View Article Online View Journal

Green Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. H. Yang, D. Wang, W. Liu, X. Zhang, F. Bian and W. Yu, *Green Chem.*, 2013, DOI: 10.1039/C3GC40941D.

Green Chemistry

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/greenchem Registered Charity Number 207890

ARTICLE TYPE

Palladium supported on magnetic microgel: an efficient and recyclable catalyst for Suzuki and Heck reactions in water

Jianhua Yang,^a Dongfang Wang,^a Wendong Liu,^a Xi Zhang,^a Fengling Bian,^a * Wei Yu^b *

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

A novel heterogeneous Pd catalyst was synthesized by anchoring palladium (II) onto poly (undecylenic acid-co-*N*-isopropylacrylamide-co-potassium 4-acryloxyoylpyridine-2,6-dicarboxylate)-coated Fe₃O₄ (Fe₃O₄@PUNP) magnetic microgel. The catalyst (Fe₃O₄@PUNP-Pd) was characterized by FT-IR, TEM, VSM, XRD and XPS, and the loading level of Pd in Fe₃O₄@PUNP-Pd catalyst was measured to be 0.330 ¹⁰ mmol g⁻¹ by AAS. This catalyst exhibits excellent catalytic activity for the Suzuki and Heck reactions in water. In addition, the Fe₃O₄@PUNP-Pd catalyst can be easily separated and recovered with an external permanent magnet, and the reuse experiment shows that it can be used consecutively six times without significant loss in catalytic activity.

1 Introduction

- ¹⁵ Palladium-catalyzed Suzuki and Heck cross-coupling reactions constitute important methods for C-C bond formation in organic synthesis and industrial processes.^{1,2} Currently the Heck and Suzuki reactions are performed mostly in organic solvents with homogeneous palladium salts and complexes, which bring about ²⁰ concerns of high cost and environmental issues at large scale.
- Therefore, it is highly desirable to develop reusable heterogeneous palladium catalysts which can be easily separated from the reaction systems. In addition, from the viewpoint of green chemistry, it is preferable to use water to replace toxic 25 organic solvents as the reaction medium. However, many
- developed heterogeneous catalytic systems suffer from the drawbacks of low catalytic activity and selectivity, and are not suitable to be used to catalyze the reactions in aqueous media because most organic substrates dissolve poorly in water. How to 30 solve these problems is now a major issue to chemists working in
- this area.³ Polymers are commonly used as supports for catalyst loading. Among these systems, microgels, with the advantages of nanometer scale, large surface area, and easy functionalization,
- ³⁵ has attracted widespread attention.^{4,5} The microgels modified by introducing a specific ligand can be uniformly dispersed in reaction media, and as a catalyst support, they can increase the probability of contact of the reactants with the active sites of catalyst, and thus improve the latter's catalytic activity.^{6,7}
- ⁴⁰ Biffis and his co-workers synthesized 4-vinyl pyridinefunctionalized microgel-supported-Pd catalyst and applied it to the Suzuki reaction in DMA/H₂O.⁸ Zhang et al.⁹ prepared pHresponsive polymeric microsphere-immobilized palladiumiminodiacetic acid catalyst for the Suzuki and Heck reactions in
- ⁴⁵ aqueous solution. While satisfactory results were obtained in these works, but the recovery of catalyst needs cumbersome and

time-consuming centrifugation and filtration.

- Recently, the magnetic nanoparticles have been widely applied as solid supports for catalyst.¹⁰⁻¹² The magnetic nanoparticle-⁵⁰ supported catalysts can be simply and efficiently separated from the reaction system by an external permanent magnet and thus avoid cumbersome operating process.^{13,14} The organic polymer coated-magnetic nanoparticles can be stabilized in reaction media by the prevention of nanoparticle aggregation. In addition, as it is
- ⁵⁵⁵ easier to functionalize the polymers by introducing various kinds of ligands, the immobilization of metal catalysts can be greatly facilitated.¹⁵ Recently, Stevens and his co-workers¹⁶ prepared the polystyrene coated-γ-Fe₂O₃ nanoparticle-supported-Pd catalyst, and used it for the Suzuki reaction of iodo- and bromoaromatics
 ⁶⁰ in DMF/H₂O. The catalyst can be easily recovered and reused by an external permanent magnet. Amorin and his coworkers¹⁷
- synthesized a very efficient dendritic Pd (II) catalyst grafted on γ -Fe₂O₃/polymer nanoparticles, which showed high reactivity and recoverability for the Sonogashira coupling in water.
- ⁶⁵ On continuation of our research interest in developing heterogeneous transitional metal catalysts loaded on hydrogels and magnetic nanoparticles,^{18,19} we endeavored to combine the high catalytic activity of microgel supported-catalyst with the advantages of easy separation and recycling of magnetic ⁷⁰ nanoparticles supported-catalyst by preparing a novel magnetic microgel supported-Pd catalyst (Fe₃O₄@PUNP-Pd). This catalyst shows high catalytic activity for the Suzuki and Heck reactions in water, and could be used six times without significant loss in catalytic activity. Herein we wish to report this work in detail.

