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ABSTRACT: Heterofunctional dendrimers with internal and external representation of 

functionalities are considered as the ultimate dendritic frameworks. This is reflected by 

their unprecedented scaffolding, such as precise control over structure, molecular weight, 

number and location of different cargo across the whole dendritic skeleton. Consequently, 

these dendrimers with multipurpose character are the pinnacle of precision polymers and 

thereof are highly attractive by the scientific community as they can find use in a great 

number of cutting-edge applications, especially as discrete unimolecular carriers for 

therapeutic exploitation. Unfortunately, most established dendrimer families display 

external functionalities but lack internal scaffolding ability, which lead to inherent limitation 

for their full potential use as precision carriers. Consequently, we here embark on a novel 

synthetic strategy facilitating the introduction of internal functionalization of established 

dendrimers. As a Proof-of-Concept, a new class of internally and externally functionalized 

multipurpose dendrimers based on the established 2,2-bis(methylol)propionic acid (bis-

MPA) were successfully accomplished by the elegant and simple design of AB2C 
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monomers, amalgamated from two traditional AB2 monomers. By utilizing Fluoride-

Promoted Esterification (FPE), straightforward layer-by-layer divergent growth up to the 

fourth generation was successful in less than one day reaction time, with a molecular 

weight of 15 kDa and displaying 93 reactive groups divided by 45 internal and 48 external 

functionalities. The feasibility of post-functionalization through click reactions is 

demonstrated, where the fast and effective attachment of drugs, dyes and PEG chains is 

achieved, as well as crosslinking into multifunctional hydrogels. The simplicity and 

versatility of the presented strategy can easily be transferred to generate a myriad of 

functional materials such as polymers, surfaces, nanoparticles or biomolecules.     

KEYWORDS. click chemistry, dendrimers, esterification, hydrogels, nanocarriers.

1. Introduction

The pursuit of multipurpose scaffolds has long been a topic of research in nanomedicine,1-

2 where the ability to transport several cargos such as therapeutic drugs, targeting agents 

and fluorescent tags, is highly desirable for cancer therapy, cardiovascular disease and 
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4

infections. For example, actively targeted nanocarriers increase the drug efficiency and 

minimize the side-effects;3 or theranostics, which combine therapeutic and diagnostic 

actions in a single entity, emerge as a unique tool for predictive, preventive and 

personalized medicine.4 Overall, multipurpose scaffolds increase the therapeutic efficacy 

by:2 (i) enhancing the water-solubility and biodistribution; (ii) extending the blood 

circulation; (iii) improving stability; (iv) providing response to stimuli; (v) enabling an active 

or passive targeting; and (vi) enabling an in situ monitoring. 

Despite ongoing nanomedicine research based on nano-based drug delivery systems 

(DDS), the journey to clinical approval is arduous.5 Challenging obstacles such as the 

ease of preparation, safety and cost of the materials, scalability, batch-to-batch 

reproducibility, as well as the stability, biocompatibility and biodegradation of the final 

product need to be considered.6-8 Since Doxil®, the first FDA-approved nano-drug, 

several formulations for passive and active targeting can be found in the market.9 These 

DDS produce biologically reproducible activities, but lack a precise control over the type, 
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5

number and location of the biologically-relevant cargo within the carrier. This would 

provide critical information about the therapeutic response of such materials and enable 

a personalized treatment.10

To date, dendrimers are the only polymeric scaffolds capable of providing these features 

due to their monodispersity and multivalency,2, 11 besides the influence of the branched 

architecture in drug delivery.12-13 Successful examples, at pre-clinical or even clinical 

stage, have been reported for dendrimers comprising polylysine (e.g. VivaGel®),14 

poly(amidoamine) (PAMAM),15 phosphorous16 and bis-MPA based polyester scaffolds,17 

among others. To expand their usefulness, heterofunctional dendrimers (HFDs) were 

developed, which contain at least two distinctive functionalities typically attached to the 

dendritic surface in a statistical, alternating or block manner, but most often having 

dormant interiors.6, 18-19 

It is inevitable that heterofunctional dendrimers full potential can only be capitalized on by 

displaying functionalities throughout the whole macromolecular skeleton e.g. to increase 
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6

carrying capacity and optimize its potential.2, 11 The complex and tedious synthesis of 

dendrimers, however, has led to an extremely low number of reports proposing dendritic 

scaffolds with interior and exterior functionalities.6, 20, 21 A viable method to render the 

dendritic interior more accessible is to incorporate highly selective and reactive pendant 

functional groups during the dendritic growth. This was accomplished by Malkoch et al., 

who converted AB3 monomer tris(hydroxymethyl)aminomethane (Trizma®) to its AB2C 

derivative, where the A and B groups were used for dendrimer growth and the C groups 

were precisely functionalized through the copper-catalyzed azide-alkyne cycloaddition 

