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SAMARIUM TRIFLATE AS MILD AND EFFICIENT
CATALYST FOR AZA-DIELS–ALDER REACTION: A
FACILE SYNTHESIS OF CIS-FUSED PYRANO- AND
FURANOQUINOLINES

A. Venkat Narsaiah, A. Ramesh Reddy, B. V. Subba Reddy,
and J. S. Yadav
Division of Organic Chemistry, Indian Institute of Chemical Technology,
Hyderabad, India

Three-component coupling reactions of aldehydes, amines, and cyclic enol ethers have been

carried out in the presence of samarium triflate to afford the corresponding pyrano and

furanoquinolines in excellent yields with high endo-selectivity. The reaction conditions

are mild and amenable to scale-up.

Keywords: Aldehydes; amines; hetero-Diels–Alder reaction; tetrahydroquinolines

The hetero-Diels–Alder reactions are becoming a mainstay for heterocycles and
natural product synthesis.[1] Pyranoquinolines possess a wide spectrum of biological
activities such as psychotropic, antiallergic, anti-inflammatory, and estrogenic
activity.[2] Generally, they are prepared by means of imino-Diels–Alder reaction.
The imines derived from aromatic amines act as heterodienes and undergo imino-
Diels–Alder reaction with various dienophiles in the presence of acid catalysts.[3–5]

However, many of these reactions cannot be carried out in a one-pot operation with
carbonyl compound, amine, and enol ether because the amine and water that exist
during imine formation can decompose or deactivate the Lewis acids. Even when
the desired reactions proceed, more than stoichiometric amounts of the Lewis acids
are required because the acids are trapped by nitrogen. Furthermore, most of the
imines are hygroscopic, unstable at high temperatures, and difficult to purify by
distillation or column chromatography. Subsequently, one-pot procedures have been
developed for this transformation using various acid catalysts.[6–8] However, some of
them require strongly acidic conditions, necessitate dry reaction conditions, and also
involve tedious product-isolation procedures. Therefore, the development of mild,
convenient, and efficient procedures would extend the scope of this methodology
to synthesis of highly functionalized quinoline derivatives.

In view of the emerging importance of samarium triflate as a mild Lewis acid
in organic synthesis, we herein report our results on samarium triflate–catalyzed
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synthesis of angularly fused pyrano and furanoquinolines via a three-component
reaction. Accordingly, treatment of aniline (1) and benzaldehyde (2) with 2,3-
dihydrofuran (3) in the presence of samarium triflate gave the corresponding furano-
quinoline 3a in 93% yield (Scheme 1).

Similarly, several aldimines (formed in situ from aromatic aldehydes and
anilines) reacted effectively with 2,3-dihydrofuran in presence of samarium triflate
to afford the corresponding furano [3,2-c] quinolines in 87–93% yield (Table 1).
In all the cases, the products were obtained exclusively as endo-isomers 3. Like
dihydrofuran (DHF), 3,4-dihydro-2H-pyran (DHP) also reacted effectively with
imines under similar conditions to provide pyrano[3,2-c]-quinolines 4 and 5 in good
yields (Scheme 2).

In the case of DHP, the products were obtained as a mixture of 4 endo- and 5

exo-isomers, favoring endo-diastereomers 4, as has been observed by others also in
most of the Povarov imino-Diels–Alder reactions. In all cases, the reactions
proceeded smoothly at ambient temperature with excellent selectivity. However, in
the absence of catalyst, the reaction did not yield the desired product even after

Scheme 1. Synthesis of furano tetrahydroquinoline.

Table 1. Sm(OTf)3-promoted synthesis of pyrano- and furanoquinolinesa

Entry R Ar Olefin Reaction time (h) Yield (%)b endo:exoc transc

a H C6H5 3.0 93
—

b 4-MeO H " 2.5 91 —

c H 4-FC6H4 " 3.0 90 —

d 4-Me 4-CIC6H4 " 3.0 89 —

e H 4-MeOC6H4 " 2.5 91 —

f 4-MeO 4-FC6H4 " 3.5 88 —

g 3,5-(MeO)2 4-FC6H4 " 3.0 87 —

h H C6H5 2.5 90 92:8

i H 4-FC6H4 " 3.0 88 88:12

j 2-Me C6H5 " 2.5 90 85:15

k 4-MeO C6H5 " 3.0 87 88:12

1 4-F C6H5 " 3.0 85 86:14

m 1-Naphthyl C6H5 " 3.5 84 82:18

n 1-Naphthyl 4-FC6H4 " 4.0 81 80:20

aAll products were characterized by 1H NMR, IR, and mass spectra.
bIsolated and unoptimized yields.
ccis=trans isomers were separated by column chromatography.
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an extended reaction time (15–20 h). Enhanced reaction rates, excellent yields, and
high cis-selectivity are the features observed in this protocol.

