Chilukuri, *J. Catal.*, 2006, **243**, 278–291.
- 7 A. H. de Morais Batista, F. S. Ramos, T. P. Braga, C. L. Lima,
 F. F. de Sousa, E. B. Barros, M. Josue Filho, A. S. de Oliveira,
 J. R. de Sousa and A. Valentini, *Appl. Catal.*, A, 2010, 382, 148–157.
- 8 K. Sreekumar, T. Mathew, B. M. Devassy, R. Rajgopal, R. Vetrivel and B. Rao, *Appl. Catal., A*, 2001, **205**, 11–18.
- 9 (a) A. S. Kulkarni and R. V. Jayaram, *Appl. Catal.*, A, 2003, 252, 225–230; (b) B. Baruwati, M. N. Nadagouda and R. S. Varma, *J. Phys. Chem. C*, 2008, 112, 18399–18404.
- 10 Y. Wang, J. Park, B. Sun, H. Ahn and G. X. Wang, *Chem.-Asian J.*, 2012, 7, 1940–1946.
- 11 D. Fritsch and C. Ederer, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2012, **86**, 014406–014416.
- 12 R. Comes, H. X. Liu, M. Kholchov, R. Kasica, J. W. Lu and S. A. Wolf, *Nano Lett.*, 2012, **12**, 2367–2373.
- 13 R. S. Turtelli, G. V. Duong, W. Nunes, R. Grössinger and M. Knobel, J. Magn. Magn. Mater., 2008, 320, e339–e342.
- 14 B. Q. Liu, Q. F. Li, B. Zhang, Y. L. Cui, H. F. Chen, G. N. Chen and D. P. Tang, *Nanoscale*, 2011, 3, 2220–2226.
- 15 H. X. Wu, G. Liu, X. Wang, J. M. Zhang, Y. Chen, J. L. Shi, H. Yang, H. Hu and S. P. Yang, *Acta Biomater.*, 2011, 7, 3496–3504.
- 16 Y. D. Yang, S. Priya, Y. U. Wang, J. F. Li and D. Viehland, J. Mater. Chem., 2009, 19, 4998–5002.
- 17 (a) L. Perreux, A. Loupy and F. Volatron, *Tetrahedron*, 2002, 58, 2155–2162; (b) C. L. Allen, A. R. Chhatwal and J. M. Williams, *Chem. Commun.*, 2012, 48, 666–668.
- 18 E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606-631.
- 19 (a) E. Saxon and C. R. Bertozzi, *Science*, 2000, 287, 2007–2010;
 (b) F. Damkaci and P. De Shong, *J. Am. Chem. Soc.*, 2003, 125, 4408–4409;
 (c) Y. G. Gololobov and L. F. Kasukhin, *Tetrahedron*, 1992, 48, 1353–1406.