(CuAAC) click reaction.22 Unfortunately, Trizma-based dendrimers were found 

susceptible toward fast hydrolytical degradation, limiting further exploitation. 

Consequently, novel synthetic strategies that can expand the scaffolding window of 

already established dendrimers and in parallel maintain the intrinsic features of the main 

building block is logical progression in dendrimer chemistry.16-17 The new multipurpose 

HFDs would resemble most of their parent´s properties – e.g. biocompatibility, 
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7

degradability, solubility – while providing increased accessibility and carrying capability of 

the typically dormant interior. To accomplish this, traditional building blocks must be 

synthetically revisited and re-programmed to include orthogonal chemoselective groups 

that are dormant during the dendrimer growth. 

Inspired by the “AB2C approach”, we here unlock a facile strategy to internally and 

externally functionalized HFDs synthesized using a new generation AB2C monomers by 

combining two identical monomers. As proof-of-concept, the bis-MPA AB2 monomer was 

selected – which is simple, versatile and commercially available-,23 and generates 

biocompatible and biodegradable dendrimers.17, 23 Nevertheless, the proposed strategy 

is a guiding approach which can be translated to other monomer/dendrimer platforms with 

other chemistries, where two individual building blocks with orthogonally complementary 

functionalities are combined into a single AB2C monomer. Furthermore, the simplicity and 

versatility of the AB2C approach could expand the library of high-value precursors with 

orthogonal functionalities, including monomers and dendrons as well as derived 
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8

functional materials such as polymers, surfaces, nanoparticles or biomolecules, in a 

straightforward way.   

In contrast to the state-of-the-art in internally/externally functionalized HFDs, the current 

strategy benefits from the versatility of combining two traditional AB2 building blocks to 

generate AB2C monomers, as well as from the advantages of using the Fluoride-

Promoted Esterification (FPE) with imidazolide-activated compounds. FPE chemistry has 

earlier been described by Malkoch and coworkers as a powerful synthetic tool to generate 

monomers,24 dendrimers24-25 and dendrons26 with high fidelity and functionality. FPE 

relies on 1,1'-carbonyldiimidazole (CDI) as an activating agent, where it demonstrates 

clear advantages in terms of scalability, widespread utility and green chemistry,27 

generating CO2 and imidazole as the only by-products, which can easily be removed 

through wash steps; as well as on catalytic Cesium Fluoride (CsF), exhibiting 

unprecedented efficacy in the synthesis of complex dendritic polyesters.25 Consequently, 
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9

FPE chemistry was herein explored as a tool in the facile construction of 

internally/externally functionalized HFDs.

2. Experimental section

2.1. Synthetic procedures.

Synthesis and characterization details (1H, 13C-NMR; MALDI-TOF; FTIR; SEC) for the 

different monomers, dendrimers and click probes can be found in the Supporting 

Information. The most relevant general synthetic procedures are:

Dendrimer synthesis - General esterification procedure. The carboxylic-functionalized 

compound is slowly added over a suspension of CDI in EtOAc (1-2 M), while heating the 

mixture at 50°C. After 15 min stirring at 50°C, CsF (0.1 or 0.2 eq/OH, for monomers or 

dendrimers respectively) and the hydroxyl-functional compound is added and the reaction 

proceeds at 50°C. The reaction is monitored by NMR and MALDI-TOF. Upon completion 

the mixture is allowed to cool to room temperature, and the excess of imidazolide-
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10

activated acid is quenched by stirring with water. The mixture is then diluted with EtOAc 

and washed repeatedly with aqueous solutions of 10% NaHCO3, 10% NaHSO4 and brine 

before being dried with MgSO4, filtered and evaporated. Dendrimers are isolated in 70-

98% yields.