All the products were characterized by 1H NMR, infrared (IR), and mass
spectrometry and also by comparison with authentic samples. The reactions of
various aldehydes, amines, and cyclic enol ethers were examined under similar
reaction conditions, and the results are presented in Table 1.

In summary, samarium triflate has proved to be an effective catalyst to perform
imino-Diels–Alder reaction of aldehydes, aromatic amines, and enol ethers under
mild conditions. The use of samarium triflate makes this method a simple, con-
venient, and attractive process for the preparation of highly functionalized tetrahy-
droquinoline derivatives.

EXPERIMENTAL

Melting points were recorded on a Buchi R-535 apparatus and are uncorrected.
IR spectra were recorded on a Perkin-Elmer Fourier transform (FT)–IR 240-c spec-
trophotometer using KBr optics. 1H NMR spectra were recorded on Gemini-200
spectrometer in CDCl3 using tetramethylsilane (TMS) as internal standard. Mass
spectra were recorded on a Finning MAT 1020 mass spectrometer operating at
70 eV. CHN analyses were recorded on a Vario EL analyzer.

General Procedure for the Synthesis of Pyrano- and
Furanoquinolines

3,4-Dihydro-2H-pyran or 2,3-dihydrofuran (2mmol) and samarium triflate
(0.1mmol) were added to a mixture of aldehyde (1mmol) and aryl amine (1mmol)
in dichloromethane (5mL). The resulting reaction mixture was stirred at ambient
temperature for an appropriate time (Table 1). After completion of the reaction,
as indicated by thin-layer chromatography (TLC), the reaction mixture was
extracted with methylenedichloride (3� 10mL). The combined organic extracts were
dried over Na2SO4 and concentrated under reduced pressure. The resulting crude
products were purified by column chromatography using silica gel (60–120 mesh)
and eluted with a mixture of ethyl acetate–n-hexane to afford pure products.

Spectral Data for Products

cis-4-Phenyl-2,3,3a,4,5,9b-hexahydrofuro-[3,2-c]-quinoline (3a). Solid, mp
93–95 �C. IR (KBr): n 3348, 3065, 2975, 2847, 1615, 1506, 1480, 1362, 1218, 1183,

Scheme 2. Synthesis of pyrano tetrahydroquinoline.
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1074, 1012, 968, 871, 732 cm�1. 1H NMR (CDCl3): d 1.52–1.57 (m, 1H), 2.20–2.30
(m, 1H), 2.70–2.80 (m, 1H), 3.75–3.85 (m, 3H), 4.72 (d, 1H, J¼ 2.8Hz), 5.24 (d,
1H, J¼ 8.0Hz), 6.56 (d, 1H, J¼ 8.0Hz), 6.81 (t, 1H, J¼ 8.0Hz), 7.03 (t, 1H,
J¼ 8.0Hz), 7.35–7.55 (m, 6H). EIMS m=z: 251m,þ 220, 206, 174, 130, 91, 77, 51.

cis-8-Methoxy-4-phenyl-2,3,3a,4,5,9b-hexahydrofuro-[3,2-c]-quinoline
(3b). Solid, mp 132–133 �C. IR (KBr): n 3305, 3071, 2965, 2849, 1605, 1578, 1516,
1473, 1396, 1225, 1153, 1051, 1006, 967, 912, 834, 749 cm�1. 1H NMR (CDCl3): d
1.52–1.58 (m, 1H), 2.21–2.30 (m, 1H), 2.74–2.81 (m, 1H), 3.63–3.72 (m, 3H), 3.78
(s, 3H), 4.63 (d, 1H, J¼ 2.8Hz), 5.24 (d, 1H, J¼ 8.0Hz), 6.52 (d, 1H, J¼ 8.6Hz),
6.75 (dd, 1H, J¼ 8.6 & 2.8Hz), 6.95 (d, 1H, J¼ 2.8Hz), 7.25–7.43 (m, 5H). EIMS
m=z: 281m,þ 236, 206, 160, 141, 115, 91, 76, 51, 41.