75 2 Experimental

2.1 Materials

N-isopropylacrylamide (NIPAM, \geq 99%) was purchased from J&K Chemicals and purified by recrystallization from hexane before use. *N*, *N*^{*}-methylenebisacrylamide (BIS, \geq 98%) was

purchased from Sinopharm Chemical Reagent Co., Ltd. and used as received. Potassium persulfate (KPS, ≥ 99.5%) was obtained from Xi'an Chemical Reagent Factory and was purified by recrystallization from water. The chelidamic acid-functionalized s monomer of potassium 4-acryloxyoylpyridine-2,6-dicarboxylate

(PAP) was synthesized as described elsewhere.¹⁹ Palladium (II) chloride (PdCl₂, \geq 59.5%) was provided by Shenyang Keda Reagents Company. Tetrabutyl ammonium bromide (TBAB, \geq 99%) was purchased from Tianjin Guangfu Fine Chemicals and ¹⁰ used as received. Other reagents were all in analytical grade and used without further purification. Deionized water was used in the present experiments.

2.2 Characterizations

- Transmission electron microscopy (TEM) images were obtained ¹⁵ with a Tecnai-G2-F30 (FEI, USA) transmission electron microscopy operating at 300 kV. At least 50 particles were measured to obtain the average diameter of the nanoparticles. Fourier transform infrared spectra (FT-IR) were measured on a NEXUS670 (Nicolet, USA) spectrophotometer using KBr pellets ²⁰ of samples. X-ray diffraction (XRD) of the samples were recorded on a Shimadzu XRD-6000 spectrometer using Nickerfilter Cu K_a radiation (λ =0.15418 nm). The magnetic properties of nanoparticles were measured on a Model 7304 (Lake Shore, USA) vibrating sample magnetometer (VSM) at room ²⁵ temperature. The N₂ adsorption–desorption isotherms were measured at 76 K using a Micromeritics ASAP 2020M instrument. The specific surface area was calculated by the Brunauer–Emmett–Teller (BET) method. The quantity of
- leaching Pd was detected using an AA240 (Varian Corporation, ³⁰ USA) atomic absorption spectroscopy (AAS). X-ray photoelectron spectroscopy (XPS) measurements were performed on a
- Thermon Scientific ESCALAB250xi electron spectrometer with contaminated C as internal standard (C_{1s}=284.8 eV). The ¹H NMR (400 MHz) and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-d₆ on a Bruker AVANCE III 400 NMR spectrometer with TMS as internal reference.

2.3 Synthesis of the Fe₃O₄@PUNP magnetic microgel

Fe₃O₄@Poly (undecylenic acid-co-*N*-isopropylacrylamide-copotassium 4-acryloxyoylpyridine-2,6-dicarboxylate) (Fe₃O₄@ ⁴⁰ PUNP) magnetic microgel was synthesized in a two-step

procedure: Firstly, undecylenic acid-coated magnetic nanoparticles

(Fe₃O₄@UA) were prepared according to a previous report by chemical co-precipitation method.²⁰ As a typical procedure, 0.86

- $_{45}$ g of FeCl₂ and 2.35 g of FeCl₃ were dissolved in 40 mL of deionized water, and then the solution was degassed for 30 min. After the solution was heated to 80 °C, a solution of 0.1 g of undecylenic acid in 5 mL of acetone was added, followed by 5 mL of 28% (w/w) NH₃:H₂O. Then 1.0 g (5 \times 0.2 g) of
- ⁵⁰ undecylenic acid was added into the mixture. The mixture was stirred vigorously for 30 min at 80 °C, and was then cooled slowly to room temperature. The mixture was precipitated with mixed solvent of acetone and MeOH (1:1 by volume), and the precipitates were isolated from the solvent by magnetic
- ss separation method. Finally, the precipitates were washed with the same mixed solvent for five times to remove the excessive undecylenic acid. The prepared Fe₃O₄@UA was dried under vacuum.

Next, In a 100 mL four-neck round-bottomed flask, 20 mg 60 Fe₃O₄@UA was mixed with 30 mL of aqueous solution containing NIPAM (2 mmol), PAP (0.32 mmol) and BIS (0.147 mmol). After being degassed under argon gas for 30 min., the solution was heated up to 80 °C, and 0.18 mL of 0.05 g mL⁻¹ KPS solution was injected in to initiate the polymerization. After the

⁶⁵ polymerization process maintained for 4 h under argon gas with vigorous stirring, the final product was collected by magnetic separation, washed with deionized water for 5 times, and finally dried under vacuum.

2.4 Synthesis of Fe₃O₄@PUNP-Pd catalyst

- ⁷⁰ Fe₃O₄@PUNP-Pd catalyst was prepared in a typical procedure as follows: Fe₃O₄@PUNP (3 mg) and PdCl₂ (0.001 mmol) were added into a screw-capped vial, where the molar ratio of the ligand of PAP to Pd was 3:1. The mixture was stirred at room temperature for 12 h. During the period the color of the solution
- ⁷⁵ turned into transparent from light yellow. The obtained catalyst was washed with deionized water to remove the excessive Pd²⁺, and then was used directly in the coupling reaction.