Dendrimer synthesis - General deprotection procedure. The acetonide-protected 

dendrimer is dissolved in MeOH and p-TSA (10 wt.%) is added. The mixture is stirred 1 

h at r.t. and then percolated over an Amberlyst A21 column. The solution is concentrated 

to dryness and washed thoroughly with DCM to remove methanol traces. Dendrimers are 

isolated in 89-98 % yields.

Dendrimer post-functionalization - General procedure for CuAAC click reaction. The 

heterofunctional dendrimer and the azide- or alkyne-functional probe are dissolved in 

DMSO. The flask is degassed and flushed with argon before adding CuBr and PMDETA. 

The flask is once again degassed and sealed. The solution is stirred for 1 h at r.t. under 

inert atmosphere. The purification protocol will depend on the nature of the final product. 
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11

Dendrimer post-functionalization - General procedure for thiol-ene click reaction. The 

heterofunctional dendrimer and the thiol-functional probe are dissolved in methanol and 

the photoinitiatior LAP (1 wt.%) is added. The solution is irradiated for 20 min with 365 

nm UV light using a Black-Ray B-100AP UV-lamp, and then the solvent in removed by 

rotoevaporation. The purification protocol will depend on the nature of the final product.

Dendrimer post-functionalization - General procedure for FPE reaction. The 

functionalization through Fluoride-Promoted Esterification follows the same procedure as 

for dendrimer growth. 

2.2. Hydrogels preparation.

Hydrogels preparation - CuAAC crosslinking. The heterofunctional dendrimer and 

dialkyne PEG (10 kDa) were dissolved in equal volumes of THF and deionized water 

respectively and mixed. Stoichiometric ratios of azides and alkynes were used. The water 

solution used to dissolve the PEG contained 0.8 equivalents of sodium ascorbate and 0.8 
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12

equivalents of CuSO4·5H2O per reactive functional group. The total mass of dendrimer 

and PEG in the final mixture was 20 wt.%. The mixture was sonicated and 15 µL droplets 

were added to a PTFE-plate. The mixture was allowed to gel at room temperature. All 

droplets solidified into discs that swelled when submerged in deionized water.

Hydrogels preparation - Thiol-Ene crosslinking. The heterofunctional dendrimer and 

dithiol PEG (10 kDa) were dissolved in a 1:1 ethanol and deionized water solution with 

0.5 wt.% LAP at stoichiometric ratios of alkenes and thiols. The total mass of dendrimer 

and PEG was 20 wt.%. 15 µL droplets were added to a PTFE-plate that was cured with 

365 nm UV light using a Black-Ray B-100AP UV-lamp for 5 min. All droplets solidified into 

discs that swelled when submerged in deionized water.

2.3. Cell culture and cytotoxicity assays.

Cell culture. The cell lines (mouse monocyte cell Raw 264.7 and human debris fibroblast 

cell (hDF)) were obtained from ATCC (American Tissue Culture Collection) and 
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13

maintained in Dulbecco’s modified Eagle medium (DMEM) containing 10% fetal bovine 

serum FBS and 100 units mL−1 penicillin plus 100 mg mL−1 streptomycin under 5% CO2 

at 37 °C.

Cytotoxicity assessment. The cytotoxicity produced by the different HFDs was evaluated 

through AlamarBlue assay. Cells were cultured into 96-well plates (1×105 cells/well in 100 

µL DMEM). After 24 h, media were removed and fresh DMEM containing HFDs samples 

were added. Six parallel wells were set for each sample. After 72 h incubation, 10 µL of 

AlamarBlue agents were added into each well and fluorescent intensity were measured 

4 h later with a plate reader (Tecan Infinite M200 Pro) at the wavelength of 560/590 

(excitation/emission) nm.