cis-4-(4-Fluorophenyl)-2,3,3a,4,5,9b-hexahydrofuro[3,2-c]quinoline
(3c). Solid, mp 173–175 �C. IR (KBr): n 3315, 3052, 2976, 2880, 1606, 1567, 1508,
1472, 1329, 1223, 1105, 1059, 964, 841, 739 cm�1. 1H NMR (CDCl3): d 1.51–1.56 (m,
1H), 2.12–2.16 (m, 1H), 2.61–2.82 (m, 1H), 3.64–3.81 (m, 3H), 4.65 (d, 1H,
J¼ 2.5Hz), 5.21 (d, 1H, J¼ 8.0Hz), 6.52 (d, 1H, J¼ 8.0Hz), 6.77 (t, 1H, J¼ 8.0Hz),
7.02–7.11 (m, 3H), 7.28–7.32 (m, 1H), 7.39–7.43 (m, 2H). EIMS m=z: 269m,þ 240,
224, 198, 174, 130, 117, 95, 76, 51, 43, 39.

cis-4-(4-Chlorophenyl)-8-methyl-2,3,3a,4,5,9b-hexahydrofuro-[3,2-c]-
quinoline (3d). Solid, mp. 148–149 �C. IR (KBr): n 3345, 2991, 2878, 1610, 1493,
1145, 1031, 963, 845, 734 cm�1. 1H NMR (CDCl3): d 1.50–1.55 (m, 1H), 2.20–2.30
(m, 1H), 2.36 (s, 3H), 2.62–2.67 (m, 1H), 3.62 (brs, 1H, NH), 3.70–3.75 (m, 1H),
3.79–3.84 (m, 1H), 4.61 (d, 1H, J¼ 2.1Hz), 5.21 (d, 1H, J¼ 8.0Hz), 6.52 (d, 1H,
J¼ 8.0Hz), 6.84 (dd, 1H, J¼ 8.0 & 2.1Hz), 7.12 (d, 1H, J¼ 0.8Hz), 7.36 (d, 2H,
J¼ 8.0Hz), 7.41 (d, 2H, J¼ 8.0Hz). EIMS m=z: 299m,þ 254, 188, 160, 144, 115,
77, 51.

cis-4-(4-Methoxyphenyl)-2,3,3a,4,5,9b-hexahydrofuro-[3,2-c]-quinoline
(3e). Solid, mp 155–156 �C. IR (KBr): n 3340, 2990, 2870, 1605, 1520, 1135, 1105,
1063, 941, 813, 739 cm�1. 1H NMR (CDCl3): d 1.54–1.60 (m, 1H), 2.18–2.22 (m,
1H), 2.67–2.73 (m, 1H), 3.70–3.80 (m, 3H), 3.85 (s, 3H), 4.62 (d, 1H, J¼ 2.2Hz),
5.22 (d, 1H, J¼ 8.0Hz), 6.54 (d, 1H, J¼ 8.0Hz), 6.78 (t, 1H, J¼ 8.0Hz), 6.90 (t,
1H, J¼ 8.0Hz), 7.05 (d, 2H, J¼ 8.0Hz), 7.35–7.45 (m, 3H). EIMS m=z: 281m,þ

252, 236, 224, 167, 155, 141, 121, 91, 76, 69, 51, 43.