2.5 General procedure for Suzuki reaction in water

To a 10 mL overpressure screw-capped vial were added ⁸⁰ sequentially arvl halide (1 mmol), arvlboronic acid (1.5 mmol), K₂CO₃ (3 mmol), the Fe₃O₄@PUNP-Pd catalyst (0.1 mol% Pd based on Aryl halide) and 2 mL deionized water. The mixture was degassed under argon gas for 10 min, and then vigorously stirred at 90 °C for 1 h. After being cooled to room temperature, 85 the solution was diluted with deionized water, and the catalyst was separated by using an external permanent magnet. The crude product was extracted with diethyl ether (3×10 mL). (for substrates containing -OH or -COOH, the solution was diluted with deionized water, acidified with 1 mol L⁻¹ HCl and then 90 extracted with diethyl ether.) The organic phase was washed with brine, dried with MgSO₄, and then the solvent was evaporated under reduced pressure. The resulting residual was chromatographed on silica gel (hexane/ ethyl acetate) to give pure

- product which was analyzed by ¹H and ¹³C NMR spectra. ⁹⁵ For kinetics study, to a 10 mL overpressure screw-capped vial were added sequentially 4-iodoanisole (1 mmol), arylboronic acid (1.5 mmol), K₂CO₃ (3 mmol), the Fe₃O₄@PUNP-Pd catalyst (0.1 mol % Pd based on Aryl halide) and 2 mL deionized water. The
- mixture was degassed under argon gas for 10 min, and then ¹⁰⁰ vigorously stirred at 90 °C for the indicated time. The reaction mixture was then treated following the aforementioned procedure, and the yield was determined according to the isolated product.

2.6 General procedure for Heck reaction in water

- ¹⁰⁵ To a 10 mL overpressure screw-capped vial were added aryl halide (1 mmol), acrylic acid (1.5 mmol), K₂CO₃ (3 mmol), Fe₃O₄@PUNP-Pd catalyst (0.1 mol% Pd) and 2 mL deionized water. The mixture was degassed under argon gas for 10 min., and then vigorously stirred at reflux temperature (94 °C) for 12 h.
- ¹¹⁰ After being cooled to room temperature, the solution was diluted with deionized water, and the catalyst was separated by using an external permanent magnet. The reaction solution was acidified with 1 mol L⁻¹ HCl. The solid product was filtered, washed with cold water, and then recrystallized from water and ethanol. Their ¹¹⁵ structures were analyzed by ¹H and ¹³C NMR spectra.
- 2.7 Reusability of the Fe₃O₄@PUNP-Pd catalyst

45

70

ireen Chemistry Accepted Manuscrip

The reusability of the Fe_3O_4 @PUNP-Pd catalyst was examined by applying it to the Suzuki coupling of 4-bromoacetophenone with arylboronic acid. After the first run completed, the Fe_3O_4 @PUNP-Pd catalyst was separated with an external s permanent magnet and washed with deionized water and diethyl ether alternately. Then the recovered catalyst was reused directly in the next run of the reaction. This process was repeated multiple times.

3 Result and Discussions

10 3.1 Synthesis and characterization of Fe₃O₄@PUNP magnetic microgel and Fe₃O₄@PUNP-Pd catalyst

Using well designed microgel as catalyst scaffold is advantageous in that they can be uniformly dispersed in the reaction medium, and thus the contact of reactants with active sites of the catalyst 15 can be greatly improved.⁶ On the other hand, when the magnetic

nanoparticles act as supports for catalyst, they can be easily separated and recycled by an external permanent magnet, obviating the cumbersome operating process of precipitation or centrifugation.²¹ We envisioned that if magnetic nanoparticles ²⁰ coated with functionalized microgels are used to load catalyst, the advantages of both microgels and magnetic nanoparticles would be combined. In this view, we prepared a novel Fe₃O₄@PUNP magnetic microgel via radical polymerization in water.

25 Scheme 1 Preparation of Fe₃O₄@PUNP magnetic microgel and Fe₃O₄@PUNP-Pd catalyst

As shown in Scheme 1, the Fe₃O₄@PUNP magnetic microgel was synthesized in two steps from commercially available stuffs. In the first step, the undecylenic acid-coated magnetic ³⁰ nanoparticles (Fe₃O₄@UA) were prepared by chemical coprecipitation. The purpose of this operation was to introduce onto the surface of Fe₃O₄ nanoparticles the C=C bond which would find use in the subsequent copolymerization. Next, the copolymerization of Fe₃O₄@UA with NIPAM and PAP was ³⁵ realized in water by using K₂S₂O₈ as the radical initiator. It was expected that thus formed Fe₃O₄@PUNP would bind Pd²⁺ favorably as PAP possesses excellent capacity for anchoring Pd²⁺ ¹⁹. As such, Fe₃O₄@PUNP was then treated with an aqueous solution of PdCl₂ to afford the designed Fe₃O₄@PUNP-Pd

⁴⁰ catalyst. The content of Pd^{2+} in Fe₃O₄@PUNP-Pd was determined to be 0.330 mmol g⁻¹ by AAS.

Fig. 1 FT-IR spectra of (a) Fe₃O₄@UA, (b) Fe₃O₄@PUNP, (c) fresh Fe₃O₄@PUNP-Pd and (d) Fe₃O₄@PUNP-Pd after six runs