3. Results and discussion

3.1. Multifunctional dendritic scaffolds preparation
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14

Synthesis of AB2C bis-MPA monomers. In this context, three bis-MPA derivatives with 

different chemical groups available for orthogonal reactions were synthesized. The 

targeted C groups (alkynes, azides and alkenes) are known to participate with high 

efficiency and selectivity in the CuAAC28 and thiol-ene (TEC)29 click reactions, and be 

dormant during FPE growth.24-25 The AB2C monomers 5, 6 and 7 were synthesized using 

streamlined strategies (Scheme 1). In brief, bis-MPA undergoes sequential esterification, 

starting at one of the hydroxyl groups, with acetonide-protected bis-MPA, followed by a 

C-COOH molecule bearing the desired orthogonal moiety C on the other, both assisted 

by CDI. Detailed synthetic protocols and characterization (1H, 13C NMR) are described in 

the Supporting Information (Figures S1-S4), which confirm the purity of these molecules.

HO
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Scheme 1. Synthetic strategy towards bis-MPA based AB2C monomers. Abbreviations: 

Bis-MPA, 2,2-Bis(hydroxymethyl)propionic acid; BnBr, benzyl bromide; DMF, 

dimethylformamide; DMP, 2,2-dimethoxypropane; pTSA, p-toluenesulfonic acid; CDI, 

1,1´-carbonyldiimidazole; EtOAc, ethyl acetate.

Synthesis of heterofunctional dendrimers with internal and external functional groups. 

Considering the complexity of the dendrimers herein presented, the unified nomenclature 

for heterofunctional dendrimers will be employed.23 It is based on the general formula 

HFD(ie)-Gb-e-(B)m-i-(C)n, which details: (i) the type of dendrimer (HFD) and location of 

the heterofunctionality (ie = internal and external); (ii) the generation of the dendrimer 

(Gb);  and (iii) the number/type of functional groups in the exterior e-(B)m and the interior 

i-(C)n. To verify the feasibility of the proposed strategy, a generation four bis-MPA 

dendrimer HFD(ie)-G4-e-(OH)48-i-(C)45 was targeted. This HFD is comparable to the 

traditional TMP-G4-(OH)48 dendrimer, exhibiting the same core and peripheral groups, 

but differs in the distinct increase in mass due to the larger AB2C monomer and the 
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additional 45 internal C groups. A comparison of these bis-MPA dendrimers is highlighted 

in Table 1.
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Table 1. Overview of strategies to fourth generation bis-MPA dendrimers using Fluoride-

Promoted Esterification.

Strategy Properties

Homofunctional25 • 8 steps

• 76% total yield

• 7.5 h 

• Mw [482-5356] g·mol-1

• 48 OH groups

Heterofunctional a) • 8 steps

• 51% total yield

• 22 h 

• Mw [1071-15150] b) g·mol-1  

  Mw [1248-17808] c) g·mol-1  

• 48 OH and 45 C groups

a) This work; b) Alkyne-HFDs; c) Azide-HFDs

The divergent synthesis starts from a TMP core using FPE protocols (Scheme 2).25 

Alkyne-functional AB2C monomer 5 was activated with CDI for 15 min at 50°C and then 

reacted in situ with TMP in the presence of the soft inorganic base CsF. After 1 h reaction 
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and subsequent washing, the first generation dendrimer HFD(ie)-G1-e-(ac)3-i-(yne)3 8 

was isolated in near-quantitative yields. Subsequent deprotection using p-TSA in MeOH 

for 1 h at 25ºC led to the bifunctional dendrimer HFD(ie)-G1-e-(OH)6-i-(yne)3 9. The 

iterative growth/deprotection steps of HFDs were conducted efficiently without 

chromatographic purifications, thereby synthesizing the monodisperse fourth-generation 

dendrimer HFD(ie)-G4-e-(OH)48-i-(yne)45 15 with Mw 14188 g·mol-1 (Figure S5-S20).
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The same synthetic sequence was employed to synthesize the analogous family 

containing azide groups from AB2C monomer 6. HFDs with internal azides were 

successfully isolated up to the third-generation HFD(ie)-G3-i-(N3)21-e-(OH)24 21, but 

minor structural imperfections were obtained in the G4 counterpart 22 due to the higher 

steric hindrance (Figure S21-S34). The modularity of this strategy was further supported 

by combining two different AB2C monomers, 5 and 7, in the dendrimer growth (Scheme 

1). Trifunctional dendrimers with heterogeneous internal layers HFD(ie)-G2-e-(OH)12-i-

(yne)3(ene)6 23 and HFD(ie)-G3-e-(OH)24-i-(yne)3(ene)18 25 were isolated in high yields 