cis-4-(4-Fluorophenyl)-8-methoxy-2,3,3a,4,5,9b-hexahydrofuro-[3,2-c]-
quinoline (3f). Solid, mp. 136–138 �C. IR (KBr): n 3014, 1662, 1577, 1503, 1220,
1108, 1036, 1012, 986, 864, 812, 726 cm�1. 1H NMR (CDCl3): d 1.35–1.55 (m,
1H), 2.10–2.25 (m, 1H), 2.60–2.75 (m, 1H), 3.60–3.80 (m, 3H), 3.76 (s, 3H), 4.62
(d, 1H, J¼ 2.8Hz), 5.20 (d, 1H, J¼ 8.0Hz), 6.45 (d, 1H, J¼ 8.4Hz), 6.68 (dd, 1H,
J¼ 8.4 & 2.8Hz), 6.92 (d, 1H, J¼ 2.8Hz), 7.00–7.10 (m, 2H), 7.20–7.30 (m, 2H).
EIMS m=z: 299m,þ 272, 255, 205, 150, 109, 77, 51, 43.

cis-4-(4-Fluorophenyl)-7,9-dimethoxy-2,3,3a,4,5,9b-hexahydrofuro[3,2-
c]quinoline (3g). Solid, mp 80–82 �C. IR (KBr): n 3305, 2985, 2880, 1615, 1500,
1225, 1163, 1035, 910, 871, 769, 714 cm�1. 1H NMR (CDCl3): d 1.60–1.65 (m,
1H), 2.20–2.25 (m, 1H), 2.75–2.85 (m, 1H), 3.60–3.85 (m, 3H), 3.68 (s, 3H,
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OCH3), 3.80 (s, 3H, OCH3), 4.78 (d, 1H, J¼ 2.8Hz), 5.40 (d, 1H, J¼ 8.0Hz),
6.16–6.23 (m, 1H), 6.57–6.62 (m, 1H), 7.02–7.10 (m, 2H), 7.38–7.42 (m, 2H). EIMS
m=z: 329m,þ 314, 285, 254, 190, 149, 133, 109, 71, 51, 43.

cis-5-Phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-quinoline
(4h). Solid, mp 129–130 �C. IR (KBr): n 3340, 3052, 2970, 2850, 1610,1518, 1490,
1358, 1293, 1162, 1090, 1015, 961, 859, 735 cm�1. 1H NMR (CDCl3): d 1.22–1.27
(m, 1H), 1.50–1.70 (m, 3H), 2.15–2.20 (m, 1H), 3.40 (dt, 1H, J¼ 11.3 & 2.4Hz),
3.55 (dd, 1H, J¼ 11.3 & 2.4Hz), 3.80 (brs, 1H, NH), 4.70 (d, 1H, J¼ 2.7Hz), 5.30
(d, 1H, J¼ 5.6Hz), 6.55 (d, 1H, J¼ 8.0Hz), 6.78 (t, 1H, J¼ 8.0Hz), 7.05 (t, 1H,
J¼ 7.8Hz), 7.25–7.45 (m, 6H). 13C NMR (CDCl3): d 18.2, 25.7, 39.0, 59.3, 60.7,
72.8, 114.4, 118.0, 120.4, 126.9, 127.5, 127.7, 128.0, 128.4, 141.2, 145.2. EIMS m=z:
265m,þ 234, 220, 194, 129, 117, 91, 77, 76, 51.

trans-5-Phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-quinoline
(5h). Viscous oil. IR (KBr): n 3325, 3051, 2941, 2864, 1607, 1586, 1512, 1482, 1309,
1257, 1139, 1088, 1015, 981, 846, 736 cm�1. 1H NMR (CDCl3): d 1.25–1.60 (m, 3H),
1.80–1.90 (m, 1H), 2.00–2.10 (m, 1H), 3.75 (dt, 1H, J¼ 11.5 & 2.5Hz), 4.00–4.10 (m,
2H), 4.40 (d, 1H, J¼ 2.5Hz), 4.75 (d, 1H, J¼ 10.8Hz), 6.50 (d, 1H, J¼ 8.0Hz), 6.70
(t, 1H, J¼ 7.5Hz), 7.10 (t, 1H, J¼ 7.5Hz), 7.25 (d, 1H, J¼ 8.0Hz), 7.40–7.55 (m,
5H).13C NMR (CDCl3): d 22.3, 24.4, 39.3, 55.0, 69.2, 74.5, 114.2, 117.4, 120.5,
127.7, 127.9, 128.5, 129.4, 130.9, 142.2, 144.5.