The FT-IR spectra of (a) Fe₃O₄@UA, (b) Fe₃O₄@PUNP and (c) fresh Fe₃O₄@PUNP-Pd are shown in Fig. 1. In Fig. 1a, two bands located at 2925 cm⁻¹ and 2853 cm⁻¹ can be attributed to the aliphatic C-H stretching vibrations, and the bands at 1638 cm⁻¹ ⁵⁰ and 991 cm⁻¹ are assigned to the C=C stretching vibration and the C=C out-of-plane bend vibration respectively. The band at 910 cm⁻¹ is assigned to the C-H out-of-plane bend vibration for the =CH₂ group, and the band at 588 cm⁻¹ can be attributed to Fe-O stretching vibration. These characteristic bands of Fe₃O₄@UA are 55 consistent with those reported by Shen et al.²² In Fig. 1b, the band at 1706 cm⁻¹ corresponds to the C=O stretching vibration for the PAP groups. The bands at 1625 cm⁻¹, 1570cm⁻¹, 1436 cm⁻¹ can be attributed to the C=O stretching vibration (amide I band), N-H deformation vibration (amide II band), and the methyl group 60 asymmetric bending vibrations in the PNIPAM segments respectively. The band at 582 cm⁻¹ is consistent with the Fe-O stretching vibration. All the characteristic bands in the FT-IR spectrum (Fig. 1b) demonstrate that the Fe₃O₄@PUNP magnetic microgel has been successfully prepared. On complexation with 65 Pd(II) (Fig. 1c), the intensity of the band at about 1710 cm⁻¹

become obviously weaker than that of Fe_3O_4 @PUNP, consistent with the formation of a metal-ligand bond.

The magnetic property of magnetic materials was investigated

with a vibrating sample magnetometer (VSM) at 300 K. As shown in Fig. 2, the magnetic hysteresis curves of (a) Fe₃O₄@UA, (b) Fe₃O₄@PUNP and (c) fresh Fe₃O₄@PUNP-Pd reveal that they possess superparamagnetic behavior, and their saturation ⁵ magnetization values are 62.5, 55.3 and 36.0 emu g⁻¹ respectively, indicating that these magnetic materials can be efficiently separated by an external permanent magnet.

The XRD patterns of the (a) Fe₃O₄@UA, (b) Fe₃O₄@PUNP and (c) fresh Fe₃O₄@PUNP-Pd are presented in Fig. 3. The characteristic diffraction peaks in the samples at 20 of 30.2°, 35.5°, 43.3°, 53.8°, 57.2°, and 62.8° correspond to the diffraction of ¹⁵ (220), (311), (400), (422), (511), and (440) of the Fe₃O₄. All the diffraction peaks match with the magnetic cubic structure of Fe₃O₄(JCPDS 65-3107).²³

Fe₃O₄(α) PUNP-Pd after one run.

To establish the oxidation state of Pd in Fe₃O₄@PUNP-Pd, XPS analysis was conducted, and the result is shown in Fig. 4. The binding energy of Pd $3d_{5/2}$ and $3d_{3/2}$ for the fresh Fe₃O₄@PUNP-Pd is found to be 338.2 and 343.2 eV (Fig. 4a), indicating that the ²⁵ loaded palladium is in its II state.²⁴

The TEM images of (a) $Fe_3O_4@UA$, (b) $Fe_3O_4@PUNP$ and (c) fresh $Fe_3O_4@PUNP$ -Pd catalyst are presented in Fig. 5. The obtained $Fe_3O_4@UA$ nanoparticles have an average diameter of 9.05 ± 1.91 nm (Fig. 5a). $Fe_3O_4@PUNP$ microgels have the

³⁰ average diameter of 10.85 \pm 2.52 nm (Fig. 5b). After the loading of Pd²⁺ (Fig. 5c), the fresh Fe₃O₄@PUNP-Pd catalyst had an average diameter of 11.55 \pm 2.14 nm. The nitrogen adsorption– desorption measurement indicates that the catalyst had a specific surface area of 31.9 m² g⁻¹ (see ESI, Fig. S1).

Fig. 5 TEM images of (a) Fe₃O₄@ UA, (b) Fe₃O₄@PUNP, (c) fresh Fe₃O₄@PUNP -Pd, (d) Fe₃O₄@PUNP-Pd after one run and (e) Fe₃O₄@PUNP-Pd after six runs.

3.2 Fe₃O₄@PUNP-Pd catalyzed Suzuki reaction in water

40 Following the successful preparation of Fe₃O₄@PUNP-Pd, its effectiveness for the Suzuki coupling reaction was examined next. It is known that the Suzuki reaction is largely effected by the type of alkaline and the amount of catalyst used.²⁵⁻²⁹ Therefore, firstly the reaction of 4-iodoanisole with phenylboronic acid was used as 45 a model reaction for the screening of bases, and the results were summarized in Table 1 (entries 1-5). With the amount of catalyst fixed as 0.1 mol %, the reaction proceeded well when organic bases such as triethylamine and piperidine were used, affording the desired coupling product in excellent yields (entries 1 and 2),. 50 However, the yield was considerable lower with tributylamine as the base (entry 3). The decrease in yield with tributylamine is probably because the solubility of tributylamine is low in water. Excellent result was also obtained when inorganic base K₂CO₃ (entry 5) was used. By comparison, NaHCO₃, a weaker inorganic 55 base, was less effective for the reaction (entry 4). As K₂CO₃ was the most efficient base for the present catalytic system, it was chosen for subsequent investigations. Further experiments showed that 0.1 mol% amount of catalyst were sufficient to guarantee a clean and complete conversion. When the amount of 60 catalyst was reduced to 0.05 mol% under the otherwise same conditions as shown in entry 5, Table 1, the yield decreased to 72% (entry 6). On the other hand, using 0.2 mol% catalyst didn't increase the yield significantly (entry 7).