(Figure S35-S42). The compatibility between the internal alkyne and alkene groups 

enabled their selective post-functionalization, as it is later demonstrated. The structure 

and purity of all dendrimers was confirmed using MALDI-TOF, 1H- and 13C-NMR 

spectroscopy (Figure 1, Supporting Information).
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Figure 1. Comparison of MALDI-TOF MS spectra of “ traditional ”  (homofunctional, 

depicted as shadowed lines) and “multilayered” (heterofunctional, depicted with intense 

colours) bis-MPA dendrimers with internal alkyne functionalities from the first (G1) to the 

fourth (G4) generation and the accumulative reaction time for their synthesis. For 

traditional dendrimers, m/z values have been previously reported by our group.25 For 

HFDs, experimental m/z values for [M+Na+] are shown in the figure while theoretical m/z 

values can be found in the Supporting Information.

Page 21 of 36

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

The previously reported Trizma® AB2C monomers were grown up to G3 dendrimers 

composed of 21 internal acetylene and 24 peripheral hydroxyl groups with Mw ~7300 

g·mol-1.22 However, the protocol herein presented goes beyond state-of-the-art and 

delivers G4 dendrimers comprising 45 internal groups, 48 peripheral hydroxyls and Mw 

~15000 g·mol-1, including layered dendrimers with different internal groups for the first 

time. As previously demonstrated,25 the importance of CsF catalysis is critical, enabling 

full conversion of the OH groups within a few hours, despite the steric hindrance of higher 

generations. In less than one day of total reaction time, FPE delivers a traditional G6 

dendrimer with 192 peripheral hydroxyl groups and Mw 22080 g·mol-1 using traditional 

AB2 monomers, or multifunctional G4 dendrimers with up to 93 functional groups, through 

the more sterically hindered AB2C monomers.

2.2. In vitro biocompatibility of multifunctional dendritic scaffolds

Traditional bis-MPA dendrimers are highly biocompatible.30 These novel HFDs, however, 

have relatively large interior compartments with hydrophobic pendant groups that may 
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cause cytotoxicity, as there is a proven affinity of amphiphilic entities towards cell 

membranes.31 In vitro assays demonstrated that bis-MPA HFDs are biocompatible up to 

10 µM in fibroblasts (hDF, Figure S54) and higher concentrations in monocytes (RAW 

264.7, Figure 2). Unlike similar bis-MPA dendrimers decorated with ammonium groups,32 

HFDs’ toxicity did not increase with succeeding dendritic generations, suggesting that the 

cytotoxicity is not as a result of the presence of higher concentrations of internal click 

groups or peripheral hydroxyl groups. A possible explanation to the low cell viability at 

high HFD concentration, 100 µM, could be related to the amphiphilic nature of the 

dendrimers, presumably similar among generations.
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Figure 2. Viability of RAW 264.7 cells after 72 h incubation with different HFDs, measured 

through AlamarBlue assay.

2.3. Post-functionalization of multifunctional dendritic scaffolds

To position these dendritic scaffolds in application-driven research, two different routes 

were targeted (Figure 3.a). All synthetic protocols and characterization tools (NMR 

spectroscopy, MALDI-TOF, Size-Exclusion Chromatography (SEC) and FTIR analysis) 

are presented in the Supporting Information.
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probes” successfully attached to the HFDs via CuAAC, TEC and FPE. c. MALDI-TOF 

spectra for HFD(ie)-G3-e-(an)12-i-(yne)3(ene)18 25 before and after reaction with Cy5. d. 

SEC spectrum for HFD(ie)-G3-e-(OH)24-i-(N3)21 21 after reaction with PEG-alkyne; the 

bimodal nature of the spectrum may be due to physical interaction of individual 

dendrimers.