cis-5-(4-Fluorophenyl)-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (4i). Solid, mp 174–175 �C. IR (KBr): n 3325, 2945, 2860, 1608, 1490,
1252, 1081 cm�1. 1H NMR (CDCl3): d 1.30 (m, 1H), 1.45–1.60 (m, 3H), 2.12 (m,
1H), 3.40 (dt, 1H, J¼ 11.5 & 2.5Hz), 3.56 (dd, 1H, J¼ 11.5 & 2.5Hz), 3.75 (brs,
1H, NH), 4.65 (d, 1H, J¼ 2.7Hz), 5.28 (d, 1H, J¼ 5.7Hz), 6.52 (d, 1H, J¼ 8.0Hz),
6.75 (dd, 1H, J¼ 8.0 & 2.5Hz), 7.05 (m, 3H), 7.40 (m, 3H). EIMS m=z: 283m,þ 239,
225, 198, 150, 148, 91, 76, 51.

trans-5-(4-Fluorophenyl)-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (5i). Solid, mp 174–175 �C. IR (KBr). n 3327, 2950, 2870, 1610, 1495,
1250, 1089 cm�1. 1H NMR (CDCl3): d 1.30–1.35 (m, 1H), 1.40–1.45 (m, 1H),
1.60–1.70 (m, 1H), 1.75–1.85 (m, 1H), 2.05 (m, 1H), 3.70 (dt, J¼ 11.5 and J¼ 2.5Hz,
1H), 3.95 (brs, 1H, NH), 4.10 (d, J¼ 2.5Hz, 1H), 4.35 (d, J¼ 2.7Hz, 1H), 4.70 (d,
J¼ 10.8Hz, 1H),), 6.48 (d, J¼ 8.0Hz, 1H), 6.68 (dd, J¼ 8.0 and 2.5Hz, 1H), 7.05
(m, 3H), 7.18 (m, 1H), 7.38 (m, 2H).

cis-7-Methyl-5-phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (4j). Solid, mp 142–143 �C. IR (KBr): n 3345, 2970, 2845, 1610, 1509,
1030 cm�1. 1H NMR (CDCl3): d 1.25 (m, 1H), 1.35–1.50 (m, 4H), 2.10 (s, 3H),
3.34 (dt, 1H, J¼ 11.3 and 2.4Hz), 3.50 (dd, 1H, J¼ 11.3 and 2.4Hz), 3.55 (brs,
1H, NH), 4.62 (d, J¼ 2.5Hz, 1H), 5.30 (d, J¼ 5.2Hz, 1H), 6.70 (t, J¼ 7.8Hz,
1H), 6.90 (dd, J¼ 7.8 and 0.7Hz, 1H), 7.20–7.40 (m, 6H). 13C NMR (CDCl3): d
17.4, 18.0, 25.3, 38.6, 59.3, 60.6, 73.4, 117.8, 119.0, 121.6, 125.3, 126.9, 127.5,
128.9, 129.2, 141.0, 143.5. EIMS: m=z: 279m,þ 260, 220, 184, 155, 144, 104, 91,
76, 65, 51.
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trans-7-Methyl-5-phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (5j). Solid, mp 130–131 �C. IR (KBr): n 3340, 2975, 2840, 1615, 1504,
1085 cm�1.1H NMR (CDCl3): d 1.25–1.35 (m, 3H), 1.60–1.65 (m, 1H), 1.80–1.85
(m, 1H), 2.10 (s, 3H), 3.70, (dt, 1H, J¼ 11.5 & 2.5Hz), 3.90 (brs, 1H, NH), 4.10
(m, 1H), 4.40 (d, 1H, J¼ 2.8Hz), 4.78 (d, 1H, J¼ 10.5Hz), 6.64 (t, 1H, J¼ 8.0Hz),
7.00 (dd, 1H, J¼ 8.0 & 0.8Hz,), 7.10 (dd, 1H, J¼ 8.0 & 1.5Hz), 7.30–7.40 (m, 3H),
7.44 (m, 2H). 13C NMR (CDCl3): d 17.2, 22.1, 24.3, 38.7, 55.3, 68.7, 74.5, 117.0,
120.0, 121.3, 127.8, 128.0, 128.5, 128.9, 130.5, 142.5, 142.9.

