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Highly efficient synthesis of 3-amino-/alkylthio-cyclobut-2-en-1-ones

based on the cyclization of acyl ketene dithioacetalsw
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A new strategy for the highly efficient one-pot synthesis of

3-amino-/alkylthio-cyclobut-2-en-1-ones based on the cyclization

of acyl ketene dithioacetals is disclosed. In addition, the

rearrangement of 3-amino-cyclobut-2-en-1-ones to 4-quinolone

derivatives is described.

In recent research on the VLA-4 (very late activating antigen-4)

antagonists,1 3-aminocyclobut-2-en-1-one derivatives have

been described as potent VLA-4 antagonists.2 However, to

date synthesis of 3-amino-cyclobut-2-en-1-ones is limited to

the following: condensation of cyclobutane-1,3-diones with

primary amines;2 [2+2] cycloaddition of ketenes with ynamides;3

and the reaction of 3-ethoxycyclobut-2-enones with amino

acids.4 We report in this communication a novel and efficient

synthesis of 3-aminocyclobut-2-en-1-ones 2 from the easily

available acyl ketene dithioacetals 1.5

In continuation of our studies on the application of

ketene dithioacetals,6,7 we found that the reaction of

4-(bis(methylthio)methylene)heptane-3,5-dione (1a) with

4-methylaniline under basic conditions afforded a cyclobutenone

derivative,8 4-methyl-2-propionyl-3-(p-tolylamino)cyclobut-2-

enone (2a1). Under optimal conditions, (i.e., 1a (1.0 mmol),

4-methylaniline (1.0 mmol) and ButOK (2.0 equiv.) in DMSO

(2.0 mL) at room temperature for 0.5 h), 2a1 was obtained in

76% yield (Table 1, entry 1).z Under the conditions described

in Table 1, entry 1, a range of reactions of 1a (R2 = COEt)

with amines were carried out (Table 1). As a result, various

amines such as arylamines with either electron-rich (entry 1),

electron-neutral (entry 2), or electron-deficient (entry 3)

groups, heteroaromatic amine (entry 4), primary and secondary

aliphatic amines (entries 5 and 6), reacted smoothly with 1a to

give the corresponding 3-aminocyclobut-2-en-1-ones 2a1–6 in

good to high yields. In addition, 3-dimethylaminocyclobut-

2-en-1-one 2a7 was obtained in 73% yield from the reaction of

1a in DMF (entry 7, DMF as a dimethylamine equivalent).

Similarly, reactions of acyl ketene dithioacetals 1b (R2=CO2Me)

and 1c (R2 = Ph) in DMF gave the corresponding 3-dimethyl-

aminocyclobut-2-en-1-ones 2b7 and 2c7 in 74% and 70%

yields, respectively (entries 8 and 9).

In order to gain insight into the mechanism, the reaction of

1a was investigated. Under conditions identical to those

in Table 1, entry 1 but in the absence of an amine, 3-methyl-

thiocyclobut-2-en-1-one 3a was afforded in 82% yield

(Scheme 1). Furthermore, reaction of 3a with 4-methylaniline

was carried out, which resulted in the formation of 2a1 in 72%

yield (Scheme 1).