Table 1 Optimization of the reaction conditions for Suzuki reaction of 4-65 iodoanisole with phenylboronic acid catalyzed by Fe_3O_4 @PUNP-Pd^{*a*}

	H3CO)₂ <u>90 °C</u>	оснз
Entry	Base	Catalyst (mol %)	Yield $(\%)^{b}$
1	Et ₃ N	0.1	95
2	Piperidine	0.1	93
3	t-Bu ₃ N	0.1	80
4	NaHCO ₃	0.1	85
5	K_2CO_3	0.1	96
6	K_2CO_3	0.05	72
7	K_2CO_3	0.2	97

^{*a*} Reaction conditions: 1 mmol 4-iodoanisole, 1.5 mmol phenylboronic acid, 3 mmol base, Fe₃O₄@PUNP-Pd catalyst, 2 mL deionized water and argon atmosphere. ^{*b*} Isolated yield.

With the optimized reaction conditions in hand, the scope of the $_{70}$ Fe₃O₄@PUNP-Pd-catalyzed Suzuki reactions was investigated by

10

20

employing various substituted aryl halides to react with arylboronic acid. The results are summarized in Table 2. With iodobenzene and 4-iodoanisole as the reactants, the reaction finished in 1 h, forming the corresponding coupling products in ⁵ yields of 98% and 96% (entries 1 and 2) respectively. The reaction of substituted bromobenzenes, such as p-OH, p-NO₂, p-COOH, p-COCH₃ as well as bromobenzene, also afforded satisfactory yields (95-97%) in 1 h (entries 3-7). The yield was a little lower when 4-bromofluorobenzene was used as the substrate (artry 8). The reaction of 4 bromofluorobenzene was used as the substrate

- ¹⁰ (entry 8). The reaction of 4-bromotoluene with phenylboronic acid was not complete in 1 h, but when the reaction time was extended to 3 h, the coupling product was obtained in 91% yield (entry 9). On the other hand, the Suzuki reaction of 4-bromoanisole with phenylboronic acid proceeded poorly under 15 the same conditions, and only 10 % yield was obtained. However,
- when TBAB was added to the reaction mixture, a satisfactory yield of 90% was achieved in 1 h (entry 10). Similar phenomena were also observed when the protocol was applied to the *ortho*and *meta*-substituted aryl halides (entries 11 and 12). The ²⁰ beneficial effect of TBAB was exhibited the most in the case of
- 3,5-ditrifluoromethyl bromobenzene, where the reaction hardly took place without TBAB, but proceeded very well in its presence (entries 13). It is noteworthy that hydrophilic 4chlorobenzoic acid could also react with phenylboronic acid by 25 the action of 0.1 mol% Fe₃O₄@PUNP-Pd to afford the coupling product in 68% yield (entry 14), albeit that elevated temperature (reflux) and longer time (5 h) were required.

Mechanistically, the Suzuki coupling reactions start with the oxidative addition of C-X bond to Pd (0), and under all the

- ³⁰ circumstances, the active catalyst is Pd (0). In cases where Pd (II) is used as the catalyst, it has to be firstly reduced *in situ* to Pd (0). During the preparation of Fe₃O₄@PUNP-Pd, we did not use any reductant to reduce Pd (II) to Pd (0). In deed, the XPS analysis of the freshly prepared Fe₃O₄@PUNP-Pd indicates that there is no
- ³⁵ Pd (0) species on its surface. Therefore, there must be some species in the reaction system responsible for the generation of Pd (0). One possibility is that phenylboronic acid could act as the reductant, as proposed by Köhler et al.³⁰ On the other hand, Veinot et al.³¹ recently reported a solid palladium catalyst (II)
 ⁴⁰ supported on iron/iron oxide nanoparticles which are also
- effective for the Suzuki coupling reactions. They believed that the iron/iron oxide nanoparticles themselves could reduce palladium (II). Considering the relevance of these studies to ours, we think that both of these mechanisms might explain the high catalytic
- ⁴⁵ capacity of Fe₃O₄@PUNP-Pd. Evidence to support the hypothesis was provided by the XPS study of the catalyst after reaction. As shown in Fig. 4b, the XPS Pd 3*d* spectrum of the recovered Fe₃O₄@PUNP-Pd shows the binding energies of Pd 3*d*_{5/2} and Pd 3*d*_{3/2} at about 335.2 and 340.6 eV respectively, which can be so attributed to the Pd (0) species.^{31,32} This result confirms tha
- formation of Pd (0) during the reaction process.

^{*a*} Reaction conditions: 1 mmol aryl halide, 1.5 mmol phenylboronic acid, 0.1 mol% Fe₃O₄@PUNP-Pd catalyst, 3 mmol K₂CO₃, 2 mL deionized ⁵⁵ water and argon atmosphere. ^{*b*} Isolated yield. ^{*c*} 2 mmol TBAB was used.

In order to evaluate the efficiency of the Fe_3O_4 @PUNP-Pd catalyst, the present catalytic system was compared with some other magnetic nanoparticles-supported catalysts. As shown in Table 3, for the reaction of bromobenzene with phenylboronic ⁶⁰ acid, Fe_3O_4 @PUNP-Pd was the most efficient catalyst, with the highest apparent turnover frequencies (TOF) of 950 h⁻¹ (entry 1). In addition, with Fe₃O₄@PUNP-Pd as the catalyst, the reaction can be realized in water which is not only cheap and readily available, but also non-toxic and non-flammable.

Published on 18 September 2013. Downloaded by Harvard University on 19/09/2013 17:10:44.