cis-9-Methoxy-5-phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (4k). Solid, mp 145–146 �C. IR (KBr): n 3340, 2970, 2855, 1610, 1520,
1065 cm�1. 1H NMR (CDCl3). d 1.30–1.60 (m, 4H), 2.15 (m, 1H), 3.42 (m, 1H),
3.58 (m, 1H), 3.60 (brs, 1H, NH), 3.80 (s, 3H), 4.62 (d, 1H, J¼ 2.0Hz), 5.25
(d, 1H, J¼ 5.2Hz), 6.50 (d, 1H, J¼ 8.0Hz), 6.70 (dd, J¼ 8.2, 2.7Hz, 1H), 7.05
(d, 1H, J¼ 2.7Hz), 7.30–7.45 (m, 5H). EIMS: m=z: 295m,þ 237, 225, 160, 91.

trans-9-Methoxy-5-phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (5k). Solid, mp 98–99 �C. IR (KBr): n 3325, 3059, 2961, 2868, 1605, 1515,
1457, 1324, 1279, 1163, 1070, 928, 861, 741 cm�1. 1H NMR (CDCl3): d 1.20–1.26 (m,
1H), 1.30–1.45 (m, 1H), 1.52–1.62 (m, 1H), 1.68–1.78 (m, 1H), 1.95–2.05 (m, 1H),
3.40–3.50 (m, 1H), 3.60 (s, 3H, OCH3), 3.90–4.10 (m, 1H), 4.30 (d, 1H, J¼ 2.7Hz),
4.55 (d, 1H, J¼ 10.5Hz), 6.38 (d, 1H, J¼ 8.0Hz), 6.60 (dd, 1H, J¼ 8.1, 2.7Hz), 6.65
(d, 1H, J¼ 2.7Hz), 7.20–7.30 (m, 5H). 13C NMR (CDCl3): d 22.0, 24.5, 39.0, 55.4,
55.9, 68.5, 74.5, 114.9, 115.5, 116.7, 121.4, 127.9, 128.5, 139.0, 142.4, 152.3.

cis-9-Fluoro-5-phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (4l). Solid, mp 174–175 �C. IR (KBr). n 3326, 3063, 2945, 2847, 1618,
1582, 1505, 1492, 1356, 1251, 1163, 1089, 1006, 931, 847, 739 cm�1. 1H NMR
(CDCl3): d 1.24–1.32 (m, 1H), 1.38–1.60 (m, 3H), 2.05–2.15 (m, 1H), 3.40 (dt, 1H,
J¼ 11.5, 2.5Hz), 3.58 (dd, 1H, J¼ 11.5, 2.5Hz), 3.68 (brs, 1H, NH), 4.60 (d, 1H,
J¼ 2.7Hz), 5.20 (d, 1H, J¼ 5.7Hz), 6.44 (d, 1H, J¼ 8.4Hz), 6.78 (dd, 1H, J¼ 8.4,
2.8Hz), 7.10 (d, 1H, J¼ 2.8Hz), 7.25–7.40 (m, 5H). EIMS m=z: 283m,þ 239, 225,
198, 150, 148, 91.

trans-9-Fluoro-5-phenyl-3,4,4a,5,6,10b-hexahydro-2H-pyrano-[3,2-c]-
quinoline (5l). Viscous oil. IR (KBr): n 3325, 3062, 2945, 2853, 1612, 1589, 1495,
1367, 1250, 1153, 1080, 927, 831, 743 cm�1. 1H NMR (CDCl3): d 1.30–1.40 (m,
1H), 1.45–1.52 (m, 1H), 1.55–1.65 (m, 1H), 1.75–1.90 (m, 1H), 2.05–2.15 (m, 1H),
3.68 (dt, 1H, J¼ 11.5, 2.8Hz), 3.90 (brs, 1H, NH), 4.10 (d, 1H, J¼ 2.8Hz), 4.32
(d, 1H, J¼ 2.8Hz), 4.65 (d, 1H, J¼ 10.5Hz), 6.45 (d, 1H, J¼ 8.4Hz), 6.80 (dd,
1H, J¼ 8.4, 2.8Hz), 6.95 (d, 1H, J¼ 2.8Hz), 7.30–7.40 (m, 5H).