On the basis of the above experimental results and related

reports,4,6,7a,7b a mechanism for the formation of 2 is proposed

in Scheme 2. In the presence of ButOK, a vinyl enolate anion

intermediate A is formed by deprotonation of the methylene

group of acyl ketene dithioacetals 1 (Scheme 2). Subsequently,

a 4-electron electrocyclic ring closure of the vinyl enolate A to

cyclobutanone B may occur. Under basic conditions, the

elimination of an alkylthiol from B gives 3-alkylthiocyclobut-

2-en-1-ones 3.6a Whereas, in the presence of an amine,

3-aminocyclobut-2-en-1-ones 2 are thought to be produced

via the nucleophilic amine addition and alkylthiol elimination

processes.6b

An alternative mechanism that can be considered for the

formation of 3-alkylthiocyclobut-2-en-1-ones 3 from the vinyl

enolate A is the involvement of intramolecular Michael

addition (Scheme 2). Although this 4-endo-trig cyclization is

disfavored according to Baldwin’s rules, the validity of this

assumption is open to question. For example, 5-endo-trig

‘‘anti-Baldwin’’ ring closure occurred in the cyclization of

gem-difluoroolefins9 or ketene dithioacetals (gem-dithioolefins)10

bearing a homoallylic heteroatom nucleophile. In addition,

the 3-exo-dig cyclization of propargylic halides possessing

a suitably placed active methine was also observed.11

Nevertheless, the preparation of 3-amino-/alkylthio-cyclobut-

2-en-1-ones from the cyclization of acyl ketene dithioacetals

provides a very convenient route to cyclobut-2-enones.2–4,8

It is well known that functionalized cyclobut-2-enones easily

undergo thermal ring-expansion reaction to offer efficient

access to functionalized monocyclic or ring-annelated carbo-

and heterocycles.8,12 To explore the synthetic potential of

cyclobut-2-enones 2, the ring-expansion reaction of 2 was

examined (Scheme 3). As expected, the reaction of 3-arylamino-

cyclobut-2-en-1-one 2a1 could proceed smoothly to give

4-quinolone derivative 4a1 in 56% yield in toluene at 110 1C

for 16 h (Fig. 1).13 To our satisfaction, the yield of 4a1 was

increased to 72% under identical conditions with the addition

of catalytic amounts of p-toluenesulfonamide (PTSA, 10%;

Scheme 3). Similarly, 4-quinolones 4a2 and 4a3 were obtained

in 70% yield from the reaction of 3-arylaminocyclobut-2-en-1-

ones 2a2 and 2a3, respectively (Scheme 3). Thus, the above

thermal ring-expansion reaction of 3-arylaminocyclobut-2-

en-1-ones provides an efficient approach to functionalized

quinolin-4(1H)-ones.14

On the basis of the above experimental results together with

the related reports,8,12 a mechanism for the formation of

4-quinolones 4 is proposed and depicted in Scheme 4. Under

thermal conditions, the 3-arylaminocyclobut-2-en-1-one 2
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undergoes a 4p electrocyclic cleavage to generate vinylketene

intermediate A, which rapidly cyclizes via 6p electrocyclic ring

closure, followed by tautomerization to give the coresponding

4-quinolones 4 (Scheme 4). As to the role of PTSA in increasing

the yield of 4-quinolones 4, it may be due to a weak base effect

to accelerate the formation of vinylketene intermediate A.

In conclusion, we have developed a new strategy for the

highly efficient one-pot synthesis of 3-amino-/alkylthio-cyclobut-

2-en-1-ones 2 and 3 via a base-promoted cyclization of acyl

ketene dithioacetals 1. The simplicity of execution, readily

available substrates, mild reaction conditions, short reaction

time make this synthetic strategy most attractive for practical

applications. As a synthetic application, 4-quinolones 4 were

prepared in high yields through a tandem ring-opening/

recyclization of 2. Further studies to expand the synthetic

utility of these functionalized cyclobutenones are in progress.
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Notes and references

z General procedure for the synthesis of cyclobutenones 2 (taking

2a1 as an example): To a solution of 4-(bis(methylthio)methylene)-
heptane-3,5-dione 1a (1.0 mmol, 232 mg) and 4-methylaniline
(1.0 mmol, 107 mg) in DMSO (2.0 mL) was added ButOK (2.0 mmol,
224 mg) in one portion. The reaction mixture was stirred for 0.5 h at
room temperature. After 1a was consumed (monitored by TLC), the
reaction mixture was poured into saturated aqueous NaCl (25 mL),
neutralized with aqueous HCl and extracted with CH2Cl2 (10 mL� 3).
The combined organic extracts were dried over anhydrous MgSO4,
filtered and concentrated under reduced pressure to yield the
corresponding crude product, which was purified by silica gel
chromatography (ethyl acetate–hexane = 1/9, v/v) to give 2a1

(185 mg, 76%) as a white solid.

Table 1 Synthesis of 3-aminocyclobut-2-en-1-ones 2 from the reaction of 1 and aminesa

Entry Substrate R, R R1 R2 R3 R4 Solvent Yield (%)b

1 1a Me Me COEt H 4-MeC6H4 DMSO 2a1 (76)
2 1a Me Me COEt H C6H5 DMSO 2a2 (70)
3 1a Me Me COEt H 4-ClC6H4 DMSO 2a3 (66)
4 1a Me Me COEt H 2-Pyridyl DMSO 2a4 (69)
5 1a Me Me COEt H CH3(CH2)3 DMSO 2a5 (75)
6 1a Me Me COEt (CH2)5 DMSO 2a6 (70)
7 1a Me Me COEt Me Me DMF 2a7 (73)
8 1b Et Me CO2Me Me Me DMF 2b7 (74)
9 1c Et C6H5 C6H5 Me Me DMF 2c7 (70)

a Reaction conditions: 1 (1.0 mmol), amine (1.0 mmol), ButOK (2.0 mmol), DMSO/DMF (2.0 mL), room temperature. b Isolated yield.

Scheme 1 Synthesis of 3-methylthiocyclobutenone 3a and its reaction

with 4-methylaniline.

Scheme 2 Proposed mechanism for the formation of 2 and 3.

Scheme 3 Synthesis of 4-quinolones 4a1–3 from 2a1–3.

Fig. 1 ORTEP drawing of 4a1.

Scheme 4 Proposed mechanism for the formation of 4.
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