Entry	Pd catalyst (mol%)	Time (h)/ Temp	Medium	Yield ^{<i>a</i>} (%)	TOF ^b (h ⁻¹)	Ref
1	Fe_3O_4 @PUNP- Pd (0 1)	1/90	$\rm H_2O$	95	950	This work
2	$Pd-Fe_3O_4@C$	2/60	EtOH	99	46.2	32
3	$Pd-Fe_3O_4@C$	1/reflux	EtOH	98	16.3	33
4	Xerogel g1- MNPs (1)	5 /60	MeOH	89	17.8	34
5	$Fe_{3}O_{4}-Bpy-Pd(OAc)_{2}$ (2)	12/80	Toluene	> 99	4.2	35
6	Pd@Mag- MSN (1)	6/80	Dioxane	77	12.8	36
7	$Fe@Fe_xO_y/Pd$ (0.5)	4/ R.T	H ₂ O/EtOH (1:1)	95	47.5	31
8	Pd/NiFe ₂ O ₄ - 300 (0.08)	12/80	NMP/H ₂ O (5:2)	97	101	37
9	$Pd/Fe_3O_4(1)$	24/reflux	DME/H_2O	70	2.9	38
10	Pd/NiFe ₂ O ₄ (1)	0.5/90	DMF/H ₂ O (1:1)	98	196	39

 Table 3
 Performance of different magnetic nanoparticle-supported Pd catalysts for the reaction of bromobenzene with phenylboronic acid

^{*a*} Isolated yield. ^{*b*} The apparent TOF value was measured as moles of product with per mole of Pd catalyst per hour.

⁵ Furthermore, the reaction kinetics of Suzuki reaction of 4iodoanisole with phenylboronic acid with 0.1 mol% Fe₃O₄@PUNP-Pd as catalyst was investigated, and the result is shown in Fig. 6a. The yield of 4-methoxybiphenyl increased quickly with reaction time until it reached 96% at 60 min. The ¹⁰ high efficiency of Fe₃O₄@PUNP-Pd catalyst can be attributed to the uniformly dispersion Fe₃O₄@PUNP-Pd in the reaction medium and its large surface area. Both factors would increase the probability of contact between reactants and the active sites of Fe₃O₄@PUNP-Pd, and thus improve the catalyst's performance.⁴⁰

Fig. 6 The kinetic plots of Suzuki reaction of 4-iodoanisole with phenylboronic acid. (a) Normal reaction kinetics; (b) Reaction kinetics after the catalyst being removed from the reaction at 10 minutes. Reaction conditions: 1 mmol 4-iodoanisole, 1.5 mmol phenylboronic acid, 0.1
²⁰ mol% Fe₃O₄@PUNP-Pd catalyst, 3 mmol K₂CO₃, 2 mL deionized water and argon atmosphere. The yields are isolated yields.

3.3 Fe₃O₄@PUNP-Pd catalyzed Heck reaction in water

Encouraged by the satisfactory results with the Suzuki reaction, the Fe₃O₄@PUNP-Pd catalyst was applied to the Heck reaction ²⁵ next. Toward this end, 0.1 mol% of Fe₃O₄@PUNP-Pd was used

to effect in the reaction of aryl halides with vinyl substrates in water. As shown in Table 4, the Heck reactions of various aryl iodides with hydrophilic acrylic acid proceeded well in H₂O at reflux temperature, resulting in the formation of cinnamic acids in ³⁰ yields of 91-96 % (entries 1-4). The substituents at the phenyl ring of aryl iodides had no significant effect on the reaction consequence. Iodobenzene did not react with hydrophobic styrene in H₂O, but when a mixed solvent of H₂O/DMF (1:1 by volume) was used, the reaction took place, and a satisfactory yield of 95% ³⁵ was achieved in 8 h (entry 5). This protocol is also applicable to aryl bromides. Both electron-withdrawing and electron-donating group substituted aryl bromides, such as 4-bromoacetophenone, 4-nitroacetophenone and 4-bromotoluene, can be smoothly converted to the corresponding coupling products in high yields ⁴⁰ (entries 6-8).

^{*a*} Reaction conditions: 1 mmol aryl halide, 1.5 mmol vinyl substrates, 0.1 mol% Fe₃O₄@PUNP-Pd, 3 mmol K₂CO₃, 2 mL deionized water and argon atmosphere. ^{*b*} Isolated yield. ^{*c*} A mixed solvent of H₂O/DMF (1:1 45 by volume) was used.

3.4 The reusability of the Fe₃O₄@PUNP-Pd catalyst

The reusability of the Fe₃O₄@PUNP-Pd catalyst was evaluated by using the Suzuki coupling of 4-bromoacetophenone with phenylboronic acid as the model reaction. The procedure is ⁵⁰ simple: the Fe₃O₄@PUNP-Pd catalyst was firstly applied to the reaction, and then recovered after reaction complete by separating it from the reaction mixture with an external permanent magnet, washing it with H₂O and diethyl ether alternatively. It was reused directly for the next cycle without further treatment. Our ⁵⁵ recycling experiment showed that the yield maintained in the range of 94-96% before the fifth run, and still reached 88% at the sixth run (Table 5).