cis-12-Phenyl-2,3,4a,11,12,12a-hexahydro-1H-benzo[H]pyrano-[3,2-c]-
quinoline (4m). Solid, mp 163–163 �C. IR (KBr): n 3375, 3054, 2941, 2861, 1667,
1574, 1510, 1465, 1371, 1081, 1012, 962, 873, 741 cm�1. 1H NMR (CDCl3):
1.35–1.45 (m, 3H), 1.60–1.70 (m, 1H), 2.25–2.35 (m, 1H), 3.40 (dt, 1H, J¼ 11.5,
2.5Hz), 3.62 (dd, 1H, J¼ 11.5, 2.5Hz), 4.50 (brs, 1H, NH), 4.88 (d, 1H, J¼ 2.7Hz),
5.50 (d, 1H, J¼ 5.7Hz), 7.22–7.31 (m, 2H), 7.35–7.50 (m, 4H), 7.58–7.68 (m, 3H),
7.75–7.85 (m, 2H). EIMS m=z: 316m,þ 256, 206, 180, 155, 141, 115, 69, 43.
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trans-12-Phenyl-2,3,4a,11,12,12a-hexahydro-1H-benzo[H]pyrano-[3,2-
c]-quinoline (5m). Solid, mp 144–145 �C. IR (KBr): n 3378, 3079, 2961, 2852,
1625, 1575, 1506, 1468, 1352, 1275, 1105, 1042, 938, 861, 750 cm�1. 1H NMR
(CDCl3): d 1.33–1.42 (m, 1H), 1.50–1.60 (m, 1H), 1.65–1.73 (m, 1H), 1.78–1.83
(m, 1H), 2.10–2.20 (m, 1H), 3.75 (dt, 1H, J¼ 11.8, 2.8Hz), 4.10 (d, 1H, J¼ 2.8Hz),
4.45 (d, 1H, J¼ 2.8Hz), 4.70 (brs, 1H, NH), 4.80 (d, 1H, J¼ 10.5Hz), 7.20–7.25 (m,
2H), 7.30–7.45 (m, 4H), 7.45–7.55 (m, 3H), 7.65–7.75 (m, 2H).

cis-12-(4-Fluorophenyl)-2,3,4a,11,12,12a-hexahydro-1H-benzo[h]pyrano-
[3,2-c]-quinoline (4n). Solid, mp 138–140 �C. IR (KBr): n 3370, 3063, 2945, 2860,
1615 1570, 1506, 1465, 1347, 1215, 1173, 1045, 951, 867, 742 cm�1. 1H NMR
(CDCl3): d 1.20–1.35 (m, 2H), 1.40–1.50 (m, 2H), 2.05–2.15 (m, 1H), 3.25 (dt, 1H,
J¼ 11.5, 2.5Hz), 3.50 (dd, 1H, J¼ 11.5, 2.5Hz), 4.00 (brs, 1H, NH), 4.70 (d, 1H,
J¼ 2.7Hz), 5.40 (d, 1H, J¼ 5.7Hz), 7.01–7.08 (m, 2H), 7.12–7.19 (m, 1H),
7.30–7.40 (m, 2H), 7.40–7.50 (m, 3H), 7.60–7.70 (m, 2H). EIMS m=z: 333m,þ 274,
238, 220, 180, 155, 141, 119, 69, 57, 43.

trans-12-(4-Fluorophenyl)-2,3,4a,11,12,12a-hexahydro-1H-benzo[H]-
pyrano-[3,2-c]-quinoline (5n). Solid, mp 179–181 �C. IR (KBr): n 3378, 3073,
2948, 2860, 1648, 1572, 1468, 1362, 1274, 1108, 1079, 952, 846, 732 cm�1. 1H
NMR (CDCl3): d 1.30–1.45 (m, 2H), 1.60–1.80 (m, 2H), 2.05–2.15 (m, 1H), 3.75
(dt, 1H, J¼ 11.5, 2.7Hz), 4.10 (d, 1H, J¼ 2.7Hz), 4.42 (d, 1H, J¼ 2.7Hz), 4.65
(brs, 1H, NH), 4.80 (d, 1H, J¼ 10.5Hz), 7.05–7.15 (m, 2H), 7.20–7.40 (m, 4H),
7.45–7.50 (m, 3H), 7.70–7.80 (m, 2H).
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