- 20 (a) T. Ribelin, C. E. Katz, D. G. English, S. Smith,
 A. K. Manukyan, V. W. Day, B. Neuenswander,
 J. L. Poutsma and J. Aubé, *Angew. Chem., Int. Ed.*, 2008, 47, 6233–6235; (b) S. Lang and J. Murphy, *Chem. Soc. Rev.*, 2006, 35, 146–156.
- 21 (a) N. A. Owston, A. J. Parker and J. M. Williams, *Org. Lett.*, 2007, 9, 3599–3601; (b) M. Hashimoto, Y. Obora, S. Sakaguchi and Y. Ishii, *J. Org. Chem.*, 2008, 73, 2894–2897.
- 22 (a) C. Gunanathan, Y. B. David and D. Milstein, Science, 2007, 317, 790–792; (b) P. C. Chiang, Y. Kim and J. W. Bode, Chem. Commun., 2009, 4566–4568; (c) L. U. NordstrØm, H. Vogt and R. Madsen, J. Am. Chem. Soc., 2008, 130, 17672–17673; (d) M. Arefi, D. Saberi, M. Karimi and A. Heydari, ACS Comb. Sci., 2015, 17, 341–347; (e) S. C. Ghosh, J. S. Ngiam, A. M. Seayad, D. T. Tuan, C. W. Johannes and A. Chen, Tetrahedron Lett., 2013, 54, 4922–4925; (f) X. Wu, M. Sharif, A. Pews-Davtyan, P. Langer, K. Ayub and M. Beller, Eur. J. Org. Chem., 2013, 2013, 2783–2787.
- 23 (a) S.-I. Murahashi, T. Naota and E. Saito, J. Am. Chem. Soc., 1986, 108, 7846–7847; (b) C. L. Allen, A. A. Lapkin and J. M. J. Williams, Tetrahedron Lett., 2009, 50, 4262–4264.
- 24 (a) J. W. W. Chang, T. M. U. Ton, S. Tania, P. C. Taylor and P. W. H. Chan, *Chem. Commun.*, 2010, 46, 922–924; (b) T. M. U. Ton, C. Tejo, S. Tania, J. W. W. Chang and P. W. H. Chan, *J. Org. Chem.*, 2011, 76, 4894–4904; (c) S. C. Ghosh, J. S. Ngiam, C. L. Chai, A. M. Seayad, T. T. Dang and A. Chen, *Adv. Synth. Catal.*, 2012, 354, 1407–1412; (d) S. C. Ghosh, J. S. Ngiam, A. M. Seayad, D. T. Tuan, C. L. Chai and A. Chen, *J. Org. Chem.*, 2012, 77, 8007–8015; (e) K. S. Goh and C.-H. Tan, *RSC Adv.*, 2012, 2, 5536–5538; (f) X. Liu and K. F. Jensen, *Green Chem.*, 2012, 14, 1471–1474; (g) G.-L. Li, K. K.-Y. Kung and M.-K. Wong, *Chem. Commun.*, 2012, 48, 4112–4114; (h) M. Zhu, K.-i. Fujita and R. Yamaguchi, *J. Org. Chem.*, 2012, 77, 9102–9109.
- 25 (a) S. Park, Y. Choi, H. Han, S. H. Yang and S. Chang, *Chem. Commun.*, 2003, 1936–1937; (b) N. A. Owston, A. J. Parker and J. M. J. Williams, *Org. Lett.*, 2007, 9, 73–75.
- 26 (a) J. B. Feng and X. F. Wu, Appl. Organomet. Chem., 2015, 29, 63–86; (b) T. Wang, L. Yuan, Z. Zhao, A. Shao, M. Gao, Y. Huang, F. Xiong, H. Zhang and J. Zhao, Green Chem., 2015, 17, 2741–2744; (c) Y. Huang, T. Chen, Q. Li, Y. Zhou and S.-F. Yin, Org. Biomol. Chem., 2015, 13, 7289–7293.
- 27 E. Eidi, M. Kassaee and Z. Nasresfahani, *Appl. Organomet. Chem.*, 2016, **30**, 561–565.
- 28 (a) X. B. Cao and L. Gu, Nanotechnology, 2005, 16, 180–185;
 (b) T. Hyeon, Y. Chung, J. Park, S. S. Lee, Y. W. Kim and B. H. Park, J. Phys. Chem. B, 2002, 106, 6831–6833; (c) S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. Li, J. Am. Chem. Soc., 2004, 126, 273–279; (d) T. Prozorov, P. Palo, L. Wang, M. Nilsen-Hamilton, D. Jones, D. Orr, S. K. Mallapragada, B. Narasimhan, P. C. Canfield and R. Prozorov, ACS Nano, 2007, 1, 228–233.
- 29 (a) J. K. Rajput and G. Kaur, *Chin. J. Catal.*, 2013, 34, 1697–1704; (b) P. Sivakumar, R. Ramesh, A. Ramanand,

Paper

S. Ponnusamy and C. Muthamizhchelvan, *Mater. Res. Bull.*, 2011, **46**, 2204–2207.

30 (a) A. S. Kumar, B. Thulasiram, S. B. Laxmi, V. S. Rawat and B. Sreedhar, *Tetrahedron*, 2014, 70, 6059–6067; (b) B. Ma, Z. Zhang, W. Song, X. Xue, Y. Yu, Z. Zhao and Y. Ding, *J. Mol. Catal. A: Chem.*, 2013, 368, 152–158; (c) K. V. Rao,

P. Rao, P. Nagaraju, P. S. Prasad and N. Lingaiah, *J. Mol. Catal. A: Chem.*, 2009, 303, 84–89; (d) T. C. Mac Leod,
M. V. Kirillova, A. J. Pombeiro, M. A. Schiavon and
M. D. Assis, *Appl. Catal.*, A, 2010, 372, 191–198; (e)
P. K. Tandon, M. Srivastava, S. Kumar and S. Singh, *J. Mol. Catal. A: Chem.*, 2009, 304, 101–106.