Subsequently, the leaching of Pd after the sixth run was analyzed by AAS, which gave the values of 0.24 ppm and 0.47 ppm in the 60 diethyl ether and aqueous phases respectively. The result indicates that the Fe₃O₄@PUNP-Pd catalyst are stable under the experiment conditions. A few catalytic tests were further

15

ireen Chemistry Accepted Manuscrip

conducted to assess the impact of palladium leaching: (1) the magnetic catalyst was removed from the reaction system after 10 minutes and the reaction kinetics was monitored from then on. As shown in Fig. 6b, after the catalyst was removed, the yield

- ⁵ stopped to increase, remaining almost constant (44-47%); (2) as mentioned above, there was 0.47 ppm of Pd detected leaching into the supernatant during the course of the reaction. Correspondingly, a control experiment was conducted with the same equivalent of PdCl₂ (0.47 ppm) as the catalyst. We found ¹⁰ that only a tiny amount of product (2%, GC yield) formed after
- one hour, with most of the reactant remained. From these analyses we concluded that effect of palladium leaching was negligible for the present catalyst system.

Table 5 Reusability of Fe $_3O_4$ @PUNP-Pd catalyst in the Suzuki reaction 15 4-bromoacetophenone with phenylboronic acid^a

Runs	1	2	3	4	5	6
Yield ^b (%)	96	95	96	94	90	88
a Decetien een		1	1		1.5	

^{*a*} Reaction conditions: 1 mmol 4-bromoacetophenone, 1.5 mmol phenylboronic acid, 0.1 mol% Fe₃O₄@PUNP-Pd, 3 mmol K₂CO₃, 2 mL deionized water and argon atmosphere. ^{*b*} Isolated yield.

- To gain a deep insight on the stability of Fe₃O₄@PUNP-Pd, its ²⁰ structure was analyzed by FT-IR, XRD and TEM after being recovered from reaction mixture. Fig. 1d shows the FT-IR spectrum of Fe₃O₄@PUNP-Pd after three runs. The weak band at about 1710 cm⁻¹ indicates that the metal-ligand bond still exists in the reused Fe₃O₄@PUNP-Pd after the six run, from which we can see that the crystalline phase of Fe₃O₄ did not change during the reaction. Compared with Fig. 3c, new peaks appear at 2θ of 40.1°, 46.0° and 67.3°. These peaks are due to the (111), (200), and (220) reflections of the face-centred cubic Pd lattice,⁴¹ revealing ³⁰ that Pd (0) nanoparticles were formed during the reaction.^{30,31}
- The TEM images of the recycled Fe₃O₄@PUNP-Pd shows that after the first run, there were a part of palladium (0) nanoparticles dispersed onto the surface of the magnetic nanoparticles support (Fig. 5d). After six cycles (Fig. 5e), Pd nanoparticles have
- ³⁵ aggregated into bigger particles on the surfaces of the matrices.¹⁹ The aggregation of Pd probably led to the reduction in catalytic activity after multiple runs.³⁵

4 Conclusions

In summary, a novel heterogeneous Pd catalyst has been $_{40}$ developed by supporting Pd (II) onto the Fe₃O₄@PUNP magnetic microgel. This Fe₃O₄@PUNP-Pd catalyst not only exhibits impressive catalytic capacity to effect the Suzuki and Heck reactions in water, but also possesses high stability. It can be used for at least six consecutive runs without significant loss of its

- ⁴⁵ catalytic activity. In addition, as magnetic nanoparticles were used as the solid support, the present catalyst can be simply recovered from the reaction mixture by an external permanent magnet, and then put to use again after washing with water and ethyl ether. The merits associated with Fe₃O₄@PUNP-Pd so hopefully will render it a valuable catalyst in practical supports.
- ⁵⁰ hopefully will render it a valuable catalyst in practical synthesis.

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2010-32) and the National ⁵⁵ Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (J1103307).

Notes and references

 ^a Key Laboratory of Nonferrous Metal Chemistry and Resources
 ⁶⁰ Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, China. Fax: +86 931 8912582; Tel: +86 931 8912582; E-mail: <u>bianfl@lzu.edu.cn</u> (F.L.Bian)

 ^b b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China. Fax: +86 931 8912582; Tel: +86
 65 931 8912582; E-mail: <u>yuwei@lzu.edu.cn</u> (W. Yu)

[†] Electronic Supplementary Information (ESI) available: [BET surface analysis, ¹H and ¹³C NMR spectra data of the products]. See DOI: 10.1039/b000000x/