Evaluation as precision polymer therapeutics. In the first route, selected HFDs were 

reacted with a library of “click probes” based on bulky and biologically-relevant substrates 

(Figure 3.b), as a mean to showcase the design criteria of new-generation, precision 

polymer therapeutics. To test the accessibility of the internal C moieties within the 

dendritic scaffolds, several modifications were performed based on click reactions. For 

example, HFD(ie)-G3-e-(OH)24-i-(yne)21 13 was reacted via CuAAC with the azide-

bearing dye Disperse Red 13 and the drug dexamethasone. After 1 h at 25 °C, 1H-NMR 

spectroscopy and FTIR analysis confirmed the complete conversion of the 21 internal 

acetylene groups, even at the most internal layer (Figure S43-44). The alkyne groups in 
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the trifunctional HFD(ie)-G3-e-(an)12-i-(yne)3(ene)18 25 were also modified with azide-

functional Cyanine 5 under the same conditions, as confirmed by MALDI-TOF, leading to 

a trifunctional potential theranostic agent (Figure 3.a,c, S45). The multivalent presence of 

fluorescent tags in the first internal layer could enable the monitoring with enhanced 

resolution, without interfering with the drug-loading capacity of the carrier.33 All alkene 

groups in HFD(ie)-G3-e-(OH)24-i-(yne)3(ene)18 24 were also easily functionalized with 

bulky molecules such as thiol-functional dopamine in less than 20 min of UV-initiated TEC 

(Figure S46). The dual functionalization of HFD(ie)-G2-e-(OH)12-i-(N3)9 19 via external 

FPE with 4-pentenoic acid and internal CuAAC with modified β-alanine resulted in a 

bifunctional cationic dendrimer with potential antibacterial properties (Figure 3.a, S47-52).

The size of these nanocarriers, which influences the biodistribution and bioavailability 

through the Enhanced Permeation and Retention effect,34 can also be tuned through the 

attachment of poly(ethylene glycol) (PEG) chains. Azide-functional dendrimers HFD(ie)-

G2-e-(OH)12-i-(N3)9 19 and HFD(ie)-G3-e-(OH)24-i-(N3)21 21 were therefore reacted with 
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mPEG-alkyne (5 kg·mol-1) through CuAAC. The Mw values, measured through SEC, 

increased approximately 36.6 and 55.4 kg·mol-1 for G2 and G3, respectively, with Đ 

values below 1.1 (Figure 3.d, S53). These values correlate to 81% and 53% of the reacted 

internal groups, which are considered successful in view of the steric hindrance of the 

long PEG chains.  

Evaluation as crosslinkers towards functional hydrogels. In the second route, the HFDs 

were tested as sophisticated crosslinkers to generate functional hydrogels. To achieve 

this, HFD(ie)-G2-e-(OH)12-i-(N3)9 19 and HFD(ie)-G3-e-(OH)24-i-(N3)21 21 were 

crosslinked with dialkyne PEG (10 kg·mol-1) using CuAAC. The gelation process took 30-

60 min to deliver solid networks with hydroxyl groups available for further modification. 

Similarly, the trifunctional HFD(ie)-G2-e-(OH)12-i-(yne)3(ene)6 24 and HFD(ie)-G3-e-

(OH)24-i-(yne)3(ene)18 26 were reacted with dithiol PEG (10 kg·mol-1) through TEC. Here, 

it required only 5 min of UV irradiation to form solid networks (Figure 3.a) which presented 

both alkyne and hydroxy groups available for the attachment of different agents.
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4. Conclusions

Many of the established dendrimer families lack the capacity of internal functionalities. 

Here, we have successfully synthesized heterofunctional dendrimers with internal and 

external functionalities based on the bis-MPA building block. This was accomplished by 

careful design of novel class of AB2C monomers being amalgamated from two traditional 

AB2 building blocks. FPE was demonstrated as a powerful tool that can be used to 

streamline the synthesis of complex HFDs by avoiding time-consuming purifications, 

being more sustainable from an economic and environmental perspective. Through FPE 

chemistry, the functional group density of the dendrimer can be optimized by taking 

advantage of the entire dendritic skeleton. This led to fourth generation HFDs with 93 

functional groups (45 internal moieties and 48 peripheral hydroxyl groups) and Mw ~15000 

g·mol-1 within less than one day of reaction time. The resultant HFDs are biocompatible 

and can be used as polymeric “stem-cells” for an array of cutting-edge applications, such 

as nanocarriers, theranostic tools or in network formation. The structural perfection of 
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these HFDs allows for the control of parameters that would otherwise have caused 

discrepancies in vivo using established nanocarriers, and furthermore provides valuable 

information on structure-to-property relationships.
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