- 70 1 A. Molnár, Chem. Rev., 2011, 111, 2251-2320.
 - 2 A. Balanta, C. Godard and C. Claver, *Chem. Soc. Rev.*, 2011, **40**, 4973-4985.
 - 3 A. Albéniz and N.Carrera, Eur. J. Inorg. Chem., 2011, 15, 2347-2360.
 - 4 Y.-Lu and M. Ballauff, Prog. Polym. Sci., 2011, 36, 767-792.
- 75 5 A. Nayak and L. A. Lyon, Angew. Chem. Int. Ed., 2005, 44, 7686-7708.
 - 6 A. Biffis, J. Mol. Catal. A: Chem., 2001, 165, 303-307.
 - 7 A. Biffis, N. Orlandi and B. Corain, Adv. Mater., 2003, 15, 1551-1555.
 - 8 A. Biffis and E. Sperotto, *Langmuir*, 2003, **19**, 9548-9550.
- 80 9 J.-Z. Zhang, W.-Q. Zhang, Y. Wang and M.-C. Zhang, Adv. Synth. Catal., 2008, 350, 2065-2076.
 - 10 P.-H. Li, L. Wang, L. Zhang and G.-W. Wang, Adv. Synth. Catal., 2012, 354, 1307-1318.
 - 11 M. B. Gawande, P. S. Branco and R. S. Varma, Chem. Soc. Rev., 2013, 42, 3371-3393.
 - 12 R. B. Nasir Baig and R. S. Varma, Green Chem., 2013, 15, 398-417.
 - 13 V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J.-M. Basset, *Chem. Rev.*, 2011, **111**, 3036-3075.
- 14 D.-H. Zhang, C. Zhou, Z.-H .Sun, L.-Z. Wu, C.-H Tung and T.-R. Zhang, *Nanoscale*, 2012, **4**, 244-6255.
- 15 D. Rosario-Amorin, M. Gaboyard, R. Clérac, L. Vellutini, S. Nlate and K. Heuzé, *Chem. Eur. J.* 2012, **18**, 3305-3315.
- 16 P. D. Stevens, J.-D. Fan, H. M. R. Gardimalla, M. Yen and Y. Gao, Org. Lett., 2005, 7, 2085-2088.
- 95 17 D. R. Amorin, M. Gaboyard, R. S. Nlate and K. Heuz, *Dalton Trans.*, 2011, 40, 44-46.
 - 18 B. Li, L.-F. Gao, F.-L. Bian and W. Yu, *Tetrahedron Lett.*, 2013, 54, 1063-1066.
- J.-H. Yang, X. Zhang, W. Yu, W.-J Liu and F.-L Bian, *React. Funct. Polym.*, 2013,**73**, 710-718.
 - 20 L.-F Shen, P. E. Laibinis and T. A. Hatton, Langmuir, 1999, 15, 447-453.
 - 21 S. Shylesh, V. Schünemann and W. R. Thiel, *Angew. Chem. Int. Ed.*, 2010, **49**, 3428-3459.
- 105 22 L.-F. Shen, A. Stachowiak, T. A. Hatton and P. E. Laibinis, *Langmuir*, 2000, 16, 9907-9911.
 - 23 J.-Q. Wan, W. Cai, J.-T. Feng, X.-X. Meng and E.-Z. Liu, J. Mater. Chem., 2007, 17, 1188-1192.
- 24 A. Gniewek, A. M. Trzeciak, J. J. Ziółkowski, L. Kępiński, J. Wrzyszcz and W. Tylus, *J. Catal.*, 2005, **229**, 332-343.
 - 25 C. Liu, Y.-X. Zhang, N. Liu and J.-S. Qiu, *Green Chem.*, 2012, 14, 2999-3003.
 - 26 M. Bakherad, A. Keivanloo, B. Bahramian and S. Jajarmi, J. Organomet. Chem., 2013, **724**, 206-212.
- 115 27 A. Kumbhar, S. Jadhav, S. Kamble, G. Rashinkar and R. Salunkhe, *Tetrahedron Lett.*, 2013, 54, 1331-1337.
 - 28 Q. Zhang, H. Su, J. Luo and Y.-Y. Wei, *Tetrahedron*, 2013, 69, 447-454.
- 29 S. M. Islam, N. Salam, P. Mondal and A. S. Roy, J. Mol. Catal. A:
 Chem., 2013, 366, 321-332.

- 30 S. S. Soomro, F. L. Ansari, K. Chatziapostolou and K. Köhler, J. Catal. 2010, 273, 138-146.
- 31 S. Zhou, M. Johnson and J. G. C. Veinot, Chem. Commun., 2010, 46, 2411-2413.
- 5 32 R. Li, P. Zhang, Y.-M Huang, P. Zhang, H. Zhong and Q.-W Chen, J. Mater. Chem., 2012, 22, 22750-22755.
- 33 M.-Y. Zhu and G.-W. Diao, J. Phys. Chem. C, 2011, 115, 24743-24749.
- 34 Y.-T. Liao, L.-S. He, J. Huang, J.-Y. Zhang, L. Zhuang, H. Shen and 10 C.-Y. Su, *Appl. Mater. Inter.*, 2010, **2**, 2333-2338.
- 35 Y.-Q. Zhang, X.-W. Wei and R. Yu, Catal. Lett., 2010, 135, 256-262.
- 36 S. Shylesh, L. Wang, S. Demeshko and W. R. Thiel, *ChemCatChem*, 2010, 2, 1543-1547.
- 37 Z. Gao, Y.-J. Feng, F.-M. Cui, Z.-L. Hua, J. Zhou, Y. Zhu and J.-L. 15 Shia, *J. Mol. Catal. A: Chem.*, 2011, **336**, 51-57.
- 38 Y. Jang, J. Chung, S. Kim, S. W. Jun, B. H. Kim, D. W. Lee, B. M. Kim and T. Hyeon, *Phys. Chem. Chem. Phys.*, 2011, 13, 2512-2516.
- 39 S. R. Borhade and S. B. Waghmode, *Beilstein J. Org. Chem.*, 2011, 7, 310-319.
- 20 40 K. V. S. Ranganath, J. Kloesges, A. H. Schäfer and F. Glorius, *Angew. Chem. Int. Ed.*, 2010, **49**, 7786-7789.
 - 41 Y. Wan, H.Y. Wang, Q. F. Zhao, M. Klingstedt, O. Terasaki and D. Y. Zhao, J. Am. Chem. Soc., 2009, 131, 4541-4550.

Published on 18 September 2013. Downloaded by Harvard University on 19/09/2013 17:10